
Deadlocks

Synchronization

Sanzheng Qiao

Department of Computing and Software

December, 2012

Deadlocks

Introduction

Cooperating processes:

The state of one process is shared by another.

Behavior is nondeterministic: depends on relative
execution sequence and cannot be predicted a priori.

Behavior may be irreproducible.

Eg. One process writes “ABC” to the terminal, another
wites“CBA”.

Deadlocks

Introduction

Why permit processes to cooperate?

Shared resources; want to do things fast (parallel computing).

Basic assumption: the order of some operations is irrelevant.

Examples

A = 1; B = 2; same as B = 2; A = 1.

A = B + 1; B = 2B; cannot be re-ordered.

A = 1 and A = 2 are in parallel, race condition.

If the exact order must be imposed, then there is no point in
having multiple processes. Just put everything in one process.

Deadlocks

Critical section

The section of program in which a shared variable is accessed.
Example. A joint bank account. Shared variable: bal
Deposit

Deposit: Withdraw:
input dep input withd
load dep load withd
load bal load bal
add bal, dep sub bal, withd
store bal store bal

Deadlocks

Critical section

An execution sequence.

Deposit Withdraw

load dep
load bal
add bal, dep

load withd
load bal
sub bal, withd
store bal

store bal

Deadlocks

Requirements for a solution

Requirement 1 (mutual exclusion):

If pi is executing in its critical section, then no other process can
execute in its critical section.

Deadlocks

Requirements for a solution

Requirement 1 (mutual exclusion):

If pi is executing in its critical section, then no other process can
execute in its critical section.

A solution:

Algorithm A (symmetric for B)
common variable:
TURN: (B, A);
repeat

while TURN 6= A do skip;
〈critical section〉

TURN = B;
〈remainder section〉

until false.

Deadlocks

Requirements for a solution

Prove mutual exclusion:
When A (B) remains in its critical section, TURN = A(B)

When A is entering its critical section (TURN = A), B is not in
its critical section;

While A remains in its critical section (TURN = A), B cannot
enter its critical section;

Deadlocks

Requirements for a solution

Prove mutual exclusion:
When A (B) remains in its critical section, TURN = A(B)

When A is entering its critical section (TURN = A), B is not in
its critical section;

While A remains in its critical section (TURN = A), B cannot
enter its critical section;

Problem: strict alternation.

Deadlocks

Requirements for a solution

Requirement 2 (progress):

If no process is executing in its critical section and there exist
some processes that wish to enter their critical sections, then
only those processes that are not executing in their remainder
section can participate in the decision as to who will enter the
critical section and the selection cannot be postponed
indefinitely.

Deadlocks

Requirements for a solution

A solution (progress):

New Algorithm A
common variable:
AFlag, BFlag:

(ON, OFF);
repeat

1 while BFlag = ON do skip;
2 AFlag = ON;

〈critical section〉
3 AFlag = OFF ;

〈remainder section〉
until false.

Symmetric for B.

Deadlocks

Requirements for a solution

Prove progress:

If A is in its remainder section (A doesn’t want to enter its
critical section), B can always enter its critical section.
This is simple since we have only two processes. The definition
is general.

Deadlocks

Requirements for a solution

Prove progress:

If A is in its remainder section (A doesn’t want to enter its
critical section), B can always enter its critical section.
This is simple since we have only two processes. The definition
is general.

Problem: no guarantee of mutual exclusion. Consider the
sequence:
A1, A2, A3, A1, B1, B2, A2,

Deadlocks

Requirements for a solution

Another solution:

New New Algorithm A
common variable:
BFlag, AFlag:

(ON, OFF);
repeat

1 AFlag = ON;
while BFlag = ON do skip;
〈critical section〉
AFlag = OFF ;
〈remainder section〉

until false.

Prove: Mutual exclusion; Progress.

