
Structure of a C++ program Variables, values, and types Statements Functions

Programming Abstraction in C++

Eric S. Roberts and Julie Zelenski

Stanford University
2010.

Structure of a C++ program Variables, values, and types Statements Functions

Chapter 1. An Overview of C++

Structure of a C++ program Variables, values, and types Statements Functions

Chapter 1. An Overview of C++

You should read Chapter 1. We won’t teach the basic syntax
and constructs. We’ll just highlight some of the common
programming idioms and C++ characteristics.

Structure of a C++ program Variables, values, and types Statements Functions

Outline

1 Structure of a C++ program

2 Variables, values, and types

3 Statements

4 Functions

Structure of a C++ program Variables, values, and types Statements Functions

Outline

1 Structure of a C++ program

2 Variables, values, and types

3 Statements

4 Functions

Structure of a C++ program Variables, values, and types Statements Functions

Structure of a C++ program

Comments

Program: Operation of the program as a whole.

Function: What the function does.

/ * multiline

* comments

* /

// single line comments

Structure of a C++ program Variables, values, and types Statements Functions

Structure of a C++ program (cont.)

Library inclusions

#include "private library"
#include <system library>

header files containing definitions.

Structure of a C++ program Variables, values, and types Statements Functions

Structure of a C++ program (cont.)

Library inclusions

#include "private library"
#include <system library>

header files containing definitions.

constant definitions

Structure of a C++ program Variables, values, and types Statements Functions

Structure of a C++ program (cont.)

Library inclusions

#include "private library"
#include <system library>

header files containing definitions.

constant definitions

function prototypes

Structure of a C++ program Variables, values, and types Statements Functions

Structure of a C++ program (cont.)

Library inclusions

#include "private library"
#include <system library>

header files containing definitions.

constant definitions

function prototypes

main

Structure of a C++ program Variables, values, and types Statements Functions

Structure of a C++ program (cont.)

Library inclusions

#include "private library"
#include <system library>

header files containing definitions.

constant definitions

function prototypes

main

function definitions

Structure of a C++ program Variables, values, and types Statements Functions

Example

Program comments

/ *
* File: powertab.cpp

* ------------------

* This program generates a table comparing

* values of the functions nˆ2 and 2ˆn.

* /

Structure of a C++ program Variables, values, and types Statements Functions

Example

Program comments

/ *
* File: powertab.cpp

* ------------------

* This program generates a table comparing

* values of the functions nˆ2 and 2ˆn.

* /

Library inclusions

#include "genlib.h"
#include <iostream>
#include <iomanip>

Structure of a C++ program Variables, values, and types Statements Functions

Example (cont.)

section comment

/ * Constants

* ---------

* LOWER_LIMIT -- starting value for the table

* UPPER_LIMIT -- final value for the table

* /

Structure of a C++ program Variables, values, and types Statements Functions

Example (cont.)

section comment

/ * Constants

* ---------

* LOWER_LIMIT -- starting value for the table

* UPPER_LIMIT -- final value for the table

* /

constant definitions

const int LOWER_LIMIT = 0;
const int UPPER_LIMIT = 12;

Structure of a C++ program Variables, values, and types Statements Functions

Example (cont.)

function prototype

/ * Private function prototypes * /
int RaiseIntToPower(int n, int k);

Structure of a C++ program Variables, values, and types Statements Functions

Example (cont.)

main program

int main() {
cout << " | 2 | N " << endl;
cout << " N | N | 2 " << endl;
cout << "----|-----|------" << endl;
for (int n = LOWER_LIMIT; n <= UPPER_LIMIT; n++) {

cout << setw(3) << n << " |";
cout << setw(4) << RaiseIntToPower(n, 2) << " |";
cout << setw(5) << RaiseIntToPower(2, n) << endl;

}
return 0;

}

Structure of a C++ program Variables, values, and types Statements Functions

Example (cont.)

function comments

/ *
* Function: RaiseIntToPower

* Usage: p = RaiseIntToPower(n, k);

* ---------------------------------

* This function returns n to the kth power.

