
Network

Sanzheng Qiao

Department of Computing and Software

March, 2013

Introduction

Trend:

Large numbers of personal computers on the network.

Advantages:

price/performance (e.g., Gflops/$M)

speedup (e.g., parallel computing)

reliability (e.g., distribute data)

flexibility (e.g., microkernel)

fault tolerance

Introduction

Goal:

Get same effect as with timesharing, except lots of CPU power.

Difficulty:

Coordination is more difficult than in centralized system.

Disadvantages:

less software available

less security

Examples of networks

DARPAnet: first widely used network, developed in early
70’s, used phone lines, provided mail, file transfer, remote
login. still in use.

Usenet: late 70’s, UNIX systems phone each other to send
mails and transfer files.

LAN: early 80’s, hook up personal computers. The most
popular interconnection for LANs is Ethernet, also token
ring
(10Mbps-100Mbps).

Internet: tying together existing networks such as
DARPAnet, Usenet, LANs.

Example

Broadcast Networks
Broadcast networks use shared communication medium.
Examples: Ethernet (10 Mbits/sec); cellular phones
(100Kb–1Mbit/sec).
Mechanisms

Header on front of packet. Everyone gets packet, discards
if not the target. Collision problem: two broadcast same
time. Security problem: If you can break into any machine
on the network, can eavesdrop (even passwords!)

Example

Receiver sends an acknowledgement if received ok,
discards if not (corrupted). Sender waits for a while, if
doesn’t get an acknowledgement (timeout), re-sends.
Stability problem: heavy load → more collision → more
re-send → more load.

carrier sense: don’t send unless idle
adaptive randomized waiting

The Internet

Interconnecting local area networks (e.g., Ethernet, AppleTalk,
phone wires)

Routing

Internet has no centralized state. No single machine knows
entire topology (topology is constantly changing). Routing
tables: Neighbors periodically exchange routing tables, if
neighbor has cheaper route, use that one. (cost: number of
hops, load of each link)

Point-to-Point Networks

Central idea behind ATM (asynchronous transfer mode), the
first commercial point-to-point LAN.
Advantages:
Higer link performance, faster than broadcast link
Lower latency, no need for arbitration to send.
Mechanism:
Switches: inputs, buffers, crossbar (Omega network), buffers,
outputs.
Examples

Multiprocessors hooked together in a 2-D mesh,
hypercube.

Workstations connected to memory and graphics engine
by a switched network, instead of a bus.

Network Protocols

Conventions between the parties on the network about how
information will be transmitted between them.
Example: system calls are protocol between user programs
and operating system.
Layering structure
ISO OSI (Open System Interconnect) Model

layers and transmitting units
7 application message
6 presentation message
5 session message
4 transport message
3 network packets
2 data link frames
1 physical bits

Example: nachos

user

post office

network

physical simulated by sockets

Example: nachos

User level
threads/kernel.cc NetworkTest

Compose a mail: From mailbox 1 to mailbox 0 at farhost
postOfficeOut− >Send(outPktHdr, outMailHdr, data);
Send three pieces to post office

postOfficeIn− >Receive(0, &inPckHdr, &inMailHdr, buffer);
Receive three pieces from mailbox 0

Send an acknowledgement to farhost mailbox 1
Receive acknowledgement from mailbox 1

Example: nachos

User level

nachos -N -m 0 nachos -N -m 1

Got: Hello there! : from 1, box 1 Got: Hello there! : from 0, box 1

Got: Got it! : from 1, box 1 Got: Got it! : from 0, box 1

Nachos: Nettest

nettest, point−to−point communication

Got "Got it!" from 0 box 1Got "Got it!" from 1 box 1

4. Receive4. Receive

3. Send "Got it!" to 0 box 13. Send"Got it!" to 1 box 1

1. Send "Hello there!" to 0 box 01. Send "Hello there!" to 1 box 0

mbox[1]mbox[1]

Got "Hello there!" from 0 box 1

2. Receive

mbox[0]

Got "Hello there!" from 1 box 1

2. Receive

mbox[0]

machine 1machine 0

Example: nachos

MailHeader structure (network/post.h)

to, mailbox

from, mailbox

length

PacketHeader structure (machine/network.h)

to, machine

from, machine

length

Example: nachos

Limited mail size, machine/network.h

MaxWireSize = 64

MaxPacketSize = MaxWireSize - sizeof(PacketHeader)

