Solution for Assignment 1

1. Give the IEEE single precision binary representation of each of the following decimal numbers: +2

- 3. Consider the following program:

h = 1.0/2.0; s = 2.0/3.0 - h; t = 3.0/5.0 - h; d = (s + s + s) - h; n = (t + t + t + t + t) - h;q = n/d;

The variable q can take on different values depending on the floating-point system used by the computer.

- (a) Figure out the value of q, if the program is run in MATLAB/Octave (double precision). Explain the result.
- (b) Figure out the value of q, if the program is run in single precision. Explain your result.
- (c) Figure out the value of q, if the program is run on a hypothetical machine with $\beta = 10$, t = 4, $e_{\min} = -48$, and $e_{\max} = 49$.

Answer.

- (a) The binary of h: 1.000...000 × 2⁻¹; The binary of s: 1.010...1010100 × 2⁻³; The binary of t: 1.1001100...110011000 × 2⁻⁴; The value of (s + s + s) is: 1.111...110 × 2⁻², then the value of d is -2^{-53} ; The value of (t + t + t + t + t) is: 1.111...110 × 2⁻², then the value of n is -2^{-53} . Thus the value of q is 1.
- (b) The binary of h: 1.000...000 × 2⁻¹; The binary of s: 1.010...10101100 × 2⁻³; The binary of t: 1.1001100...110011010000 × 2⁻⁴; The value of (s + s + s) is: 1.00...0001 × 2⁻¹, then the value of d is 2⁻²⁴; The value of (t + t + t + t + t) is: 1.00...010 × 2⁻¹, then the value of n is 2⁻²³. Thus the value of q is 2.

- (c) The decimal of $h: 5.000 \times 10^{-1}$; The binary of $s: 1.667 \times 10^{-1}$; The binary of $t: 1.000 \times 10^{-1}$; The value of (s + s + s) is: 5.001×10^{-1} , then the value of d is 10^{-4} ; The value of (t + t + t + t + t) is: 5.000×10^{-1} , then the value of n is 0. Thus the value of q is 0.
- 4. In 250 B.C.E. the Greek mathematician Archimedes estimated the number π as follows. He looked at a circle with diameter 1, and hence circumference π . Inside the circle he inscribed a square. The perimeter of the square is smaller than the circumference of the circle, and so it is a lower bound for π . Archimedes then considered an inscribed octagon, 16-gon, etc., each time doubling the number of sides of the inscribed polygon, and producing ever better estimates for π . Using 96-sided inscribed and circumscribed polygons, he was able to show that $223/71 < \pi < 22/7$. There is a recursive formula for these estimates. Let p_n be the perimeter of the inscribed polygon with 2^n sides. Then $p_2 = 2\sqrt{2}$. In general,

$$p_{n+1} = 2^n \sqrt{2(1 - \sqrt{1 - (p_n/2^n)^2})}$$

Compute p_n for n = 3, 4, ..., 60. Try to explain your results. Kahan suggested a revision:

$$p_{n+1} = 2^n \sqrt{r_{n+1}}$$

where r_{n+1} can be computed iteratively

$$r_{n+1} = \frac{r_n}{2 + \sqrt{4 - r_n}}$$
 $r_3 = \frac{2}{2 + \sqrt{2}}.$

Use this revision to calculate r_n and p_n for n = 3, 4, ..., 60. Try to explain your results. Answer. Two programs:

```
function p = pi1(niter)
% Usage: p = pi1(niter)
%
% Archimedes' method for computing pi
% Returns approximations to pi in vector p
%
% Input:
%
    niter number of interations
p(1) = 1.0;
p(2) = 2*sqrt(2);
power = 2.0;
for n=2:niter
    power = power*2;
    p(n+1) = power*sqrt(2*(1.0 - sqrt(1.0 - (p(n)/power)*(p(n)/power))));
end
function p = pi2(niter)
% Usage: p = pi2(niter)
%
```

```
% Kahan's revision of Archimedes' method for computing pi
% Returns approximations to pi in vector p
%
% Input:
% niter number of interations
p(1) = 1.0;
r(1) = 4.0;
power = 1.0;
for n=1:niter
    power = power*2;
    r(n+1) = r(n)/(2.0 + sqrt(4.0 - r(n)));
    p(n+1) = power*sqrt(r(n+1));
end
```

In the first program, p_{15} has 9 digits of accuracy, however, $p_{29} = 4.0$ and $p_{30} = 0.0$. The problem is the combination of rounding error and catastrophic cancellation. When n = 28, $(p_{28}/2^{28})^2 \approx 2^{-52}$, and $\sqrt{1 - (p_{28}/2^{28})^2} \approx 1 - (1/2) \times 2^{-52}$, which contains rounding error. Then catastrophic cancellation occurs in computing $1 - \sqrt{1 - (p_{28}/2^{28})^2} \approx 2^{-53}$. Thus $p_{29} \approx 2^{28}\sqrt{2 \times 2^{-53}} = 4.0$. Once $p_{29} = 4.0$, $1 - (p_{29}/2^{29})^2 = 1.0 - 2^{-54} = 1.0$ in double precision due to rounding error. Thus $p_{30} = p_{31} = \cdots = 0$. Note that p_{15} is the most accurate approximation since $(p_{14}/2^{14})^2 \approx \sqrt{u}$.

The Kahan's version eliminates cancellation.