Elements of Floating-point Arithmetic

Sanzheng Qiao

Department of Computing and Software McMaster University

July, 2012

Outline

Floating-point Numbers

- Representations
- IEEE Floating-point Standards
- Underflow and Overflow
- Correctly Rounded Operations

2 Sources of Errors

- Rounding Error
- Truncation Error
- Discretization Error
- Stability of an Algorithm
 - Sensitivity of a Problem

5 Fallacies

Representing floating-point numbers

On paper we write a floating-point number in the format:

 $\pm d_1.d_2\cdots d_t \times \beta^e$

- $0 < d_1 < \beta, \, 0 \le d_i < \beta \; (i > 1)$
 - t: precision
 - β: base (or radix), almost universally 2, other commonly used bases are 10 and 16
 - e: exponent, integer

Examples

1.00 × 10⁻¹ t = 3 (trailing zeros count), $\beta = 10$, e = -11.234 × 10² t = 4, $\beta = 10$, e = 21.10011 × 2⁻⁴ t = 6, $\beta = 2$ (binary), e = -4

Characteristics

A floating-point number system is characterized by four (integer) parameters:

- base β (also called radix)
- precision t
- exponent range $e_{min} \le e \le e_{max}$

Some properties

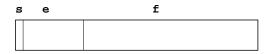
A floating-point number system is

- discrete (not continuous)
- not equally spaced throughout
- finite

Example. The 33 points in a small system: $\beta = 2$, t = 3, $e_{min} = -1$, and $e_{max} = 2$. (Negative part not shown.)

In general, how many numbers in a system: β , t, e_{min} , e_{max} ?

In memory, a floating-point number is stored in three consecutive fields:



sign (1 bit) exponent (depends on the range) fraction (depends on the precision)

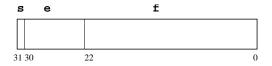
Standards

In order for a memory representation to be useful, there must be a standard.

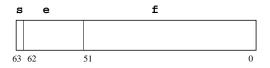
Summary

IEEE floating-point standards:

single precision



double precision



Machine precision

A real number representing the accuracy.

Machine precision

Denoted by ϵ_M , defined as the distance between 1.0 and the next larger floating-point number, which is $0.0...01 \times \beta^0$.

Thus, $\epsilon_M = \beta^{1-t}$.

Equivalently, the distance between two consecutive floating-point numbers between 1.0 and β . (The floating-point numbers between 1.0(= β^{0}) and β are equally spaced: 1.0...000, 1.0...001, 1.0...010, ..., 1.1...111.)

Machine precision (cont.)

How would you compute the underlying machine precision?

```
The smallest \epsilon such that 1.0 + \epsilon > 1.0.
```

For $\beta = 2$:

```
eps = 1.0;
while (1.0 + eps > 1.0)
        eps = eps/2;
end
2*eps,
```

```
Examples. (\beta = 2)
When t = 24, \epsilon_M = 2^{-23} \approx 1.2 \times 10^{-7}
When t = 53, \epsilon_M = 2^{-52} \approx 2.2 \times 10^{-16}
```

Approximations of real numbers

Since floating-point numbers are discrete, a real number, for example, $\sqrt{2}$, may not be representable in floating-point. Thus real numbers are approximated by floating-point numbers.

We denote

 $\mathrm{fl}(\mathbf{x}) \approx \mathbf{x}.$

as a floating-point approximation of a real number x.

Approximations of real numbers (cont.)

Example

The floating-point number 1.10011001100110011001101 \times 2⁻⁴ can be used to approximate 1.0 \times 10⁻¹. The best single precision approximation of decimal 0.1.

 1.0×10^{-1} is not representable in binary. (Try to convert decimal 0.1 into binary.)

When approximating, some kind of rounding is involved.