Deadlocks

Requirements for a solution

Another solution:

New New Algorithm A
common variable:
BFlag, AFlag:

(ON, OFF);
repeat

1 AFlag = ON;
while BFlag = ON do skip;
〈critical section〉
AFlag = OFF ;
〈remainder section〉

until false.

Prove: Mutual exclusion; Progress.

Problem: possible deadlock. Consider sequence: A1, B1,

Deadlocks

A correct solution

Correct Algorithm A
common variable:
BFlag, AFlag:

(ON, OFF);
TURN: (B, A);
repeat

AFlag = ON;
TURN = B;
while BFlag = ON

and TURN = B do skip;
〈critical section〉
AFlag = OFF ;
〈remainder section〉

until false.

Deadlocks

A correct solution

We can prove:

Mutual exclusion;
Progress;
No deadlock (TURN is either A or B).

Deadlocks

A correct solution

We can prove:

Mutual exclusion;
Progress;
No deadlock (TURN is either A or B).

Shortcoming: possible starvation.

Deadlocks

Requirements for a solution

A desirable property (bounded waiting):

There must exist a bound on the number of times that other
processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and
before the request is granted.

Deadlocks

Requirements for a solution

A desirable property (bounded waiting):

There must exist a bound on the number of times that other
processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and
before the request is granted.

Problems with the solution:

Hard to extend to n processes;
Busy wait: a process repeatedly uses the cpu time to check
conditions.

Deadlocks

Requirements for a solution

A mutual exclusion mechanism:

Mutual exclusion : Only one process in its critical section at a
time.

Progress : Allow vacation outside critical section.

No deadlock : If several requests at once, must allow one
process to proceed.

Desirable properties:

Fair : Bounded waiting.
Efficient : no busy waiting.
Simple : easy to use.

Deadlocks

Atomic operations

An atomic operation either happens in its entirety without
interruption, or not at all. Cannot be interrupted in the middle.

Eg. suppose printf is atomic, what is output of: printf(“ABC”);
printf(“CBA”);?

Deadlocks

Atomic operations

An atomic operation either happens in its entirety without
interruption, or not at all. Cannot be interrupted in the middle.

Eg. suppose printf is atomic, what is output of: printf(“ABC”);
printf(“CBA”);?

References and assignments are atomic in almost all systems.
A = B will always get a good value for B and set a good value
for A (not arrays, records).

In uniprocessor systems, anything between interrupts is atomic.

Deadlocks

Building atomic operations

If you don’t have any atomic operation, you can’t make one.
Fortunately, the hardware guys give us atomic ops.

If you have an atomic op, you can use it to generate
higher-level constructs and make concurrent processing work
correctly. This is the approach we’ll take in this class.

Deadlocks

Lock and condition

A high-level mechanism (built upon a lower-level one).

Lock : A synchronization variable that takes two values (BUSY,
FREE).

Acquire : An atomic operation that waits until the lock is FREE,
then sets the lock BUSY.

Release An atomic operation that wakes up a thread waiting in
Acquire if necessary, then sets the lock to FREE.

Condition variable (always associated with a lock).
Wait : Releases the lock then waits on the condition. When
signaled, re-acquires the lock.
Signal : If there are any waiting on the condition, wakes one up.

Deadlocks

Lock and condition

condition queue

lock queue

ready queue

critical
section

...

...

...

Deadlocks

Lock and condition

Usage of lock and condition.

Always acquire the lock before manipulating shared data.

Always release the lock after manipulating shared data.

Do not lock again if the lock is held by the current process.

Do not unlock if the lock is not held by the current process.

Deadlocks

Semaphores

A synchronization variable that takes non-negative integer
values.
(Edsger Dijkstra, mid 1960s)

Atomic operations:

P(): waits for semaphore to become positive, then
decrements it by 1
(“proberen” in Dutch).

V(): increments semaphore by 1
(“verhogen” in Dutch).

Deadlocks

Semaphores

Solving critical section problem using semaphore

semaphore->P()
<critical section>

semaphore->V()
<remainder section>

Note: initialization of semaphore.

