
Scheduling

Sanzheng Qiao

Department of Computing and Software

January, 2013

Introduction

In this part, we’ll talk about resources, the things operated upon
by processes (CPU time, disk space, etc).

Resources fall into two classes:
Preemptive: Can be taken away, use it for something else,
then give it back later (eg. CPU).
Non-preemptive: Once given, it can’t (or it is difficult to) be
reused until process gives it back.

Why scheduling?

Limited resources, multiprogramming
OS makes two related kinds of decisions about resources:

Allocation: who get what. Given a set of requests for
resources, which process should be given which resources
in order to make most efficient use of resources?
Implication is that resources are not easily preemptible.
Scheduling: how long can they keep it? When more
resources are requested than can be granted immediately,
in which order should they be served? (CPU scheduling)
Implication is that resource is preemptible.

CPU scheduling

Allocates cpu among the processes in the ready state.

Goals: Maximize the resource (CPU) utilization and throughput;
minimize overhead (context switches).
An observation: a typical execution of a program consists of cpu
bursts and I/O bursts. Usually, there are many short cpu bursts.
Process execution begins with a CPU burst (start up) followed
by an I/O burst and then a CPU burst and so on. Finally, it ends
with a CPU burst (finish).

Statistics

Response time Time spent in the ready queue waiting for the
first chance to execute.

Waiting time Total time spent in the ready state.
Running time Total time spent in the running state.
Turnaround time The sum of the waiting time and running time.

Algorithms

Assumptions: There are n ready processes. (Steady state)
Average execution time (CPU burst) is t .

Non-preemptive algorithm FCFS
response time: nt
wait time: nt
fast, little overhead
This is short processes’ disadvantage.

Algorithms

Either preemptive or non-preemptive
Shortest-job first (SJF)
This algorithm minimizes average wait time.

average wait time =
(n − 1)t1 + · · ·+ tn−1

n

This is long processes’ disadvantage.
Priority
The SJF is a special case of priority scheduling where the
next CPU burst is the priority (assuming low numbers
represent high priority).

Synchronization and scheduling

Priority inversion problem
A high priority thread is waiting for a low priority thread, e.g.,
waiting in Join(), and middle priority threads are on the ready
queue. Then the high priority thread cannot run before the
middle priority threads, because the low priority thread cannot
run until the middle priority threads finish.

A partial solution
Have the waiting thread “donate” its priority to the low priority
thread while it is holding the resource (lock, semaphore).

Preemptive algorithms

time quantum: q

(a) Round-Robin
response time: nq
wait time: ≈ nt
More overhead, long processes have to go through the ready
queue several times.
The choice of q: 80% of cpu bursts t ≤ q (10000-100000
instr’s).

(b) Modified Round-Robin
The time quantum is increased (e.g., doubled) each time a
process reenters the ready queue.
Shorter waiting time for long processes, longer response time
for short processes.

Preemptive algorithms

(c) Multilevel priority queues
The ready queue is divided into several queues with different
priorities. A process is permanently assigned to one queue.
Sacrifice overall system efficiency to give us better performance
with respect to some other parameters, say, safety.

(d) Multilevel feed back queues (adaptive)
The ready queue is divided into several queues with different
time quanta, scheduling policies. Processes move between
queues. When a process is submitted, it is put on q1. If it does
not finish in time quantum, it is moved to q2,

Example: SUN

A fair-share scheduling.

Keep history of recent CPU usage for each process.
Forget 90% of recent CPU time in 5n seconds, where n is
the average number of ready processes in the last minute.
The decaying rate r :

0.1 = r5n.

Adjust the base priority
(−20–+20, high–low). In t seconds,

adj = recent CPU usage× r t .

Example: SUN

Implications:
In a heavy load (n large), the recent CPU usage is
forgotten slowly.
A CPU intensive process (recent CPU usage large) has
low priority. This policy favors I/O bound processes.
The CPU usage is forgotten (adj → 0) as time passes
(t →∞).

Summary:
The algorithms have strong effects on the system’s
overhead, efficiency, and response time.
The best scheme is adaptive.

