
Memory Management

Sanzheng Qiao

Department of Computing and Software

January, 2013

Classifications of information

Classifications of information stored in memory:
1 Role in programming language: instructions (specify op

code and operands), variables (information that changes
as program runs), constants (information that never
changes).

2 Changeability: read-only (code, constants), read and write
(variables).
Why is this important?

3 Addresses vs. data (e.g., A vs. A[0]).
Why is this important?

Allocation

When is its space allocated (binding time)?

Static: compile time, link time, load time.
Unpredictability: how much memory? (recursive procedures,
number of processes)

Allocation

When is its space allocated (binding time)?

Static: compile time, link time, load time.
Unpredictability: how much memory? (recursive procedures,
number of processes)

Dynamic: Generate the physical address dynamically during
every reference.
Two views of address space (physical and logical)
Two basic operations in dynamic storage management:
allocate and free
Two organizations:
stack (push, pop), simple structure efficient implementation.
heap (free list, bit map, garbage collection) (see Knuth volume
1).

Memory division

Division of a process’ memory:

When a process is running, its memory is divided up into areas
called segments. In UNIX, each process has three segments:
code, data, stack.

Memory division

Division of a process’ memory:

When a process is running, its memory is divided up into areas
called segments. In UNIX, each process has three segments:
code, data, stack.

Why distinguish between different segments of memory?
Separate read-only code from read-write data.

What if two processes?

Where does OS go?

Division of responsibility

Division of responsibility between various portions of system:

Compiler: generates object file. Information in an object
file is incomplete, since one file may reference some things
defined in another.

Linker: combines object files into a complete and
self-sufficient object file.

Operating system: loads object files in the secondary
storage into memory, allows processes to share memory,
provides facilities for processes to get memory after
they’ve started running.

Run-time library: together with OS, provides dynamic
allocation routines (e.g., calloc, free, new).

Sharing memory

Recall: Where does OS go? What if two processes?

In a uniprogramming system:
Highest memory holds OS.
Process is allocated memory starting at 0, up to the OS area.
When loading a process, just bring it in at 0.

In a multiprogramming system:
Goals: transparency (processes are not aware of the fact that
the memory is shared), safety (processes mustn’t be able to
corrupt each other), efficiency (CPU and memory shouldn’t be
degraded badly by sharing).
Issues:
How to divide up the memory into regions?
How to allocate regions among processes?
How to protect each user’s processes?

Fixed size regions

Assumption: A process is allocated in contiguous regions (one
segment for each process).

Fixed size regions

Assumption: A process is allocated in contiguous regions (one
segment for each process).

Fixed size with fixed boundaries

Division: The memory is divided into regions of fixed size with
fixed boundaries.

Allocation: Each region contains exactly one process.

Protection: Static relocation (fixed boundaries)
Relocation register (base register).

Example

Load A[1] into $16
The address of A (100) is in $4

lw $16, 4($4)

Each process is associated with the base address of the region
allocated to it.
Hardware support
When a process is switched in, the base address is loaded into
the relocation register.

v.a. p.a.

exception

N Y
+

limit base

<

(1000)

(104) (1104)

Variable size regions

Division:
Memory is divided into variable size regions according to
processes.

Allocation:
best-fit, worst-fit, first-fit.

Protection:
Boundary registers or base register + limit.

Problem:
processes cannot share codes.
External fragmentation v.s. internal fragmentation.

Memory allocation

Can we scatter the regions of a process in the memory?
Why is this necessary? Processes can share segments.
Problems must be solved:

generating addresses

protecting users

Memory allocation

Can we scatter the regions of a process in the memory?
Why is this necessary? Processes can share segments.
Problems must be solved:

generating addresses

protecting users

Two approaches: paging
segmentation

Paging

Division:
The memory is divided into fixed size (512-8K) regions (pages).

Allocation:
The system keeps a list of free pages (e.g., bit map).

Generating addresses
logical address: (page number, displacement)
page map table (PMT):
page number→ base address
physical address← base + displacement

Protection:
Every translation goes through the PMT of the current process.
It is confined to one process.