Show mutual exclusion, progress, no starvation (?).

Deadlocks

Semaphores

Solving critical section problem using semaphore

semaphore->P()
<critical section>

semaphore->V()
<remainder section>

Note: initialization of semaphore.

Show mutual exclusion, progress, no starvation (?).

Semaphores are elegant. They do a lot more than just mutual
exclusion.

Deadlocks

Semaphores

Semaphores are not provided by hardware.

Attractive properties of semaphore:

machine independent

simple

work with many processes

can have many different critical sections with different
semaphores

can acquire many resources simultaneously (multiple P’s)

can permit multiple processes into critical sections, if that
is desirable

Deadlocks

Using semaphores

Semaphore can be used in two different ways:

Mutual exclusion: to ensure that only one process is
accessing shared information at a time. If there are
separate groups of data that can be accessed
independently, there may be separate semaphores, one for
each group of data. These semaphores are always binary.

Scheduling: to permit processes to wait for certain things
to happen. If there are different groups of processes
waiting for different things, there will usually be a different
semaphore for each group of processes. These
semaphores are not necessary binary.

Deadlocks

Using semaphores

Suppose that Pa runs A and Pb runs B and we want to
schedule them so that A runs first.

Initialize the semaphore value to 0.

In Pa:
A;
V();

In Pb:
P();
B;

Deadlocks

Semaphores

A solution for busing waiting:

A waiting queue. (So a semaphore has a value and a queue.)

P():
if value ≤ 0

add the calling thread to the waiting queue;
the calling thread goes to sleep;

else
decrement the value by 1;

V ():
if the waiting queue is not empty

move a thread from the waiting queue to ready queue;
else

increment the value by 1;

Deadlocks

Implementing lock using semaphore

Private:

char* name;
Thread* holder;
Semaphore* lockSem;

Lock::Lock(char* debugName)
{

name = debugName;
holder = NULL;
lockSem =

new Semaphore("Lock Sem", 1);
}

Deadlocks

Implementing lock using semaphore

Lock::Acquire()
{

ASSERT(holder != currentThread);

lockSem->P();
holder = currentThread;

}

Lock::Release()
{

ASSERT(holder == currentThread);

holder = NULL;
lockSem->V();

}

Deadlocks

Implementing condition using semaphore

Condition::Condition(char* debugName)
{

name = debugName;
condQueue = new List<Semaphore *>;

}

Deadlocks

Implementing condition using semaphore

Condition::Wait(Lock* conditionLock)
{

Semaphore *waiter;

ASSERT(conditionLock->
isHeldByCurrentThread());

waiter = new Semaphore("condition", 0);
condQueue->Append(waiter);
conditionLock->Release();
waiter->P();
conditionLock->Acquire();
delete waiter;

}

Deadlocks

Implementing condition using semaphore

Condition::Signal(Lock* conditionLock)
{

Semaphore *waiter;

ASSERT(conditionLock->
isHeldByCurrentThread());

if (!condQueue->IsEmpty()) {
waiter = condQueue->RemoveFront();
waiter->V();

}
}

Deadlocks

Implementing condition using semaphore

Condition::Broadcast(Lock* conditionLock)
{

while (!condQueue->IsEmpty()) {
Signal(conditionLock);

}
}

Deadlocks

Example: Producer and consumer problem

Initialization: empty.value = bufferSize; full.value=0.
Producer:

produce an item;
empty→P();
mutex→P();
ENQ;
mutex→V();
full→V();

Consumer:
full→P();
mutex→P();
DEQ;
mutex→V();
empty→V();
consume the item;

Deadlocks

Producer and consumer problem

Study the following:

Two different ways of using semaphores (mutual exclusion
and scheduling).

Why does producer empty→P()
but full→V()?

Why is the order of P’s important?

Is the order of V’s important?

Deadlocks

Semaphore Implementation

No existing hardware implementations of P() and V()
directly. Thus semaphore must be built up in software
using some lower-level synchronization primitive provided
by hardware.

