
SE3XO3/CS4X03 12F.1

Assignment 2

Due. Oct. 15, Monday, 11:30.

1. (12 marks) Write two Matlab or Octave functions:

[u,d,l] = decomt(u,d,l)
b = solvet(u,d,l,b)

Suppose a tridiagonal matrix is given in the form of three vectors: the upper diagonal u,
the main diagonal d, and the lower diagonal l, the first function decomt performs the LU
decomposition using the Gaussian elimination without pivoting. In the output, l is the lower
diagonal of the lower bidiagonal factor L, d the main diagonal of the upper bidiagonal factor
U , and u the upper diagonal of the upper bidiagonal factor U . Note that the input vectors u,
d, and l are overwritten by the outputs. The second function solvet takes the outputs from
decomt as inputs and solves the tridiagonal system with the right-side vector b. On return, the
solution is stored in b. In your implementations, you may not use matrices. For submission,
along with the two functions decomt.m and solvet.m, explain the tests carried out. The
functions should be well documented following the style given in the sample programs.

2. (12 marks) This problem involves verifying two inequalities

‖b−Ax̂‖
‖A‖ ‖x̂‖

≤ ρ β−t

and
‖x− x̂‖
‖x̂‖

≤ ρ cond(A)β−t,

where x̂ is the solution computed by Gaussian elimination with partial pivoting, the norm of
any vector is

‖x‖ =
n∑

i=1

|xi|

and the norm of a matrix with columns aj is

‖A‖ = max
j

‖aj‖.

You are to experimentally check our claims that ρ in the first inequality is almost always
less than β and that the quantity cond returned by decomp is a satisfactory substitute for
cond(A) in the second inequality.

The function rand(m,n) generates an m-by-n matrix whose entries are uniformly distributed
between 0 and 1. Since the second inequality requires knowing the exact solution, pick x and
compute b = Ax. Note that due to rounding errors, the equality Ax = b may not be exact,
unless you make sure there is no rounding error in A, b, or x.

Use decomp to factor the matrix and compute cond. Use solve to compute x̂. Compute ‖A‖,
‖x̂‖, ‖b−Ax̂‖, and ‖x− x̂‖. Be sure to save copies of A and b, since they are altered by the
functions.

SE3XO3/CS4X03 12F.2

Compute ρ so that the first inequality is actually an equality. If you find that ρ is much larger
than β, carefully recheck your program. Large values of ρ are theoretically possible, but they
are very rare in practice. They are associated with growth in the size of the elements of the
matrix during elimination.

Using your value of ρ, check to see if the second inequality is satisfied with cond in place of
cond(A). If it is not, it is because cond is a severe underestimate for the true cond(A). Again,
such examples are very rare.

Do this problem with several different matrices, including ones with condition numbers close
to 1 and with very large condition numbers. Matrices with almost linearly dependent columns
have large condition numbers. Such a matrix can be constructed by starting with a matrix
with linearly dependent columns and then introducing small perturbations to its entries. For
example, the columns of the matrix

A =

 0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9

are linearly dependent. Thus A is exactly singular. However, the entries of A cannot be
exactly represented in floating-point. So, the floating-point approximation of A is nearly
singular, that is, it has a large condition number.

3. (6 marks) The inverse of a matrix A can be defined as the matrix X whose columns xj satisfy

Axj = ej ,

where ej is the jth column of the identity matrix. Write a function

[X, rcondA, pvt] = invert(A)

which accepts a matrix A of order n as input and returns a matrix X, an approximation to
the inverse of A, as well as the condition estimate and the pivot information. Your function
should call decomp just once and call solve a total of n times, once for each column of X.
Leave X as a null matrix (of dimension 0) if decomp detects singularity.

You may test your function using the measurement:

norm(X − inv(A), 1).

Note that inv(A) is an approximation of A−1 computed by MATLAB/Octave. The function
rand(m,n) generates an m-by-n matrix whose entries are uniformly distributed between 0
and 1.