MaxMailSize = MaxPacketSize - sizeof(MailHeader)

The user fills

mailHdr.to, mailHdr.from, mailHdr.length
pktHdr.to

Example: nachos

Post office level

Synchronizing with the network level

Assuming reliable network for now

PostOfficeOutput, network/post

Only one message can be sent to the network at any time
(lock)

Block the sender until the network is ready for the next
message (semaphore)

CallBack tells the network what to do when it is ready for
the next message (semaphore V)

Example: nachos

PostOfficeInput, network/post

An array of mail boxes, each of which is a synchList of
mails

A helper (a thread), which is blocked until it is signaled
when a message arrives from the network (semaphore)

CallBack tells the network what to do when a message
arrives (semaphore V)

Example: nachos

Network level

NetworkOutput, machine/network

A network with specified reliability

Connection to physical level (implemented by socket)

CallBack defines the network send interrupt handler, that
is, what to do when a network send interrupt occurs
(PostOfficeOutput CallBack, i.e., semaphore V the sender)

Send schedules a network send interrupt; randomly drop
packets (reliability); send one piece to the physical level
(socket)

Example: nachos

NetworkInput, machine/network

Connection to physical level (socket)
CallBack defines the network receive interrupt handler, that
is, what to do when a network receive interrupt occurs

Schedules next network receive interrupt to poll for a packet
Polls a packet, if arrived, puts it in buffer
Signals post office (PostOfficeInput CallBack, i.e.,
semaphore V the post helper)

Receive reads a packet in the buffer

Nachos: Send

data

to

pktHdr mailHdr

postOffice −> Send

postOffice

pktHdr

to from length

mail

sendLock −> Acquire

network −> Send

messageSent −> P()

sendLock −> Release

network
interrupt −> Schedule(NetworkSendDone, ...)

SendToSocket

packet

length

user
to from length from

Nachos: Receive

Event driven

interrupt −> Schedule(NetworkReadPoll, ...)

messageAvailable −> V()

pktHdr

inbox

PostalDelivery()

messageAvailable −> P()

network −> Receive

pktHdr mailHdr data

boxes[i].Put

post office

postOffice −> Receive

boxes[i].Get

synchList

pktHdr mailHdr

data

user

ReadFromSocket

inHdr

CheckPktAvail()

network

OSI model

Physical layer:

electrical mechanism for transmitting bits.

Data link layer:

checking errors (check sum), getting packets between two
directly connected components.

Network layer:

Routing packets from one network to another. Forwarding
machines are called gateways. Unreliable (lost, delayed,
different speeds, out of order). Basic network protocol:
datagram protocols.

OSI model

Transport layer:

guarantee delivery and order. Simple acknowledgement-based
protocol: Sender: assign a serial number to each packet, send
packet, wait for acknowledgement before sending next packet,
if time out resend packet. Receiver: when get a message, send
back an acknowledgement; when get an acknowledgement for
the current serial number, signal the sender; ignore duplicates;
order packets.

OSI model

Session layer:

data exchange and synchronization.

Presentation layer:

convert different data formats.

Application layer:

provide services such as e-mail, FTP, remote command, etc.

OSI model

Physical level:

limited size (checksum), unreliable (lost packets), asynchronous

Application level:

arbitrary size, reliable, synchronous

Fragmentation

Sender splits up message into fixed size packets. Receiver
assembles fixed size packets into message.

Reliability

Check packet at receiver via checksum, discard if corrupted.
Receiver acknowledges if received properly.
Timeout at sender. If no acknowledgement, re-send

OSI model

Issues

If the sender doesn’t get an ack, does that mean the
receiver didn’t get the original message? No. What if ack
gets dropped? What if message gets delayed?

Sender doesn’t get ack, re-sends. Receiver gets duplicate
messages.
Acknowledge each?

Solution: put sequence number in packet. Receiver checks for
duplicate sequence number, if so, discards.

Sender must hold the message that has not been
acknowledged yet.
Receiver must keep track of every message that could be a
duplicate.