* /

Structure of a C++ program Variables, values, and types Statements Functions

Example (cont.)

function definition

int RaiseIntToPower(int n, int k) {
int result;

result = 1;
for (int i = 0; i < k; i++) {

result * = n;
}
return result;

}

Structure of a C++ program Variables, values, and types Statements Functions

Example (cont.)

function definition

int RaiseIntToPower(int n, int k) {
int result;

result = 1;
for (int i = 0; i < k; i++) {

result * = n;
}
return result;

}

Style: Page 6

Structure of a C++ program Variables, values, and types Statements Functions

Outline

1 Structure of a C++ program

2 Variables, values, and types

3 Statements

4 Functions

Structure of a C++ program Variables, values, and types Statements Functions

Variables and values

Declaration: four properties

type: (int i; double x; char c; ...)
name: Naming conventions

start with a letter or underscore, others are letters, digits, or
underscores, no spaces or special characters
No reserved keywords (Table 1-1, p. 11)
Case sensitive

Structure of a C++ program Variables, values, and types Statements Functions

Variables and values

Declaration: four properties

type: (int i; double x; char c; ...)
name: Naming conventions

start with a letter or underscore, others are letters, digits, or
underscores, no spaces or special characters
No reserved keywords (Table 1-1, p. 11)
Case sensitive

Examples

variables: totalTime
functions: RaiseIntToPower
constants: UPPERLIMIT

Structure of a C++ program Variables, values, and types Statements Functions

Variables and values

Declaration: four properties (cont.)

life time: How long a varible persists. The lifetime of a
variable declared in a function (local variable) is the time
when the function is active

scope: accessibility. The scope of a local variable extends
to the end of the block where it is declared.

Structure of a C++ program Variables, values, and types Statements Functions

Variables and values

Declaration: four properties (cont.)

life time: How long a varible persists. The lifetime of a
variable declared in a function (local variable) is the time
when the function is active

scope: accessibility. The scope of a local variable extends
to the end of the block where it is declared.

We rarely, if ever, use global variables (declared outside any
function).

Structure of a C++ program Variables, values, and types Statements Functions

Variables and values

Variables must be declared before they are used.

Structure of a C++ program Variables, values, and types Statements Functions

Variables and values

Variables must be declared before they are used.

All values have a type, and every variable has a declared type.

Example: 2 (int), 2.0 (double)

Structure of a C++ program Variables, values, and types Statements Functions

Variables and values

Variables must be declared before they are used.

All values have a type, and every variable has a declared type.

Example: 2 (int), 2.0 (double)

Local variable can be declared anywhere with a block of
statements.

Example:

for (int i = 0; ...) {
...

}

Structure of a C++ program Variables, values, and types Statements Functions

Data types

Two attributes: Domain and operations.

Structure of a C++ program Variables, values, and types Statements Functions

Data types

Two attributes: Domain and operations.

Atomic types

integer: short , int , long

floating-point: float , double , long double

text: char (ASCII code, Table 1-2, p. 14), string

Boolean: bool

Structure of a C++ program Variables, values, and types Statements Functions

Operations

Precedence and associativity (Table 1-4, p. 17).
Example:
7 + 6 / 3 * 2 or 7 + ((6 / 3) * 2)
In general, put extra parentheses.

Structure of a C++ program Variables, values, and types Statements Functions

Operations

Precedence and associativity (Table 1-4, p. 17).
Example:
7 + 6 / 3 * 2 or 7 + ((6 / 3) * 2)
In general, put extra parentheses.

Mixing types (automatic conversion, Table 1-5, p. 18).
Example: 9 / 4.0
Values are promoted to the richer type.

Structure of a C++ program Variables, values, and types Statements Functions

Operations

Precedence and associativity (Table 1-4, p. 17).
Example:
7 + 6 / 3 * 2 or 7 + ((6 / 3) * 2)
In general, put extra parentheses.

Mixing types (automatic conversion, Table 1-5, p. 18).
Example: 9 / 4.0
Values are promoted to the richer type.

Type casts: int num, den; double (num) / den;

Structure of a C++ program Variables, values, and types Statements Functions

Operations

Assignments: multiple assignments (n1 = n2 = 0).
It works because an assignment is an expression that has
as its result the value assigned.
shorthand assignments (x += 2)

Structure of a C++ program Variables, values, and types Statements Functions

Operations

Assignments: multiple assignments (n1 = n2 = 0).
It works because an assignment is an expression that has
as its result the value assigned.
shorthand assignments (x += 2)

Increments and decrements (i++ , ++i , j--)
Be sure you understand their meanings. (P. 22)

Structure of a C++ program Variables, values, and types Statements Functions

Operations

Assignments: multiple assignments (n1 = n2 = 0).
It works because an assignment is an expression that has
as its result the value assigned.
shorthand assignments (x += 2)

Increments and decrements (i++ , ++i , j--)
Be sure you understand their meanings. (P. 22)

Boolean
relational operators: ==, != , <, >, <=, >=
short-circuit evaluation:
if ((y != 0) && (x % y == 0))
logical operators: ! , &&, ||
bitwise operators: &, |
Don’t confuse Boolean logic with bitwise operators.

