
  

Representable numbers

floating-point format numbers
are rational numbers with terminating expansion in base 

Irrational numbers, such as π or √2, or non-terminating 
rational numbers

==> must be approximated. 

The number of digits (or bits) of precision also limits the set of 
rational numbers that can be represented exactly. 

For example, the number 123456789 clearly cannot be 
exactly represented if only eight decimal digits of precision 

are available.



  

Representable numbers cont'd
Whether or not a rational number has a terminating 

expansion depends on the base. 

In base-10:
 the number 1/2 has a terminating expansion (0.5)

 while the number 1/3 does not (0.333...). 

In base-2:
 only rationals with denominators that are powers of 2 (such 

as 1/2 or 3/16) are terminating. 
Any rational with a denominator that has a prime factor other 

than 2 will have an infinite binary expansion. 

This means that numbers which appear to be short and exact 
when written in decimal format may need to be approximated 

when converted to binary floating-point.



  

Representable numbers cont'd
For example, the decimal number 0.1 is not representable in 

binary floating-point of any finite precision; 

the exact binary representation would have a "1100" 
sequence continuing endlessly:

    e = −??; s = 1100110011001100110011001100110011...,

When rounded to 24 bits this becomes

    e = −27; s = 110011001100110011001101

which is actually 0.100000001490116119384765625 in 
decimal.



  

Representable numbers cont'd

 π, represented in binary as an infinite series of bits is:    
11.00100100001111110110101010001000100001011010001

10000100011010011...

approximated by  24 bits:     11.0010010000111111011011

binary single-precision floating-point,  
s=110010010000111111011011 with e = −22. 

Decimal:    3.1415927410125732421875,

Accurate approximation of the true value of π is:
    3.1415926535897932384626433832795... 



  

Floating-point arithmetic addition 
and subtraction

A simple method to add floating-point numbers is to 
 represent them with the same exponent:

  123456.7 = 1.234567 * 10^5
  101.7654 = 1.017654 * 10^2 = 0.001017654 * 10^5
  
  Hence:
  123456.7 + 101.7654 = (1.234567 * 10^5) + (1.017654 * 10^2)
                      = (1.234567 * 10^5) + (0.001017654 * 10^5)
                      = (1.234567 + 0.001017654) * 10^5
                      =  1.235584654 * 10^5



  

Floating-point arithmetic addition 
and subtraction cont'd

  e=5;  s=1.234567     (123456.7)
+ e=2;  s=1.017654     (101.7654)

  e=5;  s=1.234567
+ e=5;  s=0.001017654  (after shifting)
--------------------
  e=5;  s=1.235584654  (true sum: 123558.4654)

It will be rounded to seven digits and then normalized if 
necessary. The final result is
  e=5;  s=1.235585    (final sum: 123558.5)

The low 3 digits of the second operand (654) are essentially 
lost. This is round-off error.



  

Floating-point arithmetic addition 
and subtraction cont'd

In extreme cases, the sum of two non-zero numbers may be 
equal to one of them:

  e=5;  s=1.234567
+ e=-3; s=9.876543

  e=5;  s=1.234567
+ e=5;  s=0.00000009876543 (after shifting)
----------------------
  e=5;  s=1.23456709876543 (true sum)
  e=5;  s=1.234567         (after rounding/normalization)



  

Our Example

x = 0.0;
h = 0.1;
for i = 1:10
x = x + h;
end;
y = 1.0 - x;
x, y,



  

Our Example cont'd

>> clear
>> x = 0.0;
h = 0.1;
for i = 1:10
x = x + h;
end;
y = 1.0 - x;
>> x, y,
x = 1.0000
y = 1.1102e-16



  

Our Example cont'd
Roundoff error in each step of 
for i = 1:10  x = x + h;

Since h = 0.1 is approximated itself the addition in 
each step has some errors
==> The final x is not exactly 1.000000000000000

(y - x) can not be exact
it is also rounded.
==> 
y = 1.0 - x;
>> x, y,
x = 1.0000
y = 1.1102e-16
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