
Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Programming Abstraction in C++

Eric S. Roberts and Julie Zelenski

Stanford University
2010



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Chapter 8. Algorithmic Analysis



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Outline

1 Introduction

2 Selection Sort Algorithm

3 Merge Sort Algorithm

4 Big-O Notation

5 Quick Sort Algorithm



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Outline

1 Introduction

2 Selection Sort Algorithm

3 Merge Sort Algorithm

4 Big-O Notation

5 Quick Sort Algorithm



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Introduction

Analyze the efficiency of algorithms.

What does the term efficiency mean in an algorithmic
context?

What is the measurement for efficiency?

Study the efficiency of some sorting algorithms.

Sorting: Rearrange the elements (integers) of an array so that
they fall in ascending order.



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Outline

1 Introduction

2 Selection Sort Algorithm

3 Merge Sort Algorithm

4 Big-O Notation

5 Quick Sort Algorithm



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Selection sort: Idea

ilh rh

vec[0] to vec[lh-1] already sorted

vec[rh] is the smallest among vec[lh] to vec[i]

when i reaches the end (n-1), vec[rh] is the smallest among
vec[lh] to vec[n-1], swap vec[rh] and vec[lh]



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Selection sort algorithm

void Sort(Vector<int> & vec) {
int n = vec.size();
for (int lh = 0; lh < n; lh++) {

int rh = lh;
for (int i = lh + 1; i < n; i++) {

if (vec[i] < vec[rh]) rh = i;
}
if (rh > lh) {

int temp = vec[lh];
vec[lh] = vec[rh];
vec[rh] = temp;

}
}

}

ilh rh



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Running time

Running time as a measurement for efficiency.
N: vector size or number of elements to be sorted.

Experimental results:

N Running Time
40 1.46 msec

400 135.42 msec
4,000 13.42 sec

10,000 83.90 sec



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Running time

Running time as a measurement for efficiency.
N: vector size or number of elements to be sorted.

Experimental results:

N Running Time
40 1.46 msec

400 135.42 msec
4,000 13.42 sec

10,000 83.90 sec

Can you see the growth pattern?



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Running time

Running time as a measurement for efficiency.
N: vector size or number of elements to be sorted.

Experimental results:

N Running Time
40 1.46 msec

400 135.42 msec
4,000 13.42 sec

10,000 83.90 sec

Can you see the growth pattern?

Problem: Implementation and machine dependent.



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Analyzing the performance

The operation in the inner most loop is

vec[i] < vec[rh] rh = i;

the comparison.

Use the number of comparisons as an efficiency measurement.



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Analyzing the performance

The operation in the inner most loop is

vec[i] < vec[rh] rh = i;

the comparison.

Use the number of comparisons as an efficiency measurement.

Why?

The operations in the inner most loop are executed most
frequently, meaning that they are the major contribution to the
total computational cost.



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Counting the number of comparisons

Value of lh Number of comparisons
0 n − 1
1 n − 2
...

...
n − 2 1

The total number of comparisons:

(n − 1) + (n − 2) + ... + 1 =
n(n − 1)

2
=

n2
− n
2



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Computational complexity

N N2
−N
2 Running Time

40 780 1.46 msec
400 79,800 135.42 msec

4,000 7,998,000 13.42 sec
10,000 49,995,000 83.90 sec

About the same growth rate.



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Computational complexity

N N2
−N
2 Running Time

40 780 1.46 msec
400 79,800 135.42 msec

4,000 7,998,000 13.42 sec
10,000 49,995,000 83.90 sec

About the same growth rate.

Problem size N: vector size or the number of elements to be
sorted.

Computational complexity N2
−N
2

A function of the problem size, independent of implementation
and machine.



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Outline

1 Introduction

2 Selection Sort Algorithm

3 Merge Sort Algorithm

4 Big-O Notation

5 Quick Sort Algorithm



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Merge sort algorithm (pseudo codes)

void Sort(Vector<int> & vec) {
int n = vec.size();
if (n <= 1) return;
split vec into v1 and v2;
Sort(v1);
Sort(v2);
vec.clear();
Merge(vec, v1, v2);

}



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Merging v1 and v2 into vec

Assume v1 and v2 are sorted.

v1[0:p1-1] and v2[0:p2-1] already merged to vec

add smaller of v1[p1] and v2[p2] to the end of vec, then
increment p1 or p2

when v1 (or v2) has been merged to vec, add the remaining
v2[p2:end] (or v1[p1:end]) to the end of vec



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Merge short algorithm (pseudo codes)

void Merge(Vector<int> vec, Vector<int> v1,
Vector<int> v2) {

int n1 = v1.size();
int n2 = v2.size();
int p1 = 0;
int p2 = 0;
while (p1 < n1 && p2 < n2) {

if (v1[p1] < v2[p2]) {
vec.add(v1[p1++]);

} else {
vec.add(v2[p2++]);

}
}
add remaining v1 or v2 to vec;

}



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Complexity

N = 8

4 x N/4

2 x N/2

1 x N/1

log2 N recursive levels. At each level, N elements are sorted in
places.

Complexity: N log2 N



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Outline

1 Introduction

2 Selection Sort Algorithm

3 Merge Sort Algorithm

4 Big-O Notation

5 Quick Sort Algorithm



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Big-O notation

A simple qualitative approximation of the computational
complexity of an algorithm.



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Big-O notation

A simple qualitative approximation of the computational
complexity of an algorithm.

We are more interested in the performance of large size
problems than small size problems.

For example, in the selection sort experiments, the difference in
running time between N = 40 and N = 400 is only a fraction of
second. Whereas the difference between 400 and 4,000 is
more than a dozen seconds and the difference between 4,000
and 10,000 is more than a minute.



