Processes

Sanzheng Qiao

Department of Computing and Software

December, 2012



What is a process?

The notion of process is an abstraction. It has been given many

definitions. “Program in execution” is the most frequently
referenced one.

Is a process the same as a program?



What is a process?

The notion of process is an abstraction. It has been given many
definitions. “Program in execution” is the most frequently
referenced one.

Is a process the same as a program?
No. It's both more and less.
More: When a child process (e.g., Is) terminates, it signals its

parent process (the shell). A process has the information about
its parent/child processes.

Less: Program cc uses several processes.



Address space

Each process is associated with an address space:

All the state needed to run a program (execution stack, system
environment, etc.). It contains all the addresses that can be

touched by the program.

Why address space: Protection. A process can only access its
own address space.

A process is represented by its Process Control Block (PCB):

@ Address space.
@ Execution state (PC, saved registers).



process control block

registers

—L] L]

address space



@ Scheduling information (priority).

@ Accounting information (CPU time).
@ Open files.

@ Other miscellaneous information.

OS maintains a process table (a collection of all PCBs) to keep
track of all the processes.
In UNIX the process table is a fixed-size array.



Process states

New: Just created

Waiting: Waiting for an event to occur.

Ready: Has acquired all the resources but the CPU.
Running: Running on the CPU.

Finish: Exiting.

Processes switch from one state to another, OS controls this.



Process states

timer interrupt

RN

dispatched
event completion wait for an event

¢ admitted e’/



Dispatcher

With many processes on the the system, OS must take care of:

@ scheduling: each process gets a fair share of the CPU
time.

@ protection: processes don’t modify each other.



Dispatcher

With many processes on the the system, OS must take care of:

@ scheduling: each process gets a fair share of the CPU
time.

@ protection: processes don’t modify each other.

Dispatcher:

© Run process for a while

@ Pick a process from the ready queue
© Save state (PC, registers, etc.)

© Load state of next process

© Run (load PC register)



Dispatcher

When a user process is switched out of the CPU, its state must
be saved in its PCB. Everything could be damaged by the next
process:

@ Program counter.

@ Processor status word.

@ Registers (General purpose and floating-point).



Exceptions

The CPU can run only one at a time. When a user process is
running, the dispatcher (part of OS) is not running.

How can OS regain control of the CPU?

@ Exceptions: User process gives up the CPU to OS (caused
by internal events, for example, go to sleep)
@ System call.

@ Error (eg. bus error, segmentation error, overflow, etc.).
@ Page fault.
@ Yield.

These are also called traps.



Interrupts

@ Interrupts: The OS interrupts user process (caused by
external events):

]

¢ ¢ ¢ ¢

Completion of an input (eg. a character typed at keyboard)
Completion of an output (a character displayed at terminal)
Completion of a disk transfer

A packet is sent to the network.

Timer (alarm clock).



Process creation

Creating a process from scratch:
© Load code and data into memory.
@ Set up a stack.
@ Initialize PCB.
© Make process known to dispatcher.



Process creation

Forking a process:
© Make sure the parent process is not running and has all
state saved.
@ Make a copy of code, data, and stack.

© Make a copy of PCB of the parent process into the child
process.

© Make the child process known to dispatcher.



Example

UNIX for k() and exec() .

The system call f or k() is called by one process and returned
in two processes.

Parent: returns child pid
Child: returns O

pid = fork();

if (pid == 0) /= child process */
exec("execut abl e");

[+ parent process continues */

In the child process, execut abl e overwrites the old program.



Process termination

Terminating when it finishes the last statement and calls exi t .

@ Deallocate memory (physical and virtual)
@ Close open files
@ Notify its parent process



Process termination

Terminated by another process, usually the parent, using
system call abort orkill.

@ The child has exceeded some resource quota

@ The child’s task is no longer needed

@ The parent is exiting