Error measurements: ulp and *u*

If the nearest rounding is applied and $fl(x) = d_1.d_2...d_t \times \beta^e$, then the absolute error is bounded by

$$|\mathrm{fl}(\mathbf{x}) - \mathbf{x}| \leq \frac{1}{2} \beta^{1-t} \beta^{\mathsf{e}},$$

half of the unit in the last place (ulp);

the relative error is bounded by

$$\frac{|\mathrm{fl}(x)-x|}{|\mathrm{fl}(x)|} \leq \frac{1}{2}\beta^{1-t}, \text{ since } |\mathrm{fl}(x)| \geq 1.0 \times \beta^{e},$$

called the *unit of roundoff* denoted by *u*.

Unit of roundoff u

When $\beta = 2$, $u = 2^{-t}$. How would you compute *u*?

The largest number such that 1.0 + u = 1.0. Also, when $\beta = 2$, the distance between two consecutive floating-point numbers between $1/2(=\beta^{-1})$ and $1.0(=\beta^{0})$ $(1.0...0 \times 2^{-1}, ..., 1.1...1 \times 2^{-1}, 1.0.)$ $1.0 + 2^{-t} = 1.0$ (Why?)

Four parameters

Base $\beta = 2$.

	single	double
precision t	24	53
e _{min}	-126	-1022
e _{max}	127	1023

Formats:

	single	double
Exponent width	8 bits	11 bits
Format width in bits	32 bits	64 bits

Hidden bit and biased representation

Since the base is 2 (binary), the integer bit is always 1. This bit is not stored and called *hidden bit*.

The exponent is stored using the biased representation. In single precision, the bias is 127. In double precision, the bias is 1023.

Example

Single precision 1.1001100110011001101 \times 2^{-4} is stored as

0 01111011 10011001100110011001101

Special quantities

The special quantities are encoded with exponents of either $e_{max} + 1$ or $e_{min} - 1$. In single precision, 11111111 in the exponent field encodes $e_{max} + 1$ and 00000000 in the exponent field encodes $e_{min} - 1$.

Signed zeros: ± 0

Binary representation:

- - When testing for equal, +0 = -0, so the simple test if (x == 0) is predictable whether x is +0 or -0.

Infinities

Infinities: $\pm\infty$

Binary Representation:

x 11111111 000000000000000000000000

- Provide a way to continue when exponent gets too large, $x^2 = \infty$, when x^2 overflows.
- When $c \neq 0$, $c/0 = \pm \infty$.
- Avoid special case checking, 1/(x + 1/x), a better formula for $x/(x^2 + 1)$, with infinities, there is no need for checking the special case x = 0.

NaN

NaNs (not a number)

Binary representation:

X 11111111 nonzero fraction

Provide a way to continue in situations like

Operation	NaN Produced By	
+	$\infty + (-\infty)$	
*	$0 * \infty$	
/	0/0, ∞/∞	
REM	$x \text{ REM 0}, \infty \text{ REM } y$	
sqrt	sqrt(x) when $x < 0$	

Example for NaN

The function zero(f) returns a zero of a given quadratic polynomial f.

lf

$$f = x^2 + x + 1,$$

 $d = 1 - 4 < 0$, thus $\sqrt{d} = NaN$ and
 $rac{-b \pm \sqrt{d}}{2a} = NaN,$

no zeros.

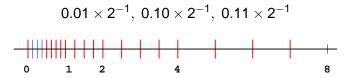
Denormalized numbers

Denormalized Numbers

The small system:
$$\beta = 2$$
, $t = 3$, $e_{min} = -1$, $e_{max} = 2$

Without denormalized numbers (negative part not shown)

With (six) denormalized numbers (negative part not shown)



Denormalized numbers

Binary representation:

X 00000000 nonzero fraction

When $e = e_{\min} - 1$ and the bits in the fraction are $b_2, b_3, ..., b_t$, the number being represented is $0.b_2b_3...b_t \times 2^{e+1}$ (no hidden bit)

- Guarantee the relation: $x = y \iff x y = 0$
- Allow gradual underflow. Without denormals, the spacing abruptly changes from $\beta^{-t+1}\beta^{e_{\min}}$ to $\beta^{e_{\min}}$, which is a factor of β^{t-1} .

