
A GPU Implementation of a Jacobi

Method for Lattice Basis Reduction

Filip Jeremic and Sanzheng Qiao

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada

June 25, 2013

Abstract

This paper describes a parallel Jacobi method for lattice basis re-
duction and a GPU implementation using CUDA. Our experiments
have shown that the parallel implementation is more than fifty times
as fast as the serial counterpart, which is about twice as fast as the
well-known LLL lattice reduction algorithm.

Keywords Lattice basis reduction, parallel computing, GPU, CUDA

1 Introduction

Lattice basis reduction has been successfully used for many problems in inte-
ger programming, cryptography, number theory, and information theory [1].
In this paper we discuss a parallel version of the lattice basis reduction al-
gorithm called the Jacobi Method. The Jacobi Method is very attractive as
it is inherently parallel. We take advantage of this by utilizing the graphics
processing unit (GPU) to capitalize on the algorithm’s parallel nature. This
paper will first introduce a serial version of the Jacobi Method, and later
explore its parallel nature. Moreover, we will discuss the tools and tech-
niques used to achieve high runtime performance and finally we will present
experimental results of our parallel implementation of the Jacobi Method.

1

In this section we cover some basic notations used throughout the paper.
Given a subspace W of Rn and a basis B = {b1, b2, . . . , bm} of n-dimensional
vectors which span W , we define a lattice L of W generated by the basis B
as the set of vectors:

L(B) =

{
m∑
i=1

aibi

∣∣∣∣∣ ai ∈ Z

}

Typically, we view a lattice basis B in matrix form, where the vectors in
the basis form the columns of the matrix. In this context we say that the
respective matrix B is a generator of the lattice L. The value m in the above
definition of a lattice is called the lattice dimension, or rank. A given lattice
basis may have fewer vectors than the space it resides in. In such a case the
generator matrix is rectangular with m < n. If on the other hand m = n,
we say that the lattice is of full rank, and consequently the generator matrix
will be an invertible square matrix.

When the lattice dimension m ≥ 2, the lattice can have infinitely many
distinct basis matrices. This is not surprising as the underlying vector space
can also have infinitely many bases. The question arises as to how can
we transform one basis matrix into another, and more importantly what
makes one basis “better” than another? To answer the former question we
introduce the notion of a lattice determinant, which is defined as the absolute
value of the determinant of the respective generator matrix. The lattice
determinant is an important numerical invariant as it is independent of the
chosen lattice basis. Therefore, two generator matrices B and B′ generate
the same lattice L if and only if B′ = BZ, where Z, called a unimodular
matrix, is an integer matrix with |detZ| = 1. Because the determinant of a
unimodular matrix is of unit size, the inverse of a unimodular matrix is also
an integer matrix.

The answer to the latter question we posed is relative to the application
problem at hand, however for many such problems a desirable property of a
lattice basis is that it consists of relatively short and more orthogonal vec-
tors. In this context, we say that such a basis is reduced. Thus given a lattice
basis matrix B, a lattice basis reduction algorithm produces a unimodular
matrix Z, such that the basis BZ is reduced.

2

2 Jacobi Method

In this section, we present a serial version of the Jacobi method for lattice
basis reduction, but before doing so we describe the Lagrange’s algorithm
for computing reduced bases for lattices of dimension two [2, 3]. A lattice
L(B) generated by the matrix B =

[
b1 b2

]
is said to be Lagrange-reduced if

‖b1‖2 ≤ ‖b2‖2 and
∣∣bT1 b2∣∣ ≤ ‖b1‖222

(1)

Intuitively, if θ denotes the angle between the two basis vectors b1 and b2,
then condition (1) implies that π

2 ≤ θ ≤
2π
3 since

|cos θ| =
∣∣bT1 b2∣∣

‖b1‖2 ‖b2‖2
≤
∣∣bT1 b2∣∣
‖b1‖22

≤ 1

2

The existence of a Lagrange-reduced basis for any two-dimensional lattice is
guaranteed and is optimal in the sense that it consists of the shortest possible
basis vectors [4]. The algorithm itself can be viewed as a generalization of
Euclid’s algorithm for computing the greatest common divisor of a pair of
integers.

