

Representable numbers

floating-point format numbers
are rational numbers with terminating expansion in base

Irrational numbers, such as π or √2, or non-terminating
rational numbers

==> must be approximated.

The number of digits (or bits) of precision also limits the set of
rational numbers that can be represented exactly.

For example, the number 123456789 clearly cannot be
exactly represented if only eight decimal digits of precision

are available.

Representable numbers cont'd
Whether or not a rational number has a terminating

expansion depends on the base.

In base-10:
 the number 1/2 has a terminating expansion (0.5)

 while the number 1/3 does not (0.333...).

In base-2:
 only rationals with denominators that are powers of 2 (such

as 1/2 or 3/16) are terminating.
Any rational with a denominator that has a prime factor other

than 2 will have an infinite binary expansion.

This means that numbers which appear to be short and exact
when written in decimal format may need to be approximated

when converted to binary floating-point.

Representable numbers cont'd
For example, the decimal number 0.1 is not representable in

binary floating-point of any finite precision;

the exact binary representation would have a "1100"
sequence continuing endlessly:

 e = −??; s = 1100110011001100110011001100110011...,

When rounded to 24 bits this becomes

 e = −27; s = 110011001100110011001101

which is actually 0.100000001490116119384765625 in
decimal.

Representable numbers cont'd

 π, represented in binary as an infinite series of bits is:
11.00100100001111110110101010001000100001011010001

10000100011010011...

approximated by 24 bits: 11.0010010000111111011011

binary single-precision floating-point,
s=110010010000111111011011 with e = −22.

Decimal: 3.1415927410125732421875,

Accurate approximation of the true value of π is:
 3.1415926535897932384626433832795...

Floating-point arithmetic addition
and subtraction

A simple method to add floating-point numbers is to
 represent them with the same exponent:

 123456.7 = 1.234567 * 10^5
 101.7654 = 1.017654 * 10^2 = 0.001017654 * 10^5

 Hence:
 123456.7 + 101.7654 = (1.234567 * 10^5) + (1.017654 * 10^2)
 = (1.234567 * 10^5) + (0.001017654 * 10^5)
 = (1.234567 + 0.001017654) * 10^5
 = 1.235584654 * 10^5

Floating-point arithmetic addition
and subtraction cont'd

 e=5; s=1.234567 (123456.7)
+ e=2; s=1.017654 (101.7654)

 e=5; s=1.234567
+ e=5; s=0.001017654 (after shifting)

 e=5; s=1.235584654 (true sum: 123558.4654)

It will be rounded to seven digits and then normalized if
necessary. The final result is
 e=5; s=1.235585 (final sum: 123558.5)

The low 3 digits of the second operand (654) are essentially
lost. This is round-off error.

Floating-point arithmetic addition
and subtraction cont'd

In extreme cases, the sum of two non-zero numbers may be
equal to one of them:

 e=5; s=1.234567
+ e=-3; s=9.876543

 e=5; s=1.234567
+ e=5; s=0.00000009876543 (after shifting)

 e=5; s=1.23456709876543 (true sum)
 e=5; s=1.234567 (after rounding/normalization)

Our Example

x = 0.0;
h = 0.1;
for i = 1:10
x = x + h;
end;
y = 1.0 - x;
x, y,

Our Example cont'd

>> clear
>> x = 0.0;
h = 0.1;
for i = 1:10
x = x + h;
end;
y = 1.0 - x;
>> x, y,
x = 1.0000
y = 1.1102e-16

Our Example cont'd
Roundoff error in each step of
for i = 1:10 x = x + h;

Since h = 0.1 is approximated itself the addition in
each step has some errors
==> The final x is not exactly 1.000000000000000

(y - x) can not be exact
it is also rounded.
==>
y = 1.0 - x;
>> x, y,
x = 1.0000
y = 1.1102e-16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

