
Assignment 2

Sanzheng Qiao

Department of Computing and Software

March, 2013

Join

Addition to Thread structure (thread control block):

joinable, boolean
list, joinableList
Semaphore *joinSemaphore, constructed with initial value
0 if joinable
Semaphore *finishSemphore, constructed with initial value
0 if joinable

Join

Addition to Thread::Fork

if (joinable)
kernel− >currentThread− >joinableList− >Append(this)

Note. Put this thread to the joinable list of the current thread
(the thread calling Fork)

Join

Thread::Join

1 ASSERT(joinable);
2 joinSemaphore− >P()
3 kernel− >currentThread− >joinableList− >Remove(this)
4 finishSemaphore− >V()

Join

Addition to Thread::Finish

1 if (joinable)
joinSemaphore− >V()
finishSemaphore− >P()

2 while (! joinableList− >IsEmpty())
Thread *t = joinableList− >RemoveFront()
t− >finishSemaphore− >V()

WaitUntil

An implementation using lock and semaphores.

Add a new class: (see PendingInterrupt, Condition)

PendingAlarm

when, wake-up time
alarmSemaphore, initial value 0

Add a sorted list for pending alarms
SortedList<PendingAlarm> *pendingAlarmList;

Implement a PendingCompare function required by SortedList.

WaitUntil

Modify Alarm constructor.

1 Construct timer
//*************** change *****************

2 Construct a sorted list PendingAlarmList, passing
PendingCompare function

3 Construct a lock for the list
//************* end of change ************

WaitUntil

Alarm::WaitUntil (see Condition::Wait and Intterrupt::Schedule)

1 Calculate wake-up time, when
2 Construct a pendingAlarm passing when, which constructs

a semaphore
3 Acquire the lock for the pending alarm list
4 Insert the pendingAlarm to the list
5 Release the lock
6 SetOn the alarm by calling alarmSemaphore− >P() (We

could have a public function PendingAlarm::SetOn to call
P() and keep the semaphore private)

7 Delete the pendingAlarm

By using semaphore, we don’t directly call Sleep(), which
requires interrupts off.

WaitUntil

Modify Alarm::CallBack (see Interrupt::CheckIfDue)

1 Get interrupt
2 Get status

//************* change ****************
3 while pendingAlarmList not empty and its front alarm is due

Remove the front pending alarm from the list
SetOff alarm (call semaphore− >V())

//********** end of change ************
4 if status is not idleMode

YieldOnReturn