Paging

Example
Virtual space: 4G, 32 bits
Memory: 1M, 20 bits
Page size: 256, 8 bits
Hardware support for paging.

vpn displ

PMT

000000001100

000000000100

000000000111

. . .

ppn

p.a.

v.a.

000000000111 00010000

000000000000000000000010 00010000

Paging

Example
Virtual space: 4G, 32 bits
Memory: 1M, 20 bits
Page size: 256, 8 bits
Hardware support for paging.

vpn displ

PMT

000000001100

000000000100

000000000111

. . .

ppn

p.a.

v.a.

000000000111 00010000

000000000000000000000010 00010000

During a context switch, change the current PMT to the PMT of
the process being switched in.

Example: Nachos 4.02

Pure paging.

Page size 128 (machine/machine.h)

PMT pageTable entry TranslationEntry structure
(machine/translate.h)

virtual page number

physical page number

valid: Is the translation valid?

use: Set every time the page is referenced or modified

dirty: Set every time the page is modified

Example: Nachos 4.02

Address space (userprog/AddrSpace)

An array of translation entries (PMT)

Number of pages

In the thread structure

if the address space is null, it is a thread in the kernel space

if the address space is not null, it is a (Nachos) process,
associated with a user program

Example: Nachos 4.02

Loading a user program from (Nachos) disk into (Nachos)
memory, by calling the file system.

Two views:

Program: A set of (virtual pages, virtual addresses)

File system: A file (Nachos object file, infile addresses)

Example: Nachos 4.02

Nachos object file file-header (userprog/noff.h)

Nachos object file magic number
Code segment

virtual address, infile address, size

Initial data segment
virtual address, infile address, size

Uninitialized data segment
virtual address, infile address, size

Total address space size:
code size + init data size + uninit data size + stack size

Example: Nachos 4.02

Loading a user program from (Nachos) disk into (Nachos)
memory, by calling the file system.

userprog/addrspace.cc

Load

1 Read the file header
2 Check the magic number
3 Calculate address space size (number of pages)
4 Copy in code and initial data segments

Assuming linear mapping (uniprogramming),
virtual page number = physical page number

Paging

Paging eliminates external fragmentation.
Internal fragmentation exists.
Easy to make allocation and swapping.

Where do we keep the PMT?

Main memory (slow)

Keep part of PMT in fast memory (cache):
TLB (translation Lookaside buffer).

With TLB, all CPU sees is TLB.
During a context switch, set all TLB entries invalid.

Translation look-aside buffer (TLB)

vpn offset

machine.tlb

virtual address

v u d ppn ppn
physical address

r
tlb hit

proc.space.pageTable

TLB organization

One-way-set-associative

00000000000000000000010000000011

000000000000000000000000000000011 00000000000110000000011

displvpn

ppn

TLB

hit

Two-way-set-associative

00000000000000000000010000000011

0000000000011

displvpn

ppn

0000000011

000000000000000000000000000000001100000001 0000000000101

0000000000101

Segmentation

Division:
Memory is divided into to variable size regions (segments)
according to programmer’s view.

Allocation:
System keeps a list of holes in the memory.

Generating addresses:
logical address (segment number, offset)
segment table: segment number→ base, limit
physical address: base + offset (if ≤ limit)

Protection: Similar to paging.
In addition, segmentation easily provides access restrictions on
segments. (Read only for code segment.)

Segmentation

Load program one segment (code/data) at a time.
Establish a segment table. Each entry contains (base, limit).
Keep the pointer to the segment table in PCB.
Hardware support for segmentation:

v.a.

s d

base limit
N

Y

exception

p.a.< +

Demand paging and virtual memory

Why should we load all pages of a process in the main
memory? (some are never used some are rarely used, 90/10
rule)
Goal: create the illusion of a disk as fast as main memory.
Issues to be discussed:

1 When is a page brought in memory? (demand paging)
2 How do we know whether a page is in memory? (valid-bit)
3 Why should we always rewrite a page when it has to be

replaced? (dirty-bit)
4 How do we replace a page in memory when it is

necessary?

Demand paging

Bring a page into the memory when it is referenced.