IEEE floating-point representations

Fraction	Represents
<i>f</i> = 0	±0
f eq 0	$0.f imes 2^{e_{\min}}$
	$1.f imes 2^{e}$
<i>f</i> = 0	$\pm\infty$
f eq 0	NaN
	$egin{array}{c} f=0\ f eq 0 \end{array}$

Examples (IEEE single precision)

Underflow

An arithmetic operation produces a number with an exponent that is too small to be represented in the system.

Example. In single precision,

$$a = 3.0 \times 10^{-30},$$

a * *a* underflows. By default, it is set to zero.

Avoiding unnecessary underflow and overflow

Sometimes, underflow and overflow can be avoided by using a technique called scaling.

Given
$$x = (a, b)^{T}$$
, $a = 1.0 \times 10^{30}$, $b = 1.0$, compute
 $c = ||x||_{2} = \sqrt{a^{2} + b^{2}}$.
scaling: $s = \max\{|a|, |b|\} = 1.0 \times 10^{30}$
 $a \leftarrow a/s (1.0)$,
 $b \leftarrow b/s (1.0 \times 10^{-30})$
 $t = \sqrt{a * a + b * b} (1.0)$
 $c \leftarrow t * s (1.0 \times 10^{30})$

Example: Computing 2-norm of a vector

Compute

$$\sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$

Efficient and robust:

Avoid multiple loops:

searching for the largest; Scaling; Summing.

Result: One single loop

Technique: Dynamic scaling

Example: Computing 2-norm of a vector

```
scale = 0.0i
ssq = 1.0;
for i=1 to n
   if (x(i) != 0.0)
      if (scale<abs(x(i))
         tmp = scale/x(i);
         ssq = 1.0 + ssq*tmp*tmp;
         scale = abs(x(i));
      else
         tmp = x(i)/scale;
         ssq = ssq + tmp*tmp;
      end
   end
end
nrm2 = scale*sqrt(ssq);
```

Correctly rounded operations

Correctly rounded means that result must be the same as if it were computed exactly and then rounded, usually to the nearest floating-point number. For example, if \oplus denotes the floating-point addition, then given two floating-point numbers *a* and *b*,

$$a \oplus b = \mathrm{fl}(a+b).$$

Example $\beta = 10, t = 4$ $a = 1.234 \times 10^{0}$ and $b = 5.678 \times 10^{-3}$ Exact: a + b = 1.239678Floating-point: fl(a + b) = 1.240 × 10⁰

Correctly rounded operations

IEEE standards require the following operations are correctly rounded:

- arithmetic operations +, -, *, and /
- square root and remainder
- conversions of formats (binary, decimal)

Rounding error

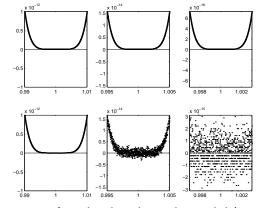
Due to finite precision arithmetic, a computed result must be rounded to fit storage format.

Example $\beta = 10, p = 4 (u = 0.5 \times 10^{-3})$ $a = 1.234 \times 10^{0}, b = 5.678 \times 10^{-3}$ $x = a + b = 1.239678 \times 10^{0}$ (exact) $\hat{x} = fl(a + b) = 1.240 \times 10^{0}$ the result was rounded to the nearest computer number. Rounding error: $fl(a + b) = (a + b)(1 + \epsilon), |\epsilon| \le u$. $1.240 = 1.239678(1 + 2.59... \times 10^{-4}), |2.59... \times 10^{-4}| < u$

Effect of rounding errors

Top:
$$y = (x - 1)^6$$

Bottom: $y = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 7$



Two ways of evaluating the polynomial $(x - 1)^6$

Real to floating-point

double x = 0.1;

What is the value of x stored?

 $1.0\times 10^{-1} = 1.100110011001100110011...\times 2^{-4}$

Decimal 0.1 cannot be exactly represented in binary. It must be rounded to

1.10011001100...110011010 × 2⁻⁴ > 1.10011001100...11001100110011...

slightly larger than 0.1.

Real to floating-point

```
double x, y, h;
x = 0.0;
h = 0.1;
for i=1 to 10
    x = x + h;
end
y = 1.0 - x;
```

$$y > 0$$
 or $y < 0$ or $y = 0$?

