Solution for Assignment 3

1. (12 marks) The following figures from the Census Bureau give the population of the United States:

Year	Population
1900	$75,\!994,\!575$
1910	$91,\!972,\!266$
1920	$105,\!710,\!620$
1930	$122,\!775,\!046$
1940	$131,\!669,\!275$
1950	$150,\!697,\!361$
1960	$179,\!323,\!175$
1970	$203,\!235,\!298$

• Since there are eight points, there is a unique polynomial of degree 7 which interpolates the data. However, some of the ways of representing this polynomial are computationally more satisfactory than others. Here are four possibilities, each with t ranging over the interval $1900 \le t \le 1970$:

$$\sum_{j=0}^{7} a_j t^j,$$

$$\sum_{j=0}^{7} b_j (t - 1900)^j,$$

$$\sum_{j=0}^{7} c_j (t - 1935)^j,$$

$$\sum_{j=0}^{7} d_j \left(\frac{t - 1935}{35}\right)^j$$

In each case, the coefficients are found by solving an 8-by-8 Vandermond system, but the matrices of various systems are quite different. Set up each of the four matrices, and find the estimate of its condition using Matlab/Octave function cond(). Then use Matlab/Octave operator "\" to find the coefficients. Check each of the representations to see how well it reproduces the original data.

• Interpolate the data by a 7th-degree polynomial, using the best conditioned representation found above, and by the natural cubic spline using ncspline.m. Graph the resulting functions at one-year intervals over the period from 1900 to 1980. Find the 1980 census data. Which approach gives more accurate prediction?

Solution: The condition numbers:

	model a	model b	model c	model d
cond	1.212e + 32	1.785e + 13	7.891e + 10	5.354e+2

Relative errors of the reproduced data by evaluating the polynomials using the Horner's rule:

	model a	model b	model c	model d
relative error	4.0 - 3	4.7e - 14	$2.3e{-16}$	4.2e - 16

Predictions for 1980:

	model d	spline	real
prediction	402.33 million	227.15 million	226.44 million

2. (12 marks) Modify QUADR so that it returns fcnt as the total number of function evaluations and minl as the length of the smallest panel which it uses. Then write a MATLAB/Octave program QUADS replacing the rectangle rule with the Simpson's rule. Run both programs on a fairly hard problem such as $f(x) = \sqrt{x}$. Compare the numbers of function evaluations and the lengths of the smallest panels.

Solution: See QUADRm.m, quadrrm.m, QUADS.m, and quadsr.m. For example, $f(x) = \sqrt{x}$ and tol = 0.0001,

	function evaluation count	min interval length
Rectangle	91	2^{-10}
Simpson's	37	2^{-9}