Initially, set all PMT entries invalid.

When a page is not in the memory, raise a page fault exception.

Demand paging

Page fault exception handler

1 Get the bad virtual address that caused the page fault
2 Allocate a physical page
3 Call the file system to copy the page from the disk to the

physical page in the memory. Note that a page may
contain data from more than one segment.

4 Update the PMT
5 Re-execute the instruction

Demand paging

Page fault exception handler

1 Get the bad virtual address that caused the page fault
2 Allocate a physical page
3 Call the file system to copy the page from the disk to the

physical page in the memory. Note that a page may
contain data from more than one segment.

4 Update the PMT
5 Re-execute the instruction

One instruction may cause more than one page fault.

TLB miss

TLB miss handler

1 Get the bad virtual address that caused the TLB miss
2 if the PMT entry is valid

Copy the PMT entry to the TLB
Re-execute the instruction

else
Call page fault exception handler

Replacement algorithms

FIFO, LIFO, LFU, LRU

Replacement algorithms

FIFO, LIFO, LFU, LRU

Approximation of LRU (clock algorithm):
1 when reference a page, mark the use (reference) bit.
2 when replacing a page, sweep the clock hand. If the use

bit is marked, reset it to unmarked and continue until find
an unmarked use bit. (Second chance.)

Need an inverted page table. (Note. Processes may share a
page.)
How many pages should be kept in memory?
Too many jobs, memory is overcommitted. (What do humans
do?)

Inverted page table

The operating system has a global page table mapping
physical pages to virtual pages. Each entry is a pair (pid, vpn).

pid

inverted page table

1
0
1
1
1
0
0

vpndu

Putting process and memory together

page table

space

open files

process table

vpn

disk

CPU

File System

TLB

dataoffsetppn

ppnvpn

physical address

virtual address
offsetvpn

ppn

Thrashing and working set model

Thrashing: a process is spending more time paging than
executing. Memory is as slow as disk.
Working set model

basis: locality

working set window (WSW) (a time frame)

working set (WS) (a set of pages referenced in the time
frame)

working set size (WSS) (number of pages in WS)

Page replacement can be determined by working set model.
Working set model can prevent thrashing.

Working set model

The collection of active processes is called the balance set.
Working set + balance set can prevent thrashing.

Keep the sum of working sets of all
runnable processes less than memory size.

Divide runnable processes up into two
groups: active and inactive.

Keep the balance set up to date.

Examples

System 370: paged segmentation

virtual address space: 24 bits
segment no: 4 bits
page no: 8 bits
offset: 12 bits

physical address space: 24 bits

segment table entry:
page table address (real): 24
page table size (number of pages)
protection (R, RW, 0)

page table entry:
page address (real): 12 bits→ 2 bytes
Note: byte addressable

Examples

All numbers in hexadecimal

segment table:
002000 14 R
000000 00 0
001000 0D RW

At location 2000: 13, 2A, 3 (each value is 2 bytes long)

Translate the following addresses from virtual to physical:
2070 read (3070)
210014 write (bounds violation)

Examples

002000 14

000000 00

001000 0D RW

0

R

13

2A

03

virtual addr

03070

physical address

page table

2070 0 02 070

segment table

Examples

VAX-11/780: Paged Virtual Memory

address space: 32 bits (4G)
3G-4G: unused
2G-3G: system segment, bit 31=1
1G-2G: process segment P1, bit 30=1
0G-1G: process segment P0, bit 30=0

page size: 512 bytes (small)

Examples

To save page table space
two level paging (recursive):
system page table (physical memory)
process page table (system segment)

PTE includes:
M–modify bit
V–valid bit
PROT–four protection bits

TLB: two-way-set-associative

Examples

OS

virtual space

phy. addr. memory

Two Level Paging

ProcPTE

ProcPT

v.a. phy. addr.

procPTEAddr phyPageNo

phyPageNoOSPTEAddr

OSPTAddr+
+

+

+

Some parameters:
Hit time 1 clock cycle
Miss penalty 22 clock cycles
Miss rate 1% - 2%
Cache size 128 PTEs