Uniprocessor solution: disable interrupts (remember how
dispatcher regains control).

Eg. Nachos implementation.

Deadlocks

A hardware synchronization primitive

An Atomic Function: test-and -set()

function test-and -set(target)
begin

test-and -set := target ;
target := true

end.

Solving critical section problem using test-and -set()

lock := false;
repeat

while test-and -set(lock) do skip;
〈critical section〉

lock := false;
〈remainder section〉

until false;

Deadlocks

Hardware implementation

Machine instruction: TSTSET Reg, Var , #

Solving Critical Section Problem Using TSTSET
LOOP: TSTSET 7, lock , 1

JMPONE 7, LOOP
〈critical section〉
MOVE lock , 0
〈remainder section〉

Problem: busy waiting

Deadlocks

Semaphores in a multiprocessor system

Can’t just turn off interrupts to get low-level mutual exclusion.
Have to be busy-waiting at some level.

Data structure:
typedef struct {

int v ;
list q;
int t ;

} SEMAPHORE ;

Disable interrupts to ensure atomicity on this processor;

Spinlock (busy waiting) to ensure mutually exclusive
access to the semaphore value (over all processors);

Spinlock is useful when locks are expected to be held for
short time.

Deadlocks

Semaphores in a multiprocessor system

P(s)
SEMAPHORE ∗s;
{

disable interrupts;
while (test-and -set(s → t) 6= 0);
if (s → v > 0) {

s → v = s → v − 1;
s → t = 0;

} else {
add process to s → q;
s → t = 0;
go to sleep;

}
restore interrupts;

}

Deadlocks

Semaphores in a multiprocessor system

V (s)
SEMAPHORE ∗s;
{

disable interrupts;
while (test-and -set(s → t) 6= 0);
if (s → q empty) {

s → v + = 1;
} else {

remove a process from s → q;
wake it up;

}
s → t = 0;
restore interrupts;

}

Deadlocks

Language Constructs

General form:
class name

variable declarations
entry P1(· · ·)

begin
...

end
· · ·

begin
initialization

end

Deadlocks

Monitor

A high-level abstraction.
Monitors combine:
Shared data.
Operations on the data.
Synchronization, scheduling.

Existing implementations of monitors are embedded in
programming languages.

There is a lock (or binary semaphore) associated with each
monitor, mutual exclusion is implicit: P on entry to any
procedure, V on exit.

Deadlocks

Monitor

Condition variables: things to wait on (scheduling).

Operations on a condition variable:
Wait(): release monitor lock; put process to sleep; when the
process wakes up, re-acquire monitor lock immediately.
Signal(): wake up exactly one process suspended by Wait(). If
no process is suspended, Signal() has no effect.
Broadcast(): wake up all processes waiting on the condition
variable. If no process is waiting, do nothing.

Deadlocks

Note:

There are several different variations on the wait/signal
mechanism, in terms of who (signaler, or awakened, or
else) gets the monitor lock after a signal.

Compare wait/signal with P/V.

Semaphores use a single structure for both mutual
exclusion and scheduling, monitors use separate
structures.

Complex synchronization code is separated from other
code and put in monitor.

Deadlocks

Example: Java

Every object is associated with a lock.
A method can be declared as synchronized.

public synchronized void
ENQ(Object item) {

...
}

Two Java methods: wait() and notify()
Every object is also associated with a wait set containing the
threads waiting on the condition.
Java allows only one condition variable.

Deadlocks

An implementation of monitor

entry (procedure):
P(mutex)
{procedure}
if next-count > 0

V(next)
else

V(mutex)

mutex : monitor lock (binary semaphore)
next : semaphore for the urgent queue
next-count : number of processes on the urgent queue

Deadlocks

An implementation of monitor

condition variable: x ;

wait(x)(Hoare style):
x .count = x .count + 1
if next-count > 0

V(next)
else

V(mutex)
P(x .sem);
x .count = x .count − 1

x .count : number of processes waiting on x .
x .sem: semaphore (scheduling) associated with x .