Answer: $y \approx 1.1 \times 10^{-16} > 0$

Real to floating-point (cont.)

Why?

$$i = 1$$

$$x = h = 1.100...110011010 \times 2^{-4} > 1.0 \times 10^{-1}$$

$$i = 2$$

$$x = 1.100...110011010 \times 2^{-3} > 2.0 \times 10^{-1}$$

$$i = 3$$

$$x = 1.001...1001100110 \times 2^{-2}$$

$$\rightarrow 1.001...10100 \times 2^{-2} > 3.0 \times 10^{-1}$$

$$i = 4$$

$$x = 1.100...110011010 \times 2^{-2}$$

$$\rightarrow 1.100...110011010 \times 2^{-2} > 4.0 \times 10^{-1}$$

Floating-point Numbers Sources of Errors

Real to floating-point (cont.)

$$i = 5$$

$$x = 1.000...0000010 \times 2^{-1}$$

$$\rightarrow 1.000...0000 \times 2^{-1} = 5.0 \times 10^{-1}$$

$$i = 6$$

$$x = 1.001...100110011010 \times 2^{-1}$$

$$\rightarrow 1.001...100110011 \times 2^{-1} < 6.0 \times 10^{-1}$$

$$\vdots$$

Rounding errors in floating-point addition.

Truncation error

When an infinite series is approximated by a finite sum, truncation error is introduced.

Example. If we use

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

to approximate

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots,$$

then the truncation error is

$$\frac{x^{n+1}}{(n+1)!} + \frac{x^{n+2}}{(n+2)!} + \cdots$$

Discretization error

When a continuous problem is approximated by a discrete one, discretization error is introduced. Example. From the expansion

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\xi),$$

for some $\xi \in [x, x + h]$, we can use the following approximation:

$$y_h(x) = rac{f(x+h)-f(x)}{h} \approx f'(x).$$

The discretization error is $E_{dis} = |f''(\xi)|h/2$.

Example

Let $f(x) = e^x$, compute $y_h(1)$. The discretization error is

$$E_{\mathrm{dis}} = rac{h}{2} |f''(\xi)| \leq rac{h}{2} \mathrm{e}^{1+h} pprox rac{h}{2} \mathrm{e}$$
 for small h .

The computed $y_h(1)$:

$$\widehat{y}_h(1) = \frac{(e^{(1+h)(1+\epsilon_1)}(1+\epsilon_2) - e(1+\epsilon_3))(1+\epsilon_4)}{h}(1+\epsilon_5),$$

 $|\epsilon_i| \leq u$. The rounding error is

$$m{E}_{ ext{round}} = \widehat{y}_h(1) - y_h(1) pprox rac{7u}{h} \mathbf{e}.$$

Example (cont.)

The total error:

$$E_{\text{total}} = E_{\text{dis}} + E_{\text{round}} \approx \left(\frac{h}{2} + \frac{7u}{h}\right) \text{e.}$$

$$\int_{\frac{1}{2}}^{\frac{1}{2}} \int_{\frac{1}{2}}^{\frac{1}{2}} \int_{\frac{1}{2}}$$

The optimal *h*: $h_{\rm opt} = \sqrt{12u} \approx \sqrt{u}$.

Backward errors

Recall that

$$\boldsymbol{a} \oplus \boldsymbol{b} = \mathrm{fl}(\boldsymbol{a} + \boldsymbol{b}) = (\boldsymbol{a} + \boldsymbol{b})(1 + \eta), \quad |\eta| \leq u$$

In other words,

$$\pmb{a} \oplus \pmb{b} = ilde{\pmb{a}} + ilde{\pmb{b}}$$

where $\tilde{a} = a(1 + \eta)$ and $\tilde{b} = b(1 + \eta)$, for $|\eta| \le u$, are slightly different from *a* and *b* respectively.

The computed sum (result) is the exact sum of slightly different *a* and *b* (inputs).

