SE3X03/CS4X03 12F.1

Solution for Assignment 2

1. (12 marks) Write two Matlab or Octave functions:

[u,d,1] = decomt(u,d,l)
b solvet(u,d,1l,b)

Suppose a tridiagonal matrix is given in the form of three vectors: the upper diagonal u,
the main diagonal d, and the lower diagonal [, the first function decomt performs the LU
decomposition using the Gaussian elimination without pivoting. In the output, [ is the lower
diagonal of the lower bidiagonal factor L, d the main diagonal of the upper bidiagonal factor
U, and u the upper diagonal of the upper bidiagonal factor U. Note that the input vectors u,
d, and [ are overwritten by the outputs. The second function solvet takes the outputs from
decomt as inputs and solves the tridiagonal system with the right-side vector b. On return, the
solution is stored in b. In your implementations, you may not use matrices. For submission,
along with the two functions decomt.m and solvet.m, explain the tests carried out. The
functions should be well documented following the style given in the sample programs.

Solution. See decomt.m and solvet.m. A testing program

% script file: testsolvet.m

b

% testing decomt.m and solvet.m on random tridiagonal matrices

n = input(’matrix size: ’);

% random tridiagonal

u = rand(n-1, 1);
d = rand(n, 1);
1 = rand(n-1, 1);

% construct the rhs with solution ones(n, 1)
b = zeros(n, 1);
b(1) = d(1) + u(l);
for i = 2:n-1
b(i) = 1(i-1) + d(1) + u(i);
end
b(n) = 1(n-1) + d(n);

% LU decomposition

[u, d, 1] = decomt(u, d, 1);
% solve

b = solvet(u, 4, 1, b);

% check solution
norm(b - ones(n,1)),



SE3X03/CS4X03 12F.2

2. (12 marks) This problem involves verifying two inequalities

16— Az| —t
T < P8
Al

and
[l — 2]
1]l
where & is the solution computed by Gaussian elimination with partial pivoting, the norm of
any vector is

< peond(4)87",

n
x| =D fail
i=1

and the norm of a matrix with columns a; is

1A]l = max flaj].

You are to experimentally check our claims that p in the first inequality is almost always
less than (8 and that the quantity cond returned by decomp is a satisfactory substitute for
cond(A) in the second inequality.

The function rand(m,n) generates an m-by-n matrix whose entries are uniformly distributed
between 0 and 1. Since the second inequality requires knowing the exact solution, pick x and
compute b = Az. Note that due to rounding errors, the equality Az = b may not be exact,
unless you make sure there is no rounding error in A, b, or x.

Use decomp to factor the matrix and compute cond. Use solve to compute Z. Compute ||A]|,
lZ|l, [|b — AZ||, and ||z — Z||. Be sure to save copies of A and b, since they are altered by the
functions.

Compute p so that the first inequality is actually an equality. If you find that p is much larger
than (3, carefully recheck your program. Large values of p are theoretically possible, but they
are very rare in practice. They are associated with growth in the size of the elements of the
matrix during elimination.

Using your value of p, check to see if the second inequality is satisfied with cond in place of
cond(A). If it is not, it is because cond is a severe underestimate for the true cond(A4). Again,
such examples are very rare.

Do this problem with several different matrices, including ones with condition numbers close
to 1 and with very large condition numbers. Matrices with almost linearly dependent columns
have large condition numbers. Such a matrix can be constructed by starting with a matrix
with linearly dependent columns and then introducing small perturbations to its entries. For
example, the columns of the matrix

0.1 0.2 0.3
A=104 05 06
0.7 08 0.9

are linearly dependent. Thus A is exactly singular. However, the entries of A cannot be
exactly represented in floating-point. So, the floating-point approximation of A is nearly
singular, that is, it has a large condition number.



SE3X03/CS4X03 12F.3

Solution. See testerrors.m. This program first generates a random integer matrix, then
makes the matrix singular by setting the last column as a linear combination of the first two
columns. Then it constructs a small diagonal matrix whose diagonal entries are about the
reciprocal of the desired condition number. The small diagonal matrix is then added to the
singular matrix. The condition number of the perturbed matrix is expected to be about the
desired condition number. Note that the matrix is constructed so that its entries can be
exactly represented by double precision floating-point numbers. Then the right-hand side is
constructed so that the solution consists of all ones. Thus the right-hand side is computed
exactly. Consequently, the exact solution of the system is indeed the vector of ones.

3. (6 marks) The inverse of a matrix A can be defined as the matrix X whose columns x; satisfy
A.’E]’ = €y,
where e; is the jth column of the identity matrix. Write a function

[X, rcondA, pvt] = invert(A)

which accepts a matrix A of order n as input and returns a matrix X, an approximation to
the inverse of A, as well as the condition estimate and the pivot information. Your function
should call decomp just once and call solve a total of n times, once for each column of X.
Leave X as a null matrix (of dimension 0) if decomp detects singularity.

You may test your function using the measurement:
norm(X — inv(A),1).

Note that inv(A) is an approximation of A~! computed by MATLAB/Octave. The function
rand(m,n) generates an m-by-n matrix whose entries are uniformly distributed between 0
and 1.

Solution. See invert.m. A testing program:

% testing invert.m

=]
]

input (’matrix size: ’);

A

rand(n, n);

% compute the inverse
[X, rcond] = invert(A); % general matrix A

if (length(X(:,1)) == 0)
return;

end

% print condition number
1/rcond,

% residual



SE3X03/CS4X03 12F 4

norm(A*X - eye(n), 1), % error measurements
% actual error
norm(X - inv(A), 1), % actual error, against inv()

Note that the above testing program compares the computed inverse with the MATLAB
function inv(). A better way is to test on matrices with large condition numbers and whose
inverses are known.