Deadlocks

An implementation of monitor

signal(x)(Hoare style):
if x .count > 0

next-count = next-count + 1
V(x .sem);
P(next);
next-count = next-count − 1

Deadlocks

Example: Bounded buffer problem

MONITOR consumer-producer
BufferSize = n;
circular array buffer [BufferSize];
index head ← 1, tail ← 1;
int full ← 0;
condition vacant , avail ;

Deadlocks

Boundid buffer problem

entry ENQ(item, buffer);
if full = BufferSize

vacant .wait ;
buffer(tail) = item;
tail = (tail + 1) mod BufferSize;
full = full + 1;
avail .singal ;

Deadlocks

Boundid buffer problem

entry DEQ(item, buffer);
if full = 0

avail .wait ;
item = buffer(head);
head = (head + 1) mod BufferSize;
full = full − 1;
vacant .singal ;

producer: ENQ(item, buffer)
consumer: DEQ(item, buffer)

Deadlocks

Example: Readers and writers problem

Consider a shared file. Many readers can access the file
simultaneously. If a writer is updating the file, no others can
access the file.

Conditions:

(i) A reader shouldn’t be permitted to start if there is a writer
waiting for the currently active reader to finish. (avoid indefinite
postponement of writers)
(ii) All readers waiting at the end of writer execution should be
given priority over the next writer. (avoid indefinite
postponement of readers)

Deadlocks

Readers and writers problem

MONITOR readers-writers
int act-rd ← 0;
boolean act-wt ← false;
condition wait-rd , wait-wt ;

If there is an active writer or a waiting writer, the reader waits.
Once activated, it signals other waiting readers to become
active.

entry start-read
if act-wt or not EMPTY (wait-wt)

wait-rd .wait ;
act-rd = act-rd + 1;
wait-rd .signal ;

Deadlocks

Readers and writers problem

If finishing reader finds that it is the last active reader, it signals
a waiting writer.

entry end-read
act-rd = act-rd − 1;
if not EMPTY (wait-wt)

if act-rd = 0
wait-wt .signal ;

else
wait-rd .signal ;

Deadlocks

Readers and writers problem

If there are active readers or if there is an active writer, the new
writer waits.

entry start-write
if (act-rd 6= 0 or act-wt)

wait-wt .wait ;
act-wt =true;

Deadlocks

Readers and writers problem

If there are readers waiting, the finishing writer signals a reader.
Otherwise, it signals another writer.

entry end-write
act-wt =false;
if not EMPTY (wait-rd)

wait-rd .signal ;
else

wait-wt .signal ;

Deadlocks

Readers and writers problem

reader:
repeat

start-read;
<reading>

end-read;
until false

writer:
repeat

start-write;
<writing>

end-write;
until false

Deadlocks

Deadlocks

Resource classification:

preemptible (resources that can be taken away from a process
before that process has finished using it), for example, CPU.
nonpreemptible, for example, disks and printers.

Resource allocation:

Static: A process must acquire all the resources it might
possibly use before that process is scheduled (predict the
future, impractical).

Dynamic: A process acquires a resource when the
resource is needed.

Deadlocks

Starvation and deadlock

Starvation:

A state when a process is continuously denied access to a
resource. The process may be able to access to the resource
later, but not sure when (eg. bounded waiting is not satisfied).

Deadlock:

A state when every process in a set is waiting for an event that
can only be caused by another process in the set. Since all are
waiting, none can cause the even to happen (eg. two
processes one does P(x); P(y); the other does the reverse).

Deadlocks

Necessary Conditions

Mutual exclusion: resources cannot be shared.

Hold and wait: processes don’t ask for resources all at
once. So a process can ask for resources while holding
some resources.

No preemption: onece given, a resource cannot be taken
away until the process finishes using it.

