
CS760, S. Qiao Part 3 Page 1

Testing

1 General Guidelines

Kernighan and Pike [5] present the following general guidelines for testing
software.

• Know exactly what you are testing and what results you expect.

• Test as you go. Think about testing as you write a program. Because
this is when you know best what the code should do. Test as you add
parts.

• Test boundaries of variables and loop index, special cases such as
empty array.

• Check pre- and post-conditions, for example, valid input.

• Use assertions for situations where a failure is unrecoverable. It is par-
ticularly useful in validating interfaces to assure consistency between
caller and callee.

• Program defensively. Handle “can’t happen” cases, for example, neg-
ative grades.

• Check error returns, for example, from system calls.

• Use inverse, if it exists, to verify the results. For example, encryption
and decryption.

• Use two independent programs for the same problem.

• Use tools such as compiler profile to test coverage to assure every
statement is tested.

• Test regressively. When fixing problems, there is tendency to check
only the fix. When a problem is fixed, new problems may occur.

In addition to the above general guidelines, we suggest the following for
testing numerical software.

• Test special values such as ±∞, ±0, NaN, overflow threshold, under-
flow threshold, if they are valid inputs.

CS760, S. Qiao Part 3 Page 2

• Use the results obtained by using higher precision as the accurate
results to measure the errors in the results obtained by using lower
precision.

• Random data usually does not work well in testing numerical software.
Random matrices are usually well-conditioned, random numbers are
seldomly near the special values.

• Use data from real applications for testing. For example, Harwell-
Boeing has a collection of sparse matrices [2] and Tim Davis maintains
a set of test matrices from various applications [1].

• Construct testing data so that the exact answer is known and the pro-
gram is “attacked” rigorously. For example, we can construct matrices
with known eigenvalues or singular values by multiplying diagonal ma-
trix and random unitary matrices [6]. There are special matrices such
as Hilbert, Cauchy, and Pascal matrices.

2 An Example

In the following we give an example of testing sqrt function.
In order to understand the testing, we first present an implementation

of the function sqrt. The method used is the Newton’s iteration for finding
the zeros of a function f(x). In general, Newton’s iteration is

x+ = x − f(x)/f ′(x)

where x is the current value and x+ is the new value. In this case,
√

a is a
zero of the quadratic polynomial f(x) = x2 − a. Thus the iteration is

x+ = x − x2 − a

2x
=

x + a/x

2
.

A geometric interpretation of the above iteration is as follows. The problem
of finding

√
a is equivalent to finding the length of the side of a square whose

area is a. We start with a rectangle with one side x and area a. Then the
other side is a/x. To make the rectangle more “square”, we make a new
rectangle with one side x+ = (x + a/x)/2, the avarage of x and a/x. Figure
1 depicts the iteration. We expect the constructed rectangles converge to a
square with area a.

As any iterative method, we must address two issues:

CS760, S. Qiao Part 3 Page 3

x

a/x

(x + a/x)/2
a

a

Figure 1: Geometric interpretation of the Newton’s iteration for finding
√

a.

• The initial value;

• The stopping criterion.

Since the range of a can be very wide, we first scale a into the interval
[0.25, 1.0) by dividing or multipying by 4. Assuming a has already been
scaled, we use the following linear interpolation

x0 =
1 + 2a

3

as the initial guess. It is easy to see that the initial error

e0 ≡
√

a − x0 =
√

a − (1 + 2a)/3

is maximized at a = 9/16 and the maximal e0 is 1/24 < 2−4. For this
quadratic polynomial, Newton’s iteration converges quadratically, that is
ek+1 ≤ ce2

k where c is a constant. Thus after three iterations, the error
is smaller than 2−32, enough for single precision. And four iterations are
enough for double precision.

Now we discuss testing. First we test the special values ±0, ±∞, and
NaN. To test scaling, we use 1.0, 22, 2−2, Then we test the significant
part by choosing an n and finding k such that there are approximately n
consecutive integers between 2k and 2k+1 (k ≈ log2 n). We test whether
sqrt(x ∗ x) = x exactly for these integers.

The hard part of testing numerical software is the construction of testing
data. In the following, we describe a test for correctly rounded sqrt suggested
by Kahan [4]. Specifically, we will show how to construct testing data to
test if sqrt(x) is correctly rounded, i.e., if sqrt(x) = fl(

√
x).

CS760, S. Qiao Part 3 Page 4

The idea is to construct an integer pair (x, Y) where Y is an N -bit integer
and x = 2N−jX for 2N−1 ≤ X < 2N and j = 0, 1, so that

√
x ≈ Y +

1

2
.

Thus a small change in computation of
√

x will round sqrt(x) to either Y +1
or Y . In other words, the least significant digit of sqrt(x) may be incorrect.

