Adaptive Quadrature

Jingjing Huang

October 31, 2012
Introduction
Motivation
Error Estimation
Adaptive Quadrature
Recall:

\[I(f) = \int_a^b f(x) \, dx \]

Partition

\[a = x_1 < x_2 < \ldots < x_{n+1} = b \]

and denote \(h_i = x_{i+1} - x_i \), then

\[I(f) = \sum_{i=1}^n l_i \]

where,

\[l_i = \int_{x_i}^{x_{i+1}} f(x) \, dx \]
Error In Rectangle Rule

Recall: Taylor expansion \(f(x) \) about the midpoint \(y_i = \frac{x_i + x_{i+1}}{2} \)
(in fact, we can expand it at any points within a small neighborhood, the midpoint is a special case.) :

\[
f(x) = f(y_i) + \sum_{p=1}^{\infty} \frac{(x-y_i)^p}{p!} f^{(p)}(y_i).
\]

Integrate the both sides and notes that

\[
\int_{x_i}^{x_{i+1}} (x - y_i)^p \, dx = \begin{cases}
\frac{h_i^{p+1}}{(p+1)^{2p}} & \text{if } p \text{ is even} \\
0 & \text{if } p \text{ is odd}
\end{cases}
\]

Why?
Error In Rectangle Rule

Recall: \(h_i = x_{i+1} - x_i \), then:

\[
\int_{x_i}^{x_{i+1}} f(x) \, dx = h_i f(y_i) + \frac{1}{24} h_i^3 f''(y_i) + \frac{1}{1920} h_i^5 f^{(4)}(y_i) + \cdots
\]

Then

\[
R_i(f) = l_i(f) - \frac{1}{24} h_i^3 f''(y_i) - \frac{1}{1920} h_i^5 f^{(4)}(y_i) + \cdots
\]
Rectangle Rule

Function evaluation: \(n \)
Error in Trapezoid Rule

Recall: $h_i = x_{i+1} - x_i$, then:

$$
\int_{x_i}^{x_{i+1}} f(x) \, dx = h_i \frac{f(x_i) + f(x_{i+1})}{2} - \frac{1}{12} h_i^3 f''(y_i) - \frac{1}{480} h_i^5 f^{(4)}(y_i) + \cdots
$$

Then

$$
T_i(f) = I_i(f) + \frac{1}{12} h_i^3 f''(y_i) + \frac{1}{480} h_i^5 f^{(4)}(y_i) + \cdots
$$
Trapezoid Rule

Function evaluation: \(n + 1 \)
Simpson’s Rule

Recall: the Rectangle Rule and Trapezoid Rule

\[R_i(f) = I_i(f) - \frac{1}{24} h_i^3 f''(y_i) - \frac{1}{1920} h_i^5 f^{(4)}(y_i) + \cdots \]

\[T_i(f) = I_i(f) + \frac{1}{12} h_i^3 f''(y_i) + \frac{1}{480} h_i^5 f^{(4)}(y_i) + \cdots \]

Then a more accurate method by combing two together

\[S_i(f) = \frac{2}{3} R_i(f) + \frac{1}{3} T_i(f) \]

\[= I_i(f) + \frac{1}{2880} h_i^5 f^{(4)}(y_i) + \cdots \]

\[\underbrace{\text{Error}} \]
Simpson’s Rule

In a few steps, we can get:

\[S_i(f) = \frac{2}{3} R_i(f) + \frac{1}{3} T_i(f) \]

\[= \frac{1}{6} h_i [f(x_i) + 4f(\frac{x_i + x_{i+1}}{2}) + f(x_{i+1})] \]

Function evaluation: \(2n + 1 \)
Adaptive Quadrature

- What is an adaptive quadrature?

