
Introduction Maze Problem Two-player Games

Programming Abstraction in C++

Eric S. Roberts and Julie Zelenski

Stanford University
2010

Introduction Maze Problem Two-player Games

Chapter 7. Backtracking Algorithms

Introduction Maze Problem Two-player Games

Outline

1 Introduction

2 Maze Problem

3 Two-player Games

Introduction Maze Problem Two-player Games

Outline

1 Introduction

2 Maze Problem

3 Two-player Games

Introduction Maze Problem Two-player Games

Introduction

Backtracking problem:

While solving a problem, you make decisions along the way.
Reaching a dead end, you want to backtrack to an early point
and try an alternative choice.

Examples: Sudoku, maze

Introduction Maze Problem Two-player Games

Introduction

Backtracking problem:

While solving a problem, you make decisions along the way.
Reaching a dead end, you want to backtrack to an early point
and try an alternative choice.

Examples: Sudoku, maze

Recursive insight:

A backtracking problem has a solution if and only if at least one
of the smaller backtracking problems that results from making
each possible initial choice has a solution.

Introduction Maze Problem Two-player Games

Outline

1 Introduction

2 Maze Problem

3 Two-player Games

Introduction Maze Problem Two-player Games

Maze problem

An iterative solution:

The right-hand rule:

Put your right-hand against a wall.
while (you have not escaped from the maze) {

Walk forward keeping your right hand on a wall.
}

Introduction Maze Problem Two-player Games

Maze problem (cont.)

Recursive decomposition: three subproblems

Θ

X X

Θ

Θ X

Introduction Maze Problem Two-player Games

Maze problem (cont.)

Stopping points (simple cases):

1 The current square is outside the maze, the maze is
solved.

2 The current square is marked, the maze is unsolvable.

Introduction Maze Problem Two-player Games

Maze Problem (cont.)

bool SolveMaze(pointT pt) {
if (OutsideMaze(pt)) return true;
if (IsMarked(pt)) return false;
MarkSquare(pt);
for (int i = 0; i < 4; i++) {

directionT dir = directionT(i);
if (!WallExists(pt, dir)) {

if (SolveMaze(AdjacentPoint(pt, dir))) {
return true;

}
}

}
UnmarkSquare(pt);
return false;

}

Introduction Maze Problem Two-player Games

Maze Problem (cont.)

bool SolveMaze(pointT pt) {
if (OutsideMaze(pt)) return true;
if (IsMarked(pt)) return false;
MarkSquare(pt);
for (int i = 0; i < 4; i++) {

directionT dir = directionT(i);
if (!WallExists(pt, dir)) {

if (SolveMaze(AdjacentPoint(pt, dir))) {
return true;

}
}

}
UnmarkSquare(pt);
return false;

}

Question: Why UnmarkSquare?

Introduction Maze Problem Two-player Games

Maze problem (cont.)

The mazelib.h interface provides an appropriate data
structure for the maze. An abstraction layer for the main
program to access the information it needs to solve the maze
problem. For example, where the walls are, whether a square is
marked, if the current square is outside the maze. (Figure 7-2,
pp. 240-241)

Introduction Maze Problem Two-player Games

Maze problem (cont.)

The mazelib.h interface provides an appropriate data
structure for the maze. An abstraction layer for the main
program to access the information it needs to solve the maze
problem. For example, where the walls are, whether a square is
marked, if the current square is outside the maze. (Figure 7-2,
pp. 240-241)

int main() {
ReadMazeMap(MazeFile);
if (SolveMaze(GetStarPosition())) {

cout << "The marked squares show a solution path." << endl;
} else {

cout << "No solution exists." << endl;
}
return 0;

}

Introduction Maze Problem Two-player Games

Maze problem (cont.)

Not convinced?

Introduction Maze Problem Two-player Games

Maze problem (cont.)

Not convinced?

bool SolveMaze(pointT pt) {
if (OutsideMaze(pt)) return true;
if (IsMarked(pt)) return false;
MarkSquare(pt);
for (int i = 0; i < 4; i++) {

directionT dir = directionT(i);
if (!WallExists(pt, dir)) {

if (SolveMaze(AdjacentPoint(pt, dir))) {
return true;

}
}

}
UnmarkSquare(pt);
return false;

}

X

Θ

X X

X

Θ

X

X X X

X X

X

X

XX

XX

XXXX

XX

X

X

X

X X

X X X

Introduction Maze Problem Two-player Games

Outline

1 Introduction

2 Maze Problem

3 Two-player Games

Introduction Maze Problem Two-player Games

Two-player games

Examples: tic-tac-toe, chess

Introduction Maze Problem Two-player Games

Two-player games

Examples: tic-tac-toe, chess

The minimax strategy:

Finding the position (state) that leaves your opponent with the
worst possible best move, that is, the move that minimizes your
opponent’s maximum opportunity.

Introduction Maze Problem Two-player Games

Two-player games

Examples: tic-tac-toe, chess

The minimax strategy:

Finding the position (state) that leaves your opponent with the
worst possible best move, that is, the move that minimizes your
opponent’s maximum opportunity.

Question: Why not maxmize my opportunity?

Introduction Maze Problem Two-player Games

Two-player games

Find a good move:

for (each possible move) {
Evaluate the position that results from making the move.
If the resulting position is bad, return the move.