Algorithm 1 (Lagrange): Given G = BTB, where B is a two-dimensional
lattice generator matrix, this algorithm computes a 2×2 unimodular matrix
Z such that the generator matrix BZ is Lagrange-reduced and G is updated
accordingly.

1 Z = I2
2
3 i f G(1, 1) < G(2, 2)
4 swap G(:, 1) and G(:, 2)
5 swap G(1, :) and G(2, :)
6 swap Z(:, 1) and Z(:, 2)
7 end
8
9 whi l e G(1, 1) > G(2, 2)

10 q = bG(1, 2)/G(2, 2)e
11 G(:, 2) = G(:, 2)− q ×G(:, 1)
12 G(2, :) = G(2, :)− q ×G(1, :)
13 Z(:, 2) = Z(:, 2)− q × Z(:, 1)
14 end
15

3

16 return Z

Analogous to Euclid’s algorithm the computed matrix Z can be viewed as
the product of permutations and a Gauss transformations [5]:[

0 1
1 −q

]
=

[
0 1
1 0

] [
1 −q
0 1

]

Furthermore, the Gram matrix G = [gij] is a symmetric and positive defi-
nite matrix as an input to Algorithm 1 containing noteworthy information.
Namely, the diagonal elements gii = ‖bi‖22 and the off-diagonal elements
gij = bTi bj , both of which appear in the condition (1).

For an n-dimensional lattice generated by a matrix B we can apply Algo-
rithm 1 to every two-dimensional sublattice. The resulting algorithm, called
the Jacobi method, Lagrange-reduces all possible pairs of the columns of B
in a row-by-row fashion. We present a serial cyclic-by-row version of the
Jacobi method for lattice basis reduction.

Algorithm 2 (Jacobi): Given an n-dimensional lattice generator matrix B,
this algorithm computes a unimodular matrix Z such that the columns of
the generator matrix BZ form a reduced basis.

1 G = BTB
2 Z = In
3
4 whi l e not a l l p a i r s (bi, bj) s a t i s f y (1)
5 f o r i = 1 to n− 1
6 f o r j = i+ 1 to n
7 q = G(i, j)/G(j, j)

8 i f |q| > 1/2
9 G(:, j) = G(:, j)− bqe ×G(:, i)

10 G(j, :) = G(j, :)− bqe ×G(i, :)
11 Z(:, j) = Z(:, j)− bqe × Z(:, i)
12 end
13 i f G(i, i) > G(j, j)
14 swap G(:, i) and G(:, j)
15 swap G(i, :) and G(j, :)
16 swap Z(:, i) and Z(:, j)
17 end
18 end
19 end
20 end

4

21
22 return Z

Algorithm 2 implicitly applies the Lagrange’s algorithm to every two-dimensional
sublattice. Lines 7 to 17 carry out the reduction operations presented in Al-
gorithm 1. Some optimizations have also been made. For example the while
loop in Lagrange’s algorithm was removed and replaced by the while loop
on line 4 of Algorithm 2.

3 A Parallel Algorithm

A closer inspection of the Jacobi method presented in Algorithm 2 reveals
further optimizations. Most notably that the algorithm can be parallelized
by carrying out the Lagrange’s algorithm on two-dimensional sublattices
simultaneously. However, as with most parallel algorithms, we must be
careful to avoid data hazards.

