
File System

Sanzheng Qiao

Department of Computing and Software

January, 2013



Introduction

Files as abstract data types provide a way to store information
and hide the details of how they work.

Components of a file system:

files
directory structure
possible partitions

Internal file structure: logical record. In UNIX, the record size is
one byte. A file is a stream of bytes.

Disk storage unit: sector (block), 32 bytes to 4K bytes, usually
512 bytes.
File system maps between logical records and physical sectors,
packing logical records into physical sectors.



Major issues

File management

Files structures

Access methods

Directory structures

Mounting file systems

Protection

Disk management

Allocation methods

Free sector management

Efficiency



File structures

1 Different structures for different files:
.TXT .PAS .BIN .DAT
More support from system (opening a file by double
clicking on the icon launches the creator automatically),
less flexible. (Cannot copy a .DAT file to a .PAS file.)

2 One structure for all files:
The logical record size is one byte. Some files have magic
numbers at the beginiing to indicate the file type. Less
support from system, more flexible.



Operations on files

create Create a file (an entry in the working directory)
with no data. May specify some attributes (owner,
time, etc)

open A file must be opened before using. For user, it
returns an integer (file descriptor) to be used to
read and write; in system, it returns a pointer to
the file header (i-node). The file descriptor is an
index to the per-process open file table. File
system maintains a global open file table. A file
may be opened by multiple processes.

close (unlink) Finish using the file.

delete Remove the file from the directory and free the
disk space.



Operations on individual files

read Read from the file given by file descriptor (user) or
file header (system), starting from the current
position (a private variable). The current position is
updated after read.

write Similar to read. Write may require read. When
writing partial sector, the sector must be read into
memory. (Remember: disk unit is sector.)
Two images of a sector: Memory and disk.

seek Move the current position.



Access methods

Sequential access Always start from the beginning.

Direct (random) access Can go directly to the sector containing
the byte.
In modern operating systems, all files are random
access.
Device-independence
Making access the same no matter where (which
disk) the file is stored.



Direct access

process table

pid

open file table

fid

pos

hdr

directory

50 fname

50



Directories

In UNIX a directory is a file with special data structure, a table
of entries (file name, sector number of the file header). Files
and directories are represented by entries in a directory.



Directories

In UNIX a directory is a file with special data structure, a table
of entries (file name, sector number of the file header). Files
and directories are represented by entries in a directory.

Directory Structures

Single level: No file name sharing.
Two level: Users are isolated.
Tree structure: Search by complete path. A file is specified by
its path name (absolute or relative). Path of the working
directory (pwd).



Directory structures

Graph structure: Files can be linked across directories. Hard
link, ln, keep track the reference count; Symbolic link, ln -s,
keep the path name in a link file.
In this structure, users can share files, however, a file may have
multiple absolute path names. The following problems should
be considered:

When traversing file system to collect
statistics, a file may be visited multiple times

When deleting files, some processes may have dangling
pointers

When backing up files, a file may be copied multiple times



How to find a file?

How does the system find the file (file header) given the path
name (absolute or relative) by user?

1 Find the entry in the directory using the file name;
2 Get the sector number of the file header from the entry;
3 Read the file header from disk into memory.



Example

Finding /u1/temp

6531
1

rootroot hdr

5

file
size

"temp"3 "u1"
dir

size

temp hdr9

9
5
1

u1u1 hdr

dir
size

6



Sharing files

Hard link

% ln file copy

Two files share the same inode number.

% ls -i
105852 2 file
105852 2 copy

Soft link

% ln -s file copy

Two files have different inode numbers and copy contains the
pathname of file.



Protection

Who is allowed to do what.
Mechanisms

An access-control list (ACL) associated with every file and
directory.
Condensed version: Three classes, owner, group, world.

A password for every file and directory.

A user may have different access rights to the same file in
graph structured directory system.



Allocation methods

Contiguous Store a file in contiguous sectors on the disk. All
we have to know is the disk sector number of the
first sector of the file. Easy access, few seeks,
horrible external fragmentation.

Linked list Sequentially follow the link to locate the sector.
Flexible on size, no fragmentation problem,
sequential access is easy, direct access is hard,
lots of seeking.

Indexed Use the sector number (logical) in the file as an
index to find the disk sector number (physical).
Both sequential and direct access are easy, lots of
seeking (sectors are scattered).



Allocation methods

Contiguous Store a file in contiguous sectors on the disk. All
we have to know is the disk sector number of the
first sector of the file. Easy access, few seeks,
horrible external fragmentation.

Linked list Sequentially follow the link to locate the sector.
Flexible on size, no fragmentation problem,
sequential access is easy, direct access is hard,
lots of seeking.

Indexed Use the sector number (logical) in the file as an
index to find the disk sector number (physical).
Both sequential and direct access are easy, lots of
seeking (sectors are scattered).

Example (4.3 BSD):
Multi-level indexed files (direct data blocks, indirect data blocks,
doubly indirect)



Multilevel indexed file

direct

single indirect

double indirect

file header (i−node)



Free sector management

Bit map. Usually we can keep entire bit map in memory
most of the time.

Try to allocate contiguous blocks. Reduce seek time.