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Big-O notation (cont.)

To simplify the notation, we eliminate any term whose
contribution to the total ceases to be significant as N becomes
large.

Example. The complexity of the selection sort algorithm is
N2

−N
2 . We know limN→∞

N2
−N
2 = N2

2 . That means the
contribution of the term N

2 to the total ceases to be significant
as N grows large. So, we first eliminate the term N

2 .

The complexity is first simplified to N2

2



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Big-O notation (cont.)

To further simplify the notation, we eliminate and constant
factors. Thus N2

2 is simplified to N2.



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Big-O notation (cont.)

To further simplify the notation, we eliminate and constant
factors. Thus N2

2 is simplified to N2.

selection sort merge sort
big-O notation O(N2) O(N log2 N)



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Big-O notation (cont.)

To further simplify the notation, we eliminate and constant
factors. Thus N2

2 is simplified to N2.

selection sort merge sort
big-O notation O(N2) O(N log2 N)

Difference between O(N2) and O(N log2 N)

N N2 N log2 N
100 10,000 664

1,000 1,000,000 9965
10,000 100,000,000 132,877



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Standard complexity classes

constant O(1) Find the first element in an array
logarithmic O(log N) Binary search in an sorted
linear O(N) Compute the average of an array
N log N O(N log N) Merge sort
quadratic O(N2) Selection sort
cubic O(N3) Conventional matrix multiplication
exponential O(2N) Tower of Hanoi



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Standard complexity classes

constant O(1) Find the first element in an array
logarithmic O(log N) Binary search in an sorted
linear O(N) Compute the average of an array
N log N O(N log N) Merge sort
quadratic O(N2) Selection sort
cubic O(N3) Conventional matrix multiplication
exponential O(2N) Tower of Hanoi

O(Nk ): polynomial algorithms, tractable

O(2N): exponential algorithms, intractable



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Outline

1 Introduction

2 Selection Sort Algorithm

3 Merge Sort Algorithm

4 Big-O Notation

5 Quick Sort Algorithm



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Quick sort algorithm (recursive)

C.A.R. Hoare

The most used algorithm in sorting programs.

Idea:

1 Choose an element, usually the first, as the pivot, the
boundary between small and large.

2 Rearrange the elements so that large elements are moved
toward the end and small elements toward the beginning.

3 Sort the elements in each part of the vector

small: those are smaller than the pivot

large: those are larger than or equal to the pivot



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Partitioning the vector

1 Initial lh and rh

2 Move rh until rh == lh or vec[rh] is small
3 Move lh until lh == rh or vec[lh] is large
4 If rh != lh, swap vec[lh] and vec[rh]
5 Repeat 2-4 util rh == lh

6 Swap vec[lh] (= vec[rh]) and pivot (=
vec[start])

56 25 37 58 95 19 73 30

lh rh

0 1 2 3 4 5 6 7



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Partitioning the vector (cont.)

1 Initial lh and rh
2 Move rh until rh == lh or vec[rh] is small
3 Move lh until lh == rh or vec[lh] is large
4 If rh != lh, swap vec[lh] and vec[rh]
5 Repeat 2-4 util rh == lh
6 Swap vec[lh] (= vec[rh]) and pivot (=
vec[start])

56 25 37 58 95 19 73 30

rh

0 1 2 3 4 5 6 7

lh



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Partitioning the vector (cont.)

1 Initial lh and rh
2 Move rh until rh == lh or vec[rh] is small
3 Move lh until lh == rh or vec[lh] is large
4 If rh != lh, swap vec[lh] and vec[rh]
5 Repeat 2-4 util rh == lh
6 Swap vec[lh] (= vec[rh]) and pivot (=
vec[start])

56 25 37 95 19 73

rh

0 1 2 3 4 5 6 7

lh

30 58



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Partitioning the vector (cont.)

1 Initial lh and rh
2 Move rh until rh == lh or vec[rh] is small
3 Move lh until lh == rh or vec[lh] is large
4 If rh != lh, swap vec[lh] and vec[rh]
5 Repeat 2-4 util rh == lh
6 Swap vec[lh] (= vec[rh]) and pivot (=
vec[start])

56 25 37 73

0 1 2 3 4 5 6 7

30 5819 95

lhrh



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Partitioning the vector (cont.)

1 Initial lh and rh

2 Move rh until rh == lh or vec[rh] is small
3 Move lh until lh == rh or vec[lh] is large
4 If rh != lh, swap vec[lh] and vec[rh]
5 Repeat 2-4 util rh == lh
6 Swap vec[lh] (= vec[rh]) and pivot (=
vec[start])

25 37 73

0 1 2 3 4 5 6 7

19 955630 58

boundary



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Performance

A simple implementation, Figure 8-6, pp. 299-300.

Experimental results

N Merge sort Quick sort
40 2.54 msec 0.52 msec

400 31.25 msec 8.85 msec
4,000 383.33 msec 129.17 msec

10,000 997.67 msec 341.67 msec



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Performance

Question

Why in the worst case when the array is already sorted the
complexity of this quick sort algorithm is quadratic?



Introduction Selection Sort Algorithm Merge Sort Algorithm Big-O Notation Quick Sort Algorithm

Performance

Question

Why in the worst case when the array is already sorted the
complexity of this quick sort algorithm is quadratic?

Choosing the pivot.

Average-case performance vs worst-case performance.


	Introduction
	Selection Sort Algorithm
	Merge Sort Algorithm
	Big-O Notation
	Quick Sort Algorithm