Circular wait: there is circularity in the resource allocation
graph.

Deadlocks

Resource Allocation Graph

A directed graph:

G = (V , E)
V =

{

pi
}

∪
{

ri
}

pi : process
ri : resource type (may have several identical units)
E =

{

(pi , rj)
}

∪
{

(ri , pj)
}

(pi , rj): request edge
(ri , pj): assignment edge

A resource graph is reduced by pi which is neither blocked nor
isolated by removing all edges to and from pi .

Deadlocks

Deadlock prevention

Organize the system so that it is impossible for deadlock ever to
occur.

Solution: Breaking any one of the four necessary conditions

1. Mutual exclusion: Don’t allow exclusive access. This is
probably not reasonable for many applications.

2. Hold and wait: Don’t allow waiting.

Request all before execution.

Release all before requesting.

This probably causes starvation.

Deadlocks

Deadlock prevention

3. No preemption: Allow preemption.

A process holding resources and requests more but has to
wait, all resource held by the process are preempted.

A process requests a resource but the resource is held by
another process which is waiting for a resource. The
resource is preempted from the another process.

Deadlocks

4. Circular wait: A unique number is assigned to each resource
type.

request resources in strictly increasing order.

before requesting rj , release all ri with
higher numbers.

All the solutions are expensive and/or require predicting the
future, not practical.

Deadlocks

Deadlock detection

Determine when the system is deadlocked and then take
drastic action (termination of processes).

A special case:
Each resource type has exactly one unit. Then deadlock in
system if and only if cycle exits in the graph.

Algorithm

1 Delete all sink nodes (with only incoming edges);
2 Reduce the graph;
3 Check cycles.

In this special case, the graph can be simplified to a wait-for
graph.

Deadlocks

General case: Multiple instances

Algorithm

1 Find an unfinished process whose request can be satisfied
by available resources;

2 Pretend to finish the process and return the resources held
by the process to available;

3 Repeat 1 and 2 until no such processes can be found;
4 If there are unfinished processes, the system is in

deadlock state.

Deadlocks

Deadlock Avoidance

Determine when the system can be potentially deadlocked and
then take action to avoid the possible deadlock.

Safe state:
A state is called safe, if it is possible for the system to satisfy all
possible future requests in some order without deadlocks.

Banker’s Algorithm:
Pretend to satisfy the request and check if the system ends in
safe state.

Deadlocks

Example: A safe state

Total resources: [2 1 2].
Matrix max :

r1 r2 r3

p1 2 0 0
p2 1 1 1
p3 0 1 1
p4 0 0 2

Deadlocks

Example: A safe state

Matrices alloc and need :

r1 r2 r3

p1 1 0 0
p2 1 0 0
p3 0 1 0
p4 0 0 1

r1 r2 r3

p1 1 0 0
p2 0 1 1
p3 0 0 1
p4 0 0 1

Availabe resources: [0 0 1].

Deadlocks

Example: An unsafe state

Total resources: [2 1 2].

Matrix max :
r1 r2 r3

p1 2 0 0
p2 2 1 0
p3 0 1 1
p4 0 0 2

Deadlocks

Example: An unsafe state

Matrices alloc and need :

r1 r2 r3

p1 1 0 0
p2 1 0 0
p3 0 1 0
p4 0 0 1

r1 r2 r3

p1 1 0 0
p2 1 1 0
p3 0 0 1
p4 0 0 1

Availabe resources: [0 0 1].

Deadlocks

The weaknesses of the algorithm:

requires fixed number of resources to allocate;

requires the population of users remain fixed;

allows the banker grant all requests within a finite time;

requires customers repay all loans within a finite time;

requires users state their maximum needs in advance.

Deadlocks

Conclusion

Deadlock is one area where there is a strong theory, but it is
almost completely ignored in practice (ostrich approach).

Reason:

Solutions are expensive, and/or assume impractical conditions,
and/or require predicting the future.

	Deadlocks