}
Return a sentinel value indicating that no good move exists.

Introduction Maze Problem Two-player Games

Game of nim

The game begins with a pile of n = 13 coins.

1 On each turn, players take either one, two, or three coins
from the pile and put them aside.

2 The one forces the opponent to take the last coin wins.

Introduction Maze Problem Two-player Games

Game of nim

The game begins with a pile of n = 13 coins.

1 On each turn, players take either one, two, or three coins
from the pile and put them aside.

2 The one forces the opponent to take the last coin wins.

Bad position

Your turn and there is only one coin on the pile.

Good position

Your turn and there are two, three, or four coins on the pile,
because you can find a move so that the position that results
from the move is bad.

Introduction Maze Problem Two-player Games

Game of nim (cont.)

If you find yourself with five coins on the pile, you are in a bad
position. Why?

Introduction Maze Problem Two-player Games

Game of nim (cont.)

If you find yourself with five coins on the pile, you are in a bad
position. Why?

Because all your three possible moves will result a good
position. In other words, you can’t find a good move, so that the
position that results from the move is bad.

Introduction Maze Problem Two-player Games

Game of nim (cont.)

If you find yourself with five coins on the pile, you are in a bad
position. Why?

Because all your three possible moves will result a good
position. In other words, you can’t find a good move, so that the
position that results from the move is bad.

See a mutual recursion?

Introduction Maze Problem Two-player Games

A mutual recursion

int FindGoodMove(int nCoins) {
for (int nTaken = 1; nTaken <= MAX_MOVE; nTaken++) {

if (IsBadPosition(nCoins - nTaken)) return nTaken;
}
return NO_GOOD_MOVE;

}

bool IsBadPosition(int nCoins) {
if (nCoins == 1) return true;
return (FindGoodMove(nCoins) == NO_GOOD_MOVE);

}

Introduction Maze Problem Two-player Games

Game tree

In general, to minimize your opponent’s maximum opportunity,
we need a quantitative messurement.

Introduction Maze Problem Two-player Games

Game tree

In general, to minimize your opponent’s maximum opportunity,
we need a quantitative messurement.

Game tree

Each node represents a position. The root represents the
initial position.

Each branch (edge) represents a move.

Each leaf node is assigned a numerical score.

Find a move to minimize your opponent’s highest score.

Introduction Maze Problem Two-player Games

Example

A two-level game tree from your point-of-view.

−2+7 +6 −9 −5 +9 −4 −1 +1

Following the minimax strategy, what is your best initial move?

Introduction Maze Problem Two-player Games

Implementing the minimax algorithm

To make the implementation general

It must be possible to limit the depth of the recursive
search. For many games, such as chess, it is prohibitively
expensive to search the entire game tree.

It must be possible to assign ratings to moves and
positions. So we have a quantitative measurement for
comparing moves.

Introduction Maze Problem Two-player Games

Implementing the minimax algorithm (cont.)

moveT FindBestMove(stateT state, int depth, int & rating) {
Vector<moveT> moveList;
GenerateMoveList(state, moveList);
int nMoves = moveList.size();
if (nMoves == 0) Error("No moves available");
moveT bestMove;
int minRating = WINNING_POSITION + 1;
for (int i = 0; i < nMoves && minRating != LOSING_POSITION; i++) {

moveT move = moveList[i];
MakeMove(state, move);
int curRating = EvaluatePosition(state, depth + 1);
if (curRating < minRating) {

bestMove = move;
minRating = curRating;

}
RetractMove(state, move);

}
rating = -minRating;
return bestMove;

}

Introduction Maze Problem Two-player Games

Implementing minimax algorithm (cont.)

int EvaluatePosition(stateT state, int depth) {
int rating;
if (GameIsOver(state) || depth >= MAX_DEPTH) {

return EvaluateStaticPosition(state);
}
FindBestMove(state, depth, rating);
return rating;

}

Introduction Maze Problem Two-player Games

Implementing minimax algorithm (cont.)

int EvaluatePosition(stateT state, int depth) {
int rating;
if (GameIsOver(state) || depth >= MAX_DEPTH) {

return EvaluateStaticPosition(state);
}
FindBestMove(state, depth, rating);
return rating;

}

Data structures not game specific, to be defined by a particular
game:

stateT and moveT

Introduction Maze Problem Two-player Games

Example. Tic-tac-toe game

Tic-tac-toe game. Figure 7-6, pp. 258-268.

struct stateT {
Grid<char> board;
playerT whoseTurn;
int turnsTaken;

}

board: 3-by-3 grid of char, "X", "O", or " "
whoseTurn: Human or Computer (enumerated type)
turnsTaken: count for the number of occupied squares

Introduction Maze Problem Two-player Games

Example. Tic-tac-toe game

Tic-tac-toe game. Figure 7-6, pp. 258-268.

struct stateT {
Grid<char> board;
playerT whoseTurn;
int turnsTaken;

}

board: 3-by-3 grid of char, "X", "O", or " "
whoseTurn: Human or Computer (enumerated type)
turnsTaken: count for the number of occupied squares

typedef int moveT;

represents the nine squares.

	Introduction
	Maze Problem
	Two-player Games