Approaches

Alternating bit protocol. One bit sequence number. Send
one packet at a time; don’t send next packet until ack
received. Sender only holds the copy of last packet sent;
receiver keeps track of sequence number of last packet
received.

simple
small overhead
packets arrive in order
poor performance

Window-based protocol (TCP). Send up to N packets at a
time. Receiver can get packets out of order.

TCP: Transmission Control Protocol

Reliable byte stream between two processes on different
machines over Internet (read, write, flush).
Fragments byte stream into packets and hands them to IP.
TCP/IP services

FTP: file transfer protocol

telnet: remote login

e-mail: computer mail

Interprocess Communication

Communication link:

Shared memory, hardware bus, network.

Shared address space:

Communicate through global variables shared by threads.

Message passing system:

Communication primitives: send and receive

Direct communication. One-to-one link. Processes are
identified by their ids.

send(pid, msgid, msg)
receive(pid, msgid, msg)

Interprocess Communication

Indirect communication. Send/receive messages to/from
mail boxes.

send(mbx, msg)
receive(mbx, msg)

Synchronization
Blocking. The sender (receiver) is blocked until the
message is received (available).
Unblocking. The sender (receiver) sends (receives) a
message and returns immediately. The receiver may
receive a null message.

Client-Server System

NFS: network file system provides the illusion that disks or
other devices from one system are directly connected to
other systems.

Remote execution: allow you to request that a particular
program be run on a different machine, e.g., RPC, rsh and
rexec (UNIX), distributed computing (MPI).

Name server: keep track of host names and Internet
addresses.

Network-oriented window systems: allow a program to
display on a different computer, e.g., X-windows

Well-known ports: /etc/services

Client-Server System

Iterative server:
1. start on the system
2. wait for a request from client
3. receive request
4. serve
5. deliver service to client
6. go to step 2

Client-Server System

Concurrent server:
1. start on the system
2. wait for a request from client
3. receive request
4. fork a child process
5.1. child handles service
5.2. parent goes to step 2

Client:
1. start on the system
2. send request to server
3. receive service

Berkeley sockets

Nachos-4.02: lib/sysdep.∗

OpenSocket():

int socket(int family,
int type,
int protocol);

family: AF UNIX or AF INET
type: SOCK DGRAM or SOCK STREAM
protocol: usually 0
returns a socket id (similar to file descriptor)

Berkeley sockets

AssignNameToSocket(...):

int bind(int sockfd,
struct sockaddr *myaddr,
int addrlen);

myaddr: socket address
Note. The system call bind() can be used in both Unix domain
and Internet domain, socket address can have different
structures. So, type cast is necessary.

Berkeley sockets

Unix domain

struct sockaddr_un {
short sun_family; /* AF_UNIX */
char sun_path[108]; /* path name */

};

Berkeley sockets

Internet domain

struct in_addr {
u_long s_addr; /* 32-bit net id */

};

struct sockaddr_in {
short sin_family; /* AF_INET */
u_short sin_port; /* 16-bit port number */
struct in_addr sin_addr;
char sin_zero[8]; /* unused */

};

A client-server model

A connection-oriented client-server model.

int listen(int sockID, int backlog);

int accept(int sockID,
struct sockaddr *cli_addr,
int *addrlen);

backlog: number of requests that can be
queued by the system before the server
executes the accept() system call. The system call
accept() returns a new socket descriptor.

A connection-oriented client-server model

client

blocked

read

socket

connect

server

socket

bind

listen

accept

write

write

read

Connection−Oriented

A connectionless client-server model

blocked

socket

Connectionless

server
client

socket

bind

recvfrom

sendto

bind

sendto

recvfrom

A concurrent server

sockID = socket(AF_INET, SOCK_STREAM, 0);
bind(sockID, ...);
listen(sockID, 5);
for(; ;) {

newsockID = accept(sockID, ...);
if (fork() == 0) {

close(sockID);
<do whatever using newsockID>

exit(0);
}
close(newsockID);

}

Client

After socket() and bind()

int connect(int sockfd,
struct sockaddr *servaddr,
int addrlen);

Note. A client does not have to bind a local address to the
socket descriptor.

Client

Read/write on a stream socket

Similar to file,
read(sockID, buf, nbytes);

Different from file, read/write on a stream socket might
read/write fewer bytes than requested. It is programmer’s
responsibility to ensure the actual number of bytes are
read/written on the socket.