Structure of a C++ program Variables, values, and types Statements Functions

Outline

1 Structure of a C++ program

2 Variables, values, and types

3 Statements

4 Functions

Structure of a C++ program Variables, values, and types Statements Functions

Simple I/O

Simplified I/O
#include "simpio.h"

Stream manipulators, Table 1-3, p. 16
#include <iomanip>

Structure of a C++ program Variables, values, and types Statements Functions

Simple I/O

Simplified I/O
#include "simpio.h"

Stream manipulators, Table 1-3, p. 16
#include <iomanip>

cout << "Enter an integer: " << endl;
int n1 = GetInteger();
cout << "Enter a floating-point: " << endl;
float x = GetReal();

Structure of a C++ program Variables, values, and types Statements Functions

Statements

Simple statements
a = b + c;

Compound statements (blocks): indentation (four spaces)

{
y = x;
x += 1;

}

Terminator ;

Structure of a C++ program Variables, values, and types Statements Functions

Control statements: if

if (condition) statement
The test must always be enclosed in parentheses.

if (condition) statement else statement

if (n % 2 == 0) {
cout << "That number is even." << endl;

} else {
cout << "That number is odd." << endl;

}

Structure of a C++ program Variables, values, and types Statements Functions

Control statements: if

if (condition) statement
The test must always be enclosed in parentheses.

if (condition) statement else statement

if (n % 2 == 0) {
cout << "That number is even." << endl;

} else {
cout << "That number is odd." << endl;

}

Any non-zero expression is true

if (x) means the same as if (x != 0)

Structure of a C++ program Variables, values, and types Statements Functions

Control statements: switch

switch (d) {
case 0: cout << "zero"; break;
case 1: cout << "one"; break;
case 2: cout << "two"; break;
case 3: cout << "three"; break;
case 4: cout << "four"; break;
case 5: cout << "five"; break:
case 6: cout << "six"; break;
case 7: cout << "seven"; break;
case 8: cout << "eight"; break;
case 9: cout << "nine"; break;
default: Error("Illegal call to PrintOneDigit");

}

Structure of a C++ program Variables, values, and types Statements Functions

Control statements: switch

switch (d) {
case 0: cout << "zero"; break;
case 1: cout << "one"; break;
case 2: cout << "two"; break;
case 3: cout << "three"; break;
case 4: cout << "four"; break;
case 5: cout << "five"; break:
case 6: cout << "six"; break;
case 7: cout << "seven"; break;
case 8: cout << "eight"; break;
case 9: cout << "nine"; break;
default: Error("Illegal call to PrintOneDigit");

}

use break and default

Structure of a C++ program Variables, values, and types Statements Functions

Control statements: while

Digit sum

sum = 0;
while (n > 0) {

sum += n % 10;
n /= 10;

}

Structure of a C++ program Variables, values, and types Statements Functions

Control statements: while

Digit sum

sum = 0;
while (n > 0) {

sum += n % 10;
n /= 10;

}

Solving the loop-and-half problem with while (true) and
break

while (true) {
...
if (value == sentinel) break;
...

}

Structure of a C++ program Variables, values, and types Statements Functions

Control statements: while

Digit sum

sum = 0;
while (n > 0) {

sum += n % 10;
n /= 10;

}

Solving the loop-and-half problem with while (true) and
break

while (true) {
...
if (value == sentinel) break;
...

}

Programming style: Use at most one break in any given loop.

Structure of a C++ program Variables, values, and types Statements Functions

Example

Echo an integer until −1

const int SENTINEL = -1;

while (true) {
cout << " ? ";
int value = GetInteger();
if (value == SENTINEL) break;
cout << value << endl;

}

Structure of a C++ program Variables, values, and types Statements Functions

Control statements: for

for (int t = 10; t >= 0; t--) {
cout << t << endl;

}

Structure of a C++ program Variables, values, and types Statements Functions

Control statements: for

for (int t = 10; t >= 0; t--) {
cout << t << endl;

}

The expressions init, test, and step are each optional, but the
semicolons must appear.