The two for-loops on lines 5 and 6 generate all column pair combinations
(i, j) up to ordering, which makes sense as reducing columns i and j is
equivalent to reducing columns j and i. The parallel version of Algorithm 2
must emulate such an ordering to ensure condition (1) is met by all column
pairs of the input lattice generator matrix. Evidently, we must figure out the
maximum number of parallel reductions we can carry out. Clearly we cannot
reduce all column pairs simultaneously. To see why, consider two threads
simultaneously reducing columns pairs (i, j) and (j, k) with i < j < k. On
line 9 of the algorithm, the first thread reduces column j by an integer
multiple of column i. Similarly, the second thread reduces column k by an
integer multiple of column j. This poses a data hazard as there is a race
condition on the value of G(i, j) since the thread reducing (i, j) could update
G(i, j) before the thread reducing (j, k) uses it to update G(j, k).

Alternatively we can follow the ordering presented in Algorithm 2 and reduce
column pairs (i, i+1), (i, i+2), . . . , (i, n) in parallel, followed by the reduction
of column pairs (i+1, i+2), (i+1, i+3), . . . , (i+1, n), and so forth. However,
this ordering also presents data hazards from the swaps on lines 14-16. Even
if we can ensure that the swaps never happen (i.e. the if statement on line 13
is never true), this ordering is suboptimal in the sense that at each iteration
we decrease the number of threads performing reductions. The extreme

5

Array 1:

Array 2:

After initialization After one permutation

1 2 3 4 1 2 3 4

1 2 3 4

5 6 7 8

1 5 2 3

6 7 8 4

Figure 1: Chess tournament ordering with n = 8

here is that on the last iteration only one thread is performing a reduction,
namely on the column pair (n− 1, n), while other threads are idle.

The solution is to use an ordering which maximizes concurrency while avoid-
ing data hazards and race conditions. One such ordering is called the chess
tournament ordering and is described in [6]. For a given n-dimensional
input generator matrix, the chess tournament ordering is a mechanism of
generating all n(n− 1)/2 combinations of column pairs over n− 1 iterations
generating n/2 distinct column pairs.

The chess tournament ordering is best described through an example. With-
out loss of generality we assume that n, the number of columns of the input
generator matrix, is even. For the sake of example we further assume that
n = 8. The mechanism is implemented by two arrays of size n/2 = 4 in our
case. Figure 1 depicts the initialization as well as one permutation of the
chess tournament ordering, where the dashed arrows represent the transi-
tion between the two states. The column pairs are selected based on array
indices which are labeled above each box. In our example, after initialization
the mechanism generates column pairs (1, 5), (2, 6), (3, 7) and (4, 8). After
one permutation, it produces pairs (1, 6), (5, 7), (2, 8)and(3, 4). Clearly, it
takes n − 1 = 7 permutations to generate all column pairs. This ordering
mechanism is employed in the following parallel version of Algorithm 2:

Algorithm 3 (Parallel Jacobi): Given an n-dimensional lattice generator
matrix B, this algorithm computes a unimodular matrix Z such that the
columns of the generator matrix BZ form a reduced basis.

Main Thread:

1 G = BTB
2 Z = In
3

6

4 f o r i = 1 to n/2
5 arr1(i) = i
6 arr2(i) = i+ n/2
7 end
8
9 launch n/2 c h i l d threads

10
11 re turn Z

Child Thread:

1 whi l e not a l l p a i r s (bi, bj) s a t i s f y (1)
2 i = arr1(tid)
3 j = arr2(tid)
4
5 i f i > j
6 swap i and j
7 end
8
9 q = G(i, j)/G(j, j)

10
11 i f |q| > 1/2
12 G(:, j) = G(:, j)− bqe ×G(:, i)
13 Z(:, j) = Z(:, j)− bqe × Z(:, i)
14 end
15
16 thread b a r r i e r
17
18 i f |q| > 1/2
19 G(j, :) = G(j, :)− bqe ×G(i, :)
20 end
21
22 thread b a r r i e r
23
24 i f G(i, i) > G(j, j)
25 swap G(:, i) and G(:, j)
26 swap Z(:, i) and Z(:, j)
27 end
28
29 thread b a r r i e r
30
31 i f G(i, i) > G(j, j)
32 swap G(i, :) and G(j, :)
33 end

7

34
35 permute arr1 and arr2
36
37 thread b a r r i e r
38 end

Algorithm 3 consists of two parts; the main thread which initializes the data
and the child threads which carry out the reduction using the said data. The
first thing to notice about the child threads is the use of the special keyword
tid which stands for the thread identification number. We assume that the
our environment generates a unique incremental tid (starting at 1) for every
child thread. The tid is used to extract column pair that a specific thread
will reduce.