Suppose (2Y + 1)2 = 4x+ k for a small (relative to (2Y + 1)2) integer k.
Since x = 2N−jX, we have (2Y + 1)2 ≡ k mod 2N+2−j . This implies that
2Y + 1 is a square root mod 2N+2−j of k. It can be proved [4] that k ≡ 1
mod 8 (a necessary condition). Thus the possible values of k are:

· · · ,−15,−7, 1, 9, 17, · · ·
Now we want to find

√
k. The following we describe an algorithm for gen-

erating a sequence {In}:
I2
n ≡ k mod 2n, for n = 3, 4, 5, · · ·

Thus IN+2−j may be 2Y +1 we are looking for. Once we get Y , we can find
x.

Since k ≡ 1 mod 8 and I2
3 ≡ k mod 8, we have I3 = 1, the smallest pos-

itive square root in (0, 23). The following algorithm generates the sequence
{In}

I(3) = 1;

for n = 3, 4, 5, ...

R(n) = (I(n)*I(n) - k)/2^n;

if R(n) is even

I(n+1) = I(n);

else

I(n+1) = 2^(n-1) - I(n):

endif

endfor

To avoid the computation of I2
n, square of a large integer, we observe that

when Rn is even

Rn+1 = (I2
n+1 − k)/2n+1 = (I2

n − k)/2n+1 = Rn/2

and when Rn is odd

Rn+1 = ((2n−1 − In)2 − k)/2n+1 = 2n−3 + (Rn − In)/2.

The following algorithm generates sequences {In} and {Rn} without squar-
ing large integers.

CS760, S. Qiao Part 3 Page 5

I(3) = 1;

R(3) = (1 - k)/2^3;

for n = 3, 4, 5, ...

if R(n) is even

I(n+1) = I(n);

R(n+1) = R(n)/2;

else

I(n+1) = 2^(n-1) - I(n);

R(n+1) = 2^(n-3) + (R(n) - I(n))/2;

endif

endfor

For example, if k = 1, In = 1 and Rn = 0 for all n. If k = 9, then I3 = 1,
R3 = −1 and In = 3, Rn = 0, for all n > 3. The following table lists some
values (decimal) of In and Rn for k = 17

n 3 4 5 6 7 8 9 10

In 1 1 7 9 23 23 23 233

Rn −2 −1 1 1 4 2 1 53

Note that the sequence I3, I4, I6, I10 gives a
√

17 and I3, I5, I7, I8, I9 its
two’s complement. From I10 = 233, we get Y = 116 (8 bits) and x = 13568
(14 bits). Note that

√
13568 ≈ 116.48176 ≈ 116 +

1

2
.

A small change in the computation could produce 117. This example shows
that constructing testing data for numerical software can be tricky and prob-
lem specific.

3 Testing Stability

Stability of a numerical algorithm is an important issue. For example, we
want to know how large the growth factor can be in a Gaussian elimination
algorithm, how much a condition number estimator under-estimates the
condition number. In general, we can apply error analysis, which requires
mathematical techniques, or random testing, which requires delicate choice
of testing data. In this section, describe an automated method for testing
stability proposed by Higham [3, Page 477]. It uses optimization techniques

CS760, S. Qiao Part 3 Page 6

to construct input data to reveal possible instability. To illustrate the idea,
consider the problem of solving cubic equation:

x3 + ax2 + bx + c = 0.

The change of variable x = y − a/3 eliminates the quadratic term:

y3 + py + q = 0, p = −a2

3
+ b, q =

2

27
a3 − ab

3
+ c.

Then Vieta’s substitution y = w − p/(3w) yields

w3 − p3

27w3
+ q = 0

and hence a quadratic equation in w3: (w3)2 + qw3 − p3/27 = 0. Hence

w3 = −q

2
±

√

q2

4
+

p3

27
.

For either choice of sign, the three cube roots for w yield the roots of the
original cubic, on transforming back from w to y to x.

Are these formulae for solving a cubic numerically stable? We can use
an optimization method to construct the coefficients a, b, and c so that the
relative error of the computed roots is maximized. We may use eigenvalue
approach to get accurate roots. We can find the coefficients a, b, and c
such that the computed roots are inacurrate, while the roots are well sep-
arated (the eigenprolem is not ill-conditioned). Experiments show that the
formulae, as programmed, are numerically unstable.

References

[1] http://www.cis.ufl.edu/∼davis

[2] I.S. Duff, R. Grimes, and J. Lewis. Sparse Matrix Test Problems. ACM

Trans. Math. Software, 15:1–14, 1989.

[3] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithm.
Society for Industrial and Applied Mathematics, 1996.

[4] W. Kahan. A Test for Correctly Rounded SQRT.
http://www.cs.berkeley.edu/∼wkahan

CS760, S. Qiao Part 3 Page 7

[5] Brian W. Kernighan and Rob Pike. The Practice of Programming.
Addison-Wesley Longman, Inc, 1999.

[6] G.W. Stewart. The effiicient generation of random orthogonal matrices
with an application to condition estimators. SIAM J. Numer. Anal.,
17(3):403–409, 1980.

