
Threads

Sanzheng Qiao

Department of Computing and Software

December, 2012



What is a thread?

A sequential execution stream (thread) within a process (also
called “lightweight” process).

A process has at least one thread of control.

A processe has two parts: threads (concurrency) and address
spaces (protection).
Some systems (e.g., new version of UNIX, Solaris, Windows
NT) allow multiple threads per address space.



Thread states

States shared by all threads in the same process/address
space:

global variables
file system

States “private” to each thread:
PC, registers
execution stack contains parameters, temporary variables,
return addresses.



Why threads?

Multithreading:

A single program made up of a number of different concurrent
execution streams (threads). Also called SPMD (Single
Program Multiple Data). It is fast to create threads and context
switch threads belonging to the same process.



Why threads?

Multithreading:

A single program made up of a number of different concurrent
execution streams (threads). Also called SPMD (Single
Program Multiple Data). It is fast to create threads and context
switch threads belonging to the same process.

Examples of multithreaded programs:

Window system: single program but one thread per window.

Multiprocessing (multiprocessor systems):

Split program into multiple threads to make it run faster by
running on multiple processors. This is called parallel
programming.



Creating a thread

Construct a thread class (thread fork in Nachos).



Creating a thread

Construct a thread class (thread fork in Nachos).

What happens when a thread class is constructed?

Thread fork is very much like an asynchronous procedure
call. The caller does not wait for the callee to complete (return).
A traditional procedure call is like:

A() {
Thread* t = new Thread;
t->fork(B);
this->join();

}



Context switch

Running a thread

Load its state (registers, PC, stack pointer) into CPU and do a
jump.



Context switch

Running a thread

Load its state (registers, PC, stack pointer) into CPU and do a
jump.

Switching threads

What do you need to save/restore when thread T switches to
thread S?
Anything thread S may trash: PC, registers, execution stack.

Nachos: Yield calls Switch to switch to the next thread.
Switch is called in one threads context, but returns in the
other’s! There is a real implementation of Switch in Nachos in
switch.s. It’s magical!



switch.s

SWITCH:
sw sp, SP(a0) # save new stack pointer
sw s0, S0(a0) # save callee-save reg’s
sw s1, S1(a0)
sw s2, S2(a0)
sw s3, S3(a0)
sw s4, S4(a0)
sw s5, S5(a0)
sw s6, S6(a0)
sw s7, S7(a0)
sw fp, FP(a0) # save frame pointer
sw ra, PC(a0) # save return address



switch.s

lw sp, SP(a1) # load new stack pointer
lw s0, S0(a1) # load callee-save reg’s
lw s1, S1(a1)
lw s2, S2(a1)
lw s3, S3(a1)
lw s4, S4(a1)
lw s5, S5(a1)
lw s6, S6(a1)
lw s7, S7(a1)
lw fp, FP(a1)
lw ra, PC(a1) # load the return address

j ra
.end SWITCH



Thread programming

Write programs with multiple simultaneous points of execution,
synchronizing through shared memory.

Concurrent programming has techniques and pitfalls that do not
occur in sequential programming.

Global variables are shared among all the threads of the same
process. Threads can read and write the same memory
locations. The programmer is responsible for using the
synchronization mechanisms of the thread facility to ensure that
the shared memory is accessed in a manner that will give the
correct answer.


