Interpolation

• Construct a function crosses known points
• Predict the value of unknown points
Interpolation in modeling
Interpolation

• Polynomial Interpolation
 – Same polynomial for all points
 – Vandermonde Matrix, ill-conditioned

• Lagrange Form
 – Hard to evaluate

• Piecewise Interpolation
 – Different polynomials for each interval
Lagrange form

Given \(k+1 \) points

\((x_0, y_0), \ldots, (x_j, y_j), \ldots, (x_k, y_k)\)

Define:

\[
L(x) := \sum_{j=0}^{k} y_j \ell_j(x)
\]

where

\[
\ell_j(x) := \prod_{0 \leq m \leq k \atop m \neq j} \frac{x - x_m}{x_j - x_m} = \frac{(x - x_0)}{(x_j - x_0)} \cdots \frac{(x - x_{j-1})}{(x_j - x_{j-1})} \frac{(x - x_{j+1})}{(x_j - x_{j+1})} \cdots \frac{(x - x_k)}{(x_j - x_k)}.
\]
Lagrange form

\[\ell_j(x_i) = \delta_{ji} = \begin{cases} 1, & \text{if } j = i \\ 0, & \text{if } j \neq i \end{cases} \]

\[L(x_i) = \sum_{j=0}^{k} y_j \ell_j(x_i) = \sum_{j=0}^{k} y_j \delta_{ji} = y_i. \]
Lagrange form

• Example: interpolate \(f(x) = x^2 \), for \(x = 1, 2, 3 \)

\[
x_0 = 1 \quad f(x_0) = 1 \\
x_1 = 2 \quad f(x_1) = 4 \\
x_2 = 3 \quad f(x_2) = 9.
\]

\[
L(x) = 1 \cdot \frac{x - 2}{1 - 2} \cdot \frac{x - 3}{1 - 3} + 4 \cdot \frac{x - 1}{2 - 1} \cdot \frac{x - 3}{2 - 3} + 9 \cdot \frac{x - 1}{3 - 1} \cdot \frac{x - 2}{3 - 2} = x^2.
\]
How to represent models

• Specify every point along a model?
 – Hard to get precise results
 – Too much data, too hard to work with generally

• Specify a model by a small number of “control points”
 – Known as a spline curve or just spline
Spline Interpolation

• For some cases, polynomials can lead to erroneous results because of round off error and overshoot.

• Alternative approach is to apply lower-order polynomials to subsets of data points. Such connecting polynomials are called spline functions.
Spline Interpolation Definition

- Given \(n+1 \) distinct knots \(x_i \) such that:
 \[
 x_0 < x_1 < \ldots < x_{n-1} < x_n,
 \]
 with \(n+1 \) knot values \(y_i \) find a spline function

\[
S(x) := \begin{cases}
 S_0(x) & x \in [x_0, x_1] \\
 S_1(x) & x \in [x_1, x_2] \\
 \vdots \\
 S_{n-1}(x) & x \in [x_{n-1}, x_n]
\end{cases}
\]

with each \(S_i(x) \) a polynomial of degree at most \(n \).
Tangent

- The derivative of a curve represents the tangent vector to the curve at some point.
(a) Linear spline
 – Derivatives are not continuous
 – Not smooth

(b) Quadratic spline
 – Continuous 1\(^{st}\) derivatives

(c) Cubic spline
 – Continuous 1\(^{st}\) & 2\(^{nd}\) derivatives
 – Smoother
• Why cubic?
 – Good enough for some cases
 – The degree is not too high to be easily solved
Natural Cubic Spline Interpolation

- \(S_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i \) (Given \(n \) points)
 - 4 Coefficients with \(n-1 \) subintervals = 4n-4 equations
 - There are 4n-6 conditions
 - Interpolation conditions
 - Continuity conditions
 - Natural Conditions
 - \(S''(x_0) = 0 \)
 - \(S''(x_n) = 0 \)
 - \(O(n^3) \)
Natural Cubic Spline Interpolation

- A clever method
 - Construct $S(x)$
 - Lagrange Form thought
 - Solve tridiagonal matrix
 - Using decompt & solvet (2-1)
 - Evaluate of $S(z)$
 - Locate z in some interval (using binary search)
 - Using Horner’s rule to evaluate
Thanks