Example

$$\begin{split} \beta &= 10, \, p = 4 \, (u = 0.5 \times 10^{-3}) \\ a &= 1.234 \times 10^{0}, \, b = 5.678 \times 10^{-3} \\ a \oplus b &= 1.240 \times 10^{0}, \, a + b = 1.239678 \\ 1.240 &= 1.239678(1 + 2.59... \times 10^{-4}), \, |2.59... \times 10^{-4}| < u \\ 1.240 &= a(1 + 2.59... \times 10^{-4}) + b(1 + 2.59... \times 10^{-4}) \end{split}$$

The computed sum (result) is the exact sum of slightly different *a* and *b* (inputs).

Example

Example: a + b a = 1.23, b = 0.45, s = a + b = 1.68Slightly perturbed $\hat{a} = a(1 + 0.01), \hat{b} = b(1 + 0.001), \hat{s} = \hat{a} + \hat{b} = 1.69275$ Relative perturbations in data (*a* and *b*) are at most 0.01.

Causing a relative change in the result $|\hat{s} - s|/|s| \approx 0.0076$, which is about the same as the perturbation 0.01

The result is insensitive to the perturbation in data.

Example (cont.)

$$a = 1.23, b = -1.21, s = a + b = 0.02$$

Slightly perturbed $\hat{a} = a(1 + 0.01), \ \hat{b} = b(1 + 0.001), \ \hat{s} = \hat{a} + \hat{b} = 0.03109$

Relative perturbations in data (*a* and *b*) are at most 0.01. Causing a relative change in the result $|\hat{s} - s|/|s| \approx 0.5545$, which is more than 55 times as the perturbation 0.01

The result is sensitive to the perturbation in the data.

Compute the integrals

$$E_n = \int_0^1 x^n e^{x-1} dx, \qquad n = 1, 2,$$

Using integration by parts,

$$\int_0^1 x^n e^{x-1} dx = x^n e^{x-1} |_0^1 - \int_0^1 n x^{n-1} e^{x-1} dx,$$

or

$$E_n = 1 - nE_{n-1}, \qquad n = 2, ...,$$

where $E_1 = 1/e$.

$$E_n = 1 - nE_{n-1}$$

Double precision

$E_1 pprox 0.3679$	$E_7 pprox 0.1124$	$E_{13}pprox 0.0669$
$E_2 pprox 0.2642$	$E_8 pprox 0.1009$	$E_{14} pprox 0.0627$
$E_3 pprox 0.2073$	$E_9pprox 0.0916$	$E_{15}pprox 0.0590$
$E_4 pprox 0.1709$	$E_{10} pprox 0.0839$	$E_{16}pprox 0.0555$
$E_5 pprox 0.1455$	$E_{11} \approx 0.0774$	$E_{17}pprox 0.0572$
$E_6 pprox 0.1268$	$E_{12} \approx 0.0718$	$E_{18} \approx -0.0295$

Apparently, $E_{18} > 0$.

Unstable algorithm or ill-conditioned problem?

$$E_n = 1 - nE_{n-1}$$

Perturbation analysis. Suppose that we perturb E_1 :

$$\tilde{E}_1 = E_1 + \epsilon,$$

then $\tilde{E}_2 = 1 - 2\tilde{E}_1 = E_2 - 2\epsilon$. In general,

$$\tilde{E}_n = E_n - n! \epsilon.$$

Thus this problem is ill-conditioned.

We can show that this algorithm is backward stable.

$$E_{n-1} = (1 - E_n)/n$$

Note that E_n goes to zero as *n* goes to ∞ .
Start with $E_{40} = 0.0$

$E_{35} \approx 0.0270$	$E_{29}pprox 0.0323$	$E_{23} pprox 0.0401$
$E_{34} pprox 0.0278$	$E_{28}pprox 0.0334$	$E_{22} pprox 0.0417$
$E_{33} \approx 0.0286$	$E_{27}pprox 0.0345$	$E_{21} pprox 0.0436$
$E_{32} pprox 0.0294$	$E_{26}pprox 0.0358$	$E_{20} pprox 0.0455$
$E_{31} \approx 0.0303$	$E_{25}pprox 0.0371$	$E_{19}pprox 0.0477$
$E_{30} pprox 0.0313$	$E_{24}pprox 0.0385$	$E_{18}pprox 0.0501$

$$E_{n-1}=(1-E_n)/n$$

Perturbation analysis. Suppose that we perturb E_n :

$$\tilde{E}_n = E_n + \epsilon,$$

then
$$\tilde{E}_{n-1} = E_{n-1} - \epsilon/n$$
.
In general,

$$\tilde{E}_k = E_k + \epsilon_k, \quad |\epsilon_k| = \frac{\epsilon}{n(n-1)...(k+1)}.$$

Thus this problem is well-conditioned.

