
CS2S03/SE2SO3 11f4.1

Assignment 4

Due. Nov. 9 (Wednesday), 17:30.

Programming style (10 marks).

1. (6 marks) Chapter 6, Programming 5, p. 226.
Update the permutation algorithm from the text to generate the correct list of permutations even if
the string contains repeated letters. For example, if you call ListPermutations on the string
“AABB”, your program should not generate as many permutations as it does for the string “ABCD”
because some of the strings generated by the standard algorithm would be indistinguishable from
others. Your program should instead generate the following six:

AABB
ABAB
ABBA
BAAB
BABA
BBAA

Write a new implementation of ListPermutations that works correctly even if the string contains
duplicated letters. In writing this implementation, you should not merely keep a list of permutations
that have already be encountered and avoid generating duplicates. Instead, you should think carefully
about the recursive structure of the problem and find a way to avoid generating the duplicates in the
first place. You may assume the string contains only upper case letters from A to Z.

2. (10 marks) Chapter 6, Programming 15, p. 233
Recursive decomposition can also be used to draw a stylized representation of a tree. The tree begins
as a simple trunk indicated by a straight vertical line. The trunk may branch at the top to form two
lines veer off at an angle, as shown in the figure on page 234. These branches may themselves split
to form new branches, which split to form new ones, and so on. If the decision to branch is made
randomly at each step of the process, the tree will eventually become unsymmetrical and will end up
looking a little more like trees in nature, as illustrated by the diagram on page 234.

If you think about this process recursively, however, you can see that all trees constructed in this
way consist of a trunk, optionally topped by two trees that veer off at an angle. If the probability of
branching is a function of the length of the current branch, the process will eventually terminate as
the branches get progressively shorter.

Write a program drawtree.cpp that uses this recursive strategy and the graphic library to draw a
stylized line drawing of a tree.

3. (12 marks) Chapter 7, Programming 7, p. 274.
In chess, a knight moves in an L-shaped pattern: two squares in one direction horizontally or vertically,
and then one square at right angles to that motion. For example, as shown in the diagram on page
274, the knight in the upper right side of the diagram can move to any of the eight squares marked
with a black cross. The mobility of a knight decreases near the edge of the board, as illustrated by the
bottom knight, which can reach only the three squares marked by white crosses.

It turns out that a knight can visit all 64 squares on a chessboard without ever moving to the same
square twice. A path of the knight that moves through all the squares without repeating a square is



CS2S03/SE2SO3 11f4.2

called a knight’s tour. One such tour is shown in the diagram on page 275, in which the numbers in
the squares indicate the order in which they were visited.

Write a program that uses backtracking recursion to find a knight’s tour.


