CSIMD3 08f3.1

Assignment 3

Due. Nov. 4 (Tuesday), 23:59.

1. Write a program that displays the integers between 1 and 100 that are divisible by either 6
or 7 but not both. Once you have a working version, try to modify your program so that it
displays the integers in one line separated by commas and ended with a period.

2. Write a GraphicsProgram subclass that draws a pyramid consisting of bricks arranged in
horizontal rows, so that the number of bricks in each row decreases by one as you move up
the pyramid, as shown in the figure on page 129.

The pyramid should be centered in the window and should use named constants:

BRICK_WIDTH The width of each brick
BRICK_HEIGHT The height of each brick
BRICKS_IN_BASE The number of bricks in the base

3. Using the AnimatedSquare program as a model, write an animated BouncingBall program
that bounces a ball inside the boundaries of the graphics window. Your program should begin
by placing a GOval in the center of the window to represent the ball. On each time step,
your program should shift the position of the ball by dx and dy pixels, where both dx and dy
initially have the value 1. Whenever the leading edge of the ball touches one of the boundaries
of the window, your program should make the ball bounce by negating the value of dx or dy,
as appropriate. For example, if the ball hits the bottom wall of the window, your program
should bounce the ball vertically by negating the value of dy. Your program should therefore
begin with the ball tracing out a path that looks like the figure on page 131. You may define
a named constant N_STEPS and try some large values such as 2,000.

4. Modify the program in question 2 to draw a color pyramid. Each brick is black outlined (one
pixel) and filled with color. Design a method createBrick that draws a brick black outlined
(one pixel) and filled with specified color at specified position. Think about the interface
design, arguments vs named constants. You may assume that all the bricks have the same
color.

5. An integer greater than 1 is said to be prime if it has no divisors other than itself and one.
The number 17, for example, is prime, because it has no factors other and 1 and 17. The
number 91, however, is not prime because it is divisible by 7 and 13. Write a predicate
method isPrime(n) that returns true if the integer n is prime, and false otherwise. As
an initial strategy, implement isPrime using a brute-force algorithm that simply tests every
possible divisor. Once you have that version working, try to come up with improvements to
your algorithm that increases its efficiency without sacrificing its correctness. You may use
the following FindPrimes. java program to test your method.



CSIMD3 08f3.2

/*
* File: FindPrimes. java
K —————ee—e e
* This program finds all prime numbers between the constants

*

LOWER_BOUND and UPPER_BOUND.
*/

import acm.program.*;
public class FindPrimes extends ConsoleProgram {

public void run() {
for (int i = LOWER_BOUND; i <= UPPER_BOUND; i++) {
if (isPrime(i)) println(i);

/* Method: isPrime x/
/* Returns true if *n* is a prime number */
private boolean isPrime(int n) {

3

/* Lower and upper bound constants */
private static final int LOWER_BOUND =
private static final int UPPER_BOUND

|
e
.-

100;