Note that we view these two methods as two different problems, since they have different inputs and outputs.

Example myexp

Using the Taylor series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots,$$

we write a function myexp:

```
oldy = 0.0;
y = 1.0;
term = 1.0;
k = 1;
while (oldy ~= y)
    term = term*(x/k);
    oldy = y;
    y = y + term;
    k = k + 1;
end
```


About the stopping criterion

- When x is negative, the terms have alternating signs, then it is guaranteed that the truncation error is smaller then the last term in the program.
- When x is positive, all the terms are positive, then it is not guaranteed that the truncation error is smaller than the last term in the program. For example, when x = 678.9, the last two digits of the computed result are inaccurate.

Example myexp

When x = -7.8

-

k	sum	term
1	1.00000000000000E+0	-7.80000000000E+0
:		
10	-1.322784174621715E+2	2.29711635560962E+2
11	9.743321809879086E+1	-1.62886432488682E+2
12	-6.545321438989151E+1	1.05876181117643E+2
:		

k	sum	term
26	1.092489579672046E-4	3.88007967049995E-04
÷		
49	4.097349789682480E-4	-8.48263272621995E-20
50	4.097349789682479E-4	1.32329070529031E-20

The MATLAB result:

 $4.097349789797868\mathrm{E}-4$

Example myexp

An explanation

When k = 10, the absolute value of the intermediate sum reaches the maximum, about 10^{+2} , that is, the ulp is about 10^{-13} . After that, cancellation occurs, so the final result is about 10^{-4} . We expect the error in the final result is 10^{-13} , in other words, ten digit accuracy.

Cancellation magnifies the relative error.

An accurate method.

Break *x* into the integer part *m* and the fraction part *f*. Compute e^m using multiplications, then compute e^f when -1 < f < 0 or $1/e^{-f}$ when 0 < f < 1.

Using this method, the computed $e^{-7.8}$ is

 $4.097349789797864\mathrm{E}-4$

A classic example of avoiding cancellation

Solving quadratic equation

$$ax^2 + bx + c = 0$$

Text book formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Computational method:

$$x_1 = \frac{2c}{-b - \operatorname{sign}(b)\sqrt{b^2 - 4ac}}, \quad x_2 = \frac{c}{ax_1}$$

Fallacies

- Cancellation in the subtraction of two nearly equal numbers is always bad.
- The final computed answer from an algorithm cannot be more accurate than any of the intermediate quantities, that is, errors cannot cancel.
- Arithmetic much more precise than the data it operates upon is needless and wasteful.
- Classical formulas taught in school and found in handbooks and software must have passed the Test of Time, not merely withstood it.

Summary

- A computer number system is determined by four parameters: Base, precision, *e*_{min}, and *e*_{max}
- IEEE floating-point standards, single precision and double precision. Special quantities: Denormals, ±∞, NaN, ±0, and their binary representations.
- Error measurements: Absolute and relative errors, unit of roundoff, unit in the last place (ulp)
- Sources of errors: Rounding error (computational error), truncation error (mathematical error), discretization error (mathematical error). Total error (combination of rounding error and mathematical errors)
- Issues in floating-point computation: Overflow, underflow, cancellations (benign and catastrophic)
- Error analysis: Forward and backward errors, sensitivity of a problem and stability of an algorithm

References

- [1] George E. Forsyth and Michael A. Malcolm and Cleve B. Moler. Computer Methods for Mathematical Computations. Prentice-Hall, Inc., 1977. Ch 2.
- [2] David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, vol. 23, no. 1, 1991, 5–48.
- [3] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second Edition. SIAM. Philadelphia, PA, 2002. Ch 1, Ch2.