
Processes

Sanzheng Qiao

Department of Computing and Software

December, 2012



What is a process?

The notion of process is an abstraction. It has been given many
definitions. “Program in execution” is the most frequently
referenced one.

Is a process the same as a program?



What is a process?

The notion of process is an abstraction. It has been given many
definitions. “Program in execution” is the most frequently
referenced one.

Is a process the same as a program?

No. It’s both more and less.

More: When a child process (e.g., ls) terminates, it signals its
parent process (the shell). A process has the information about
its parent/child processes.

Less: Program cc uses several processes.



Address space

Each process is associated with an address space:

All the state needed to run a program (execution stack, system
environment, etc.). It contains all the addresses that can be
touched by the program.

Why address space: Protection. A process can only access its
own address space.

A process is represented by its Process Control Block (PCB):

Address space.

Execution state (PC, saved registers).



PCB

process control block

address space

open files

registers

priority

status

stack

id



PCB

Scheduling information (priority).

Accounting information (CPU time).

Open files.

Other miscellaneous information.

OS maintains a process table (a collection of all PCBs) to keep
track of all the processes.
In UNIX the process table is a fixed-size array.



Process states

New: Just created

Waiting: Waiting for an event to occur.

Ready: Has acquired all the resources but the CPU.

Running: Running on the CPU.

Finish: Exiting.

Processes switch from one state to another, OS controls this.



Process states

dispatched

event completion

timer interrupt
admitted exit

wait for an event

waiting

ready

new finish

running



Dispatcher

With many processes on the the system, OS must take care of:

scheduling: each process gets a fair share of the CPU
time.

protection: processes don’t modify each other.



Dispatcher

With many processes on the the system, OS must take care of:

scheduling: each process gets a fair share of the CPU
time.

protection: processes don’t modify each other.

Dispatcher:

1 Run process for a while
2 Pick a process from the ready queue
3 Save state (PC, registers, etc.)
4 Load state of next process
5 Run (load PC register)



Dispatcher

When a user process is switched out of the CPU, its state must
be saved in its PCB. Everything could be damaged by the next
process:

Program counter.

Processor status word.

Registers (General purpose and floating-point).



Exceptions

The CPU can run only one at a time. When a user process is
running, the dispatcher (part of OS) is not running.

How can OS regain control of the CPU?

Exceptions: User process gives up the CPU to OS (caused
by internal events, for example, go to sleep)

System call.
Error (eg. bus error, segmentation error, overflow, etc.).
Page fault.
Yield.

These are also called traps.



Interrupts

Interrupts: The OS interrupts user process (caused by
external events):

Completion of an input (eg. a character typed at keyboard)
Completion of an output (a character displayed at terminal)
Completion of a disk transfer
A packet is sent to the network.
Timer (alarm clock).



Process creation

Creating a process from scratch:

1 Load code and data into memory.
2 Set up a stack.
3 Initialize PCB.
4 Make process known to dispatcher.



Process creation

Forking a process:

1 Make sure the parent process is not running and has all
state saved.

2 Make a copy of code, data, and stack.
3 Make a copy of PCB of the parent process into the child

process.
4 Make the child process known to dispatcher.



Example

UNIX fork() and exec().

The system call fork() is called by one process and returned
in two processes.

Parent: returns child pid
Child: returns 0

pid = fork();
if (pid == 0) /* child process */

exec("executable");
/* parent process continues */

In the child process, executable overwrites the old program.



Process termination

Terminating when it finishes the last statement and calls exit.

Deallocate memory (physical and virtual)

Close open files

Notify its parent process



Process termination

Terminated by another process, usually the parent, using
system call abort or kill.

The child has exceeded some resource quota

The child’s task is no longer needed

The parent is exiting