Problem when disk becomes full. Solution: keep a reserve
(e.g. 10% of disk) space.



Efficiency

Observations:

Most files are small.

Much of the disk is allocated to large files.

Many of the I/O operations are made to large files.



Efficiency

Observations:

Most files are small.

Much of the disk is allocated to large files.

Many of the I/O operations are made to large files.

Consequence:
per-file cost must be low (lot of them), but large files must have
good performance (they take much of the disk).



Example: UNIX file system

Ordinary files A files is a linear array of bytes, sequential
access (pointer).

Directories A directory is like a symbol table consisting of
entries with names and i-numbers which are
pointers pointing to inodes on the device (disk).

Special files They are in /dev (information about tape drivers,
disks, terminals, etc). Character special files
(terminals). Block special files (disks).

They have different i-node structures.



Example: UNIX file system

Old system (150 MB)

The disk contains a super block followed by i-nodes (4MB) and
then data blocks (146MB). Block size 512B.

The super block contains basic information of the file system,
such as the number of data blocks, a count for maximum
number of files, and a pointer to the free list.

Each inode contains type, number of links, owner’s user and
group id, permissions, size, time of last access, last
modification, pointers to disk blocks (direct and indirect).

Never transfer more than 512 bytes per disk transfer.



Example: UNIX file system

Problems

Segregation of inodes and data: long seek time for
accessing a file (from its inode to data);

Files in the same directory usually are accessed
consecutively, but their inodes are not located
consecutively;

Disk transfers are in 512-byte (small)
blocks. Consecutive logical blocks are often not allocated
in consecutive physical blocks;

Even with large block size (1024 bytes), files tend to have
their blocks allocated randomly over the disk causing long
seek time.



Example: UNIX file system

New system (4.2 BSD)

Old UNIX file system is inadaquate for the applications which
require high throughput, i.e., small amount of processing on
large quantities of data.

Main goals

increase throughput

improve user interface



Example: UNIX file system

New File System Organization

Superblock is replicated for protection.

Block size can be any power of 2 greater than or equal to
4096 bytes. Large block size ensures only two levels of
indirection. The block size is determined when the file
system is created.

A disk is partitioned into cylinder groups each of which
contains a copy of the superblock, bit map replacing the
free list. A static number of inodes is allocated for each
cylinder group. One inode for each 2048 bytes of space in
the cylinder group.



Example: UNIX file system

Improving storage utilization

Large block size and cylinder groups reduce seek time and
improve throughput, but large block size wastes space.

A block is divided into fragments (2, 4, or 8) determined
when the file system is created. The lower bound is the
disk sector size, typically 512 bytes.

Fig. 1 shows a bit map. Consecutive fragments must be
allocated in the same block.



Example: UNIX file system

When a file expands, during a write, three things can
happen:

1 If enough space left in an allocated block or fragment, then
write in that block or fragment;

2 Fill the allocated block first, then get new blocks if
necessary; (this may result in scattering fragments)

3 If scattered fragments exceed a full block, collect fragments
into a block (fragment reallocation)

To reduce the cost of reallocation, the user program should
write a full block whenever it is possible.



Example: UNIX file system

File System Parameterization
Use parameters, such as the speed of processor,
characteristics of the mass storage devices, to optimize the
allocation of blocks.
Characteristics of the processor: Expected time to service an
interrupt and schedule a new disk transfer (run disk interrupt
handler).
Characteristics of the mass storage devices (disks): Number of
blocks per track; rate at which the disk spins.



Example: UNIX file system

Layout Policies

Two methods: increase the locality of reference to
minimize seek latency; improve data layout to make large
transfers possible.

Top level (global) policies try to balance the two conflicting
goals of localizing data while spreading out unrelated data.

Lower level (local) policies try to place all data blocks for a
file in the same cylinder group, preferably at rotationally
optimal positions in the same cylinder.



Example: UNIX file system

Performance of the New File System

transfer rates for the new file system do not appear to
change over time.

fast bandwidth is due to large block size.

read is at least as fast as write. Blocks are more optimally
ordered on the disk



Example: UNIX file system

Functional Enhancements

Long File Names

directory size: 512-bytes = disk sector size
entry data structure:

inode number (fixed size),
size of the entry (fixed size),
length of the file name (fixed size)
file name (variable length)

when an entry is deleted, it is combined with its previous
entry and increase the entry size if possible



Example: UNIX file system

Symbolic Links

A symbolic link is implemented by a file containing a pathname.
When the system encounters a symbolic link,

if the pathname in the file is absolute, use it;

if the pathname in the file is relative, it is added to the
current path;



Example: UNIX file system

Reliability

Bad sectors:

Hardware solution: Dedicate a block to bad sector list.
During initialization map bad sectors to spare ones.

Software solution: Make a file containing bad sectors and
remove them from the free list or bit map.

Backup: Monthly full dumps and daily incremental dumps.



Example: UNIX file system

Consistency

Check consistency after a crash.
1 Count the number of times a sector is used by a file.
2 Compare with the bit map.

If both are zero (missing sector), put it on free list.
If both are one, remove it from free list.
If it is used more than once, make a copy.