The next thing to note is the use of thread barriers. A thread barrier (or
thread fence) forces the current thread to wait until all other threads have
also reached the barrier. It is a synchronization technique used to avoid race
conditions. As an example, the thread barrier on line 16 is used to avoid
the race condition between the row and column updates of the matrix G.
The assignments on lines 12 and 19 interfere with each other as they both
overwrite the value of G(j, j). The thread barrier must be placed outside of
the branching if-statement to avoid the case in which one thread branches
away while another does not. In this case the former thread will encounter
a thread barrier, but the latter thread will never reach the barrier as it
branched away, hence the program enters a deadlock.

4 GPU Implementation

To achieve high performance, Algorithm 3 requires that multiple threads
are reducing a given basis simultaneously. The current models of multi-core
CPU’s do not offer such functionality as they are typically limited to four to
eight threads running concurrently. Thus, we chose to implement Algorithm
3 on the GPU using the CUDA parallel computing platform [7].

Unlike the CPU (referred to as the host), the GPU (referred to as the de-
vice) is not optimized to achieve performance through fast serial program
execution, but rather it exhibits high performance through massive paral-
lelization. Therefore, only problems which are parallel in nature and can
be recursively decomposed into similar subproblems will benefit from the

8

massive parallelization offered by the GPU. The maximum number of paral-
lel threads executing on a device supporting the CUDA parallel computing
platform exclusively depends on the underlying architecture’s computing
capability [7].

The host and device must work in unison to coordinate a task. This rela-
tionship starts out by transferring data from the system memory (RAM) to
the device memory. The host then invokes kernels, which are the programs
executing on the device in parallel, on the device to compute on the said
data. The host then transfers the data back from the device and continues
execution. CUDA programs are heterogeneous in the sense that both the
host and the device can be executing programs at the same time, however
synchronization between host programs and kernels is often necessary and
is provided by the CUDA framework.

There are many different types of memory on the device implemented both
in hardware and as abstractions. The two most important ones are global
memory (analogous to RAM) and shared memory (analogous to L1 cache).
Global memory is automatically cached and persists throughout the exe-
cution of a kernel and is useful for transferring data from the host to the
device and vice versa. In comparison to shared memory, which is a fast
user managed memory space local to a block of threads, global memory is
quite slow. A common way of increasing performance is to transfer chunks of
data from global memory to shared memory in a coalesced manner [8]. Mem-
ory coalescing occurs when consecutive threads access consecutive memory
locations. Memory coalescing was used in our implementation whenever ap-
propriate. This technique was used to reduce the memory access time of
accessing array indices in the two permutation arrays on lines 2 and 3 in the
Child Thread part of Algorithm 3. Specifically, the arrays are transferred
from the global memory to shared memory at the beginning and transferred
back to the global memory at the very end. In theory, we could obtain
maximum memory bandwidth by transferring all data from global memory
to shared memory and then performing the computations. However, shared
memory is limited (48 KB in our case) hence this is not feasible.

Another optimization technique employed in our implementation was to
eliminate the swaps on lines 25, 26 and 32 in the Child Thread part of
Algorithm 3 by using a permutation array. Meaning that instead of swapping
entire rows and columns (very memory intensive) we swap row and column
indices in an array and reference this array whenever accessing data from the
matrices. For example, a permutation array p is initialized to the identity

9

array, that is p(i) = i for i = 1, 2, . . . , n. For a given index i, the value of
p(i) represents the true location of the column (or row) i in a matrix (G and
Z in our case). Whenever we must swap two columns (or rows) i and j, we
instead swap the corresponding indices in the permutation array, that is we
swap the values p(i) and p(j). Thus after initialization and one swap, the
true position of column i can be obtained by referencing p(i) which after the
swap would equal to j. The tradeoff here is that since we are using the array
p to simulate swapping of columns and rows we must therefore reference p
whenever we need to access a particular value of a matrix. Because p is a
one dimensional array, we can store it in shared memory hence making this
tradeoff worth while.