If init is missing, no initialization;

If test is missing, assumed to be true ;

If step is missing, no action between loop cycles.

Structure of a C++ program Variables, values, and types Statements Functions

Control statements: for

for (int t = 10; t >= 0; t--) {
cout << t << endl;

}

The expressions init, test, and step are each optional, but the
semicolons must appear.

If init is missing, no initialization;

If test is missing, assumed to be true ;

If step is missing, no action between loop cycles.

Use for loop for straightforward iterative tasks;
while loop for indefinite iteration.

Structure of a C++ program Variables, values, and types Statements Functions

Outline

1 Structure of a C++ program

2 Variables, values, and types

3 Statements

4 Functions

Structure of a C++ program Variables, values, and types Statements Functions

Functions

Prototype and definition must match exactly.

Structure of a C++ program Variables, values, and types Statements Functions

Functions

Prototype and definition must match exactly.

function-calling mechanism

1 Evaluate arguments;
2 Creat a frame on the stack for local variables, including

arguments;
3 Copy the values of the arguments in order;
4 Execute the function;
5 Return the value of the function, if any;
6 Discard the frame for the function;
7 Continue the calling function with the returned value, if any.

Structure of a C++ program Variables, values, and types Statements Functions

Function (cont.)

Call by value.

void SetToZero(int x) {
x = 0;

}

...
x = 1;
SetToZero(x);
cout << x << endl;

Structure of a C++ program Variables, values, and types Statements Functions

Function (cont.)

Call by value.

void SetToZero(int x) {
x = 0;

}

...
x = 1;
SetToZero(x);
cout << x << endl;

x

x 1

1

Structure of a C++ program Variables, values, and types Statements Functions

Function (cont.)

Call by value.

void SetToZero(int x) {
x = 0;

}

...
x = 1;
SetToZero(x);
cout << x << endl;

x

x 1

0

Structure of a C++ program Variables, values, and types Statements Functions

Function (cont.)

Call by value.

void SetToZero(int x) {
x = 0;

}

...
x = 1;
SetToZero(x);
cout << x << endl;

x 1

Structure of a C++ program Variables, values, and types Statements Functions

Function (cont.)

Call by reference.

void SetToZero(int & x) {
x = 0;

}

...
x = 1;
SetToZero(x);
cout << x << endl;

Structure of a C++ program Variables, values, and types Statements Functions

Function (cont.)

Call by reference.

void SetToZero(int & x) {
x = 0;

}

...
x = 1;
SetToZero(x);
cout << x << endl;

FFB4x

x

FFC0

1 FFC0

Structure of a C++ program Variables, values, and types Statements Functions

Function (cont.)

Call by reference.

void SetToZero(int & x) {
x = 0;

}

...
x = 1;
SetToZero(x);
cout << x << endl;

FFB4x

x

FFC0

0 FFC0

Structure of a C++ program Variables, values, and types Statements Functions

Function (cont.)

In general

If you only use the value of an argument in the function (on
the right-side of assignments), call it by value.

If you want to reflect the change of the value of an
argument in the function to the caller (on the left-side of
assignments), call it by reference.

Structure of a C++ program Variables, values, and types Statements Functions

Example

Program decomposition: Input-Computation-Output

Structure of a C++ program Variables, values, and types Statements Functions

Example

Program decomposition: Input-Computation-Output

Solving quadratic equations

ax2 + bx + c = 0, a 6= 0.

Textbook formula

x =
−b ±

√
b2 − 4ac

2a

Structure of a C++ program Variables, values, and types Statements Functions

Example

Program decomposition: Input-Computation-Output

Solving quadratic equations

ax2 + bx + c = 0, a 6= 0.

Textbook formula

x =
−b ±

√
b2 − 4ac

2a

Computer method

x1 =
2c

−b − sign(b)
√

b2 − 4ac
, x2 =

c
ax1

.

Structure of a C++ program Variables, values, and types Statements Functions

Example (cont.)

void SolveQuadEqn(double a, doule b, double c,
double &x1, double &x2) {

if (a == 0)
Error("Coefficient a is zero.");

double disc = b * b - 4 * a * c;
if (disc < 0)

Error("Solutions are complex.");
if (disc == 0) {

x1 = x2 = -b / (2 * a);
} else {

x1 = 2 * c / (-b - sign(b) * sqrt(disc));
x2 = c / (a * x1);

}
}

	Structure of a C++ program
	Variables, values, and types
	Statements
	Functions