Definition

Given a predetermined tolerance ϵ, the algorithm automatically determines the panel size so that the computed approximation Q satisfies

$$|Q - \int_a^b f(x)dx| < \epsilon$$
Adaptive Quadrature using Rectangle Rule

How to determine the tolerance \(\epsilon_i \) in subinterval \(i \)?
Adaptive Quadrature using Rectangle Rule

How to determine the tolerance ϵ_i in subinterval i?
How to determine the tolerance ϵ_i in subinterval i?

$\epsilon_i = \frac{h_i}{b-a} \epsilon$

How to evaluate ϵ_i in the approximation function?
How to determine the tolerance ϵ_i in subinterval i?

\[\epsilon_i = \frac{h_i}{b-a} \epsilon \]

How to evaluate ϵ_i in the approximation function?
Error Estimation in Rectangle Rule

- \(R_i(f) = l_i(f) - \frac{1}{24} h_i^3 f''(y_i) - \frac{1}{1920} h_i^5 f^{(4)}(y_i) + \cdots \), then

\[
R_i(f) - l_i(f) \approx \frac{1}{24} h_i^3 f''(y_i)
\]

When \(h_i \) is small.

- Are we going to calculate \(f''(y_i) \)?
Error Estimation in Rectangle Rule

- \(R_i(f) = I_i(f) - \frac{1}{24} h_i^3 f''(y_i) - \frac{1}{1920} h_i^5 f^{(4)}(y_i) + \cdots \), then

\[
R_i(f) - I_i(f) \approx \frac{1}{24} h_i^3 f''(y_i)
\]

When \(h_i \) is small.

- Are we going to calculate \(f''(y_i) \)?
Error Estimation in Rectangle Rule

- Are we going to calculate $f''(y_i)$?

Error $\approx 1/3$ of deference between two iterations

When h_i is small and $f(x)$ is continuous.

Why?
Error Estimation in Rectangle Rule

Are we going to calculate $f''(y_i)$?

Error $\approx \frac{1}{3}$ of deference between two iterations

When h_i is small and $f(x)$ is continuous.

Why?
Error Estimation in Simpson’s Rule

\[S_i(f) = l_i(f) + \frac{1}{2880} h_i^5 f^{(4)}(y_i) + \cdots \]

\[R_i(f) - l_i(f) \approx \frac{1}{2880} h_i^5 f^{(4)}(y_i) \]

Error Estimation

\[\text{Error} \approx \frac{1}{15} \text{ of deference between two iterations} \]

When \(h_i \) is small and \(f(x) \) is continuous.
Error Estimation in Simpson’s Rule

\[S_i(f) = I_i(f) + \frac{1}{2880} h_i^5 f^{(4)}(y_i) + \cdots \]

\[R_i(f) - I_i(f) \approx \frac{1}{2880} h_i^5 f^{(4)}(y_i) \]

Error Estimation

Error \approx \frac{1}{15} of deference between two iterations

When \(h_i \) is small and \(f(x) \) is continuous.
Adaptive Quadrature
Adaptive Quadrature
Adaptive Quadrature
Adaptive Quadrature

Legend
- converged interval
- minimum width interval

Function: [Select Function]
Interval: [Select Interval]
Tolerance: [-2]

Select interval
- Calculate
- Subdivide if necessary

>> Next >>

Reset

Default Interval Selection
- Depth First
- Breadth First

T = 5.552285
M = Q = 0.000000
Adaptive Quadrature

Legend
- converged interval
- minimum width interval

Function:
Interval:
Tolerance: -2

Select interval
Calculate
Subdivide if necessary

>> Next >>

Default Interval Selection
- Depth First
- Breadth First

$T = 1.552285$
$M = Q = 0.000000$
Adaptive Quadrature
But...
Adaptive Quadrature

Legend:
- converged interval
- minimum width interval

Function:
Interval:
Tolerance: -3

Select interval:
- Calculate
- Subdivide if necessary

Default Interval Selection:
- Depth First
- Breadth First

$T = \text{value}$
$M = \text{value}$
$|T - M| = \text{value}$

$I = 1.000000$
$Q = 0.000000$
Adaptive Quadrature
Thanks