Unfortunately, the reductions performed on lines 12, 13 and 19 in the Child
Thread part of Algorithm 3 cannot take advantage of memory coalescing be-
cause of our column pair ordering we cannot ensure that consecutive threads
are accessing consecutive memory locations. However, by adjusting various
compiler optimization flags loop unrolling was found to be effective at speed-
ing up the reduction of the columns and rows.

5 Experiments

In this section we present benchmarks of our implementation by comparing
the performance of our GPU implementation with a serial CPU version. All
experiments were performed on an Intel Core i5-2500K and an NVIDIA GTX
660 with CUDA 5.0. This GPU has 960 CUDA cores operating at 980 MHz
and 2.0 GB global memory operating at 6008 MHz frequency. Both the CPU
and GPU implementations use single precision floating-point arithmetic.
The results of the reductions of the CPU and GPU implementations are
verified term by term. The effectiveness of the Jacobi method is measured
by the Hadamard ratio δ(B), also known as the orthogonality defect or linear
independence number [1] and is defined as:

δn(B) =

∏n
i=1

∥∥∥~bi∥∥∥
2√

detBTB

From Hadamard’s inequality, δ(B) ≥ 1, and the equality holds when the
vectors are pairwise orthogonal. This numerical metric describes the relative
deviation from a fully orthogonalized basis and can be used to rank different
bases of a lattice based on the pairwise orthogonality of the vectors in the

10

Matrix Size GPU (ms) CPU (ms) δ Original δ Reduced

10 0.234 1.927 1.200

20 0.374 1.797 1.674

30 0.479 1.664 1.641

40 0.624 1.682 1.677

50 0.882 40

100 2.481 147

200 7.733 432

Table 1: GPU vs. CPU benchmark statistics

basis. Our experiments show that the effectiveness of our GPU parallel
implementation is consistent with that of the CPU serial implementation.

0 50 100 150 200 250 300 350 400 450 500

0

10

20

30

Matrix Size

E
x
ec

u
ti

on
T

im
e

(m
s)

Figure 2: GPU benchmark of Jacobi method.

Table 1 gives benchmark statistics on the GPU implementation of the Ja-
cobi method against the CPU implementation. The timing measurement
excludes copying the data to and from the device. Dense matrices with nor-
mally distributed random entries were generated and 100 samples for each
matrix size were averaged to produce the given statistics.

Figures 2 and 3 depict the results presented in Table 1 with a number of
omitted data points. From Figure 3 we can see that the execution time of

11

the GPU implementation is nearly linear in comparison to the CPU. The
GPU implementation achieves an impressive speedup factor of roughly 58
times on average. Further speedups are expected on the newer generations of
GPUs. Figure 4 depicts the effectiveness of the reduction method according
to the Hadamard ratio. The Hadamard ratio of the reduced basis is always
smaller, although for matrices of size greater than 30 the Hadamard ratio
of the original basis is not much higher then that of the reduced basis.

0 50 100 150 200 250 300 350 400 450 500

0

100

200

300

400

Matrix Size

E
x
ec

u
ti

on
T

im
e

(m
s)

GPU
CPU

Figure 3: GPU and CPU benchmark of Jacobi method.

12

5 10 15 20 25 30 35 40

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Matrix Size

H
ad

am
ar

d
R

at
io

Original
Reduced

Figure 4: Hadamard ratio of original vs. reduced bases.

References

[1] S. Qiao. A Jacobi Method for Lattice Basis Reduction. Proceed-
ings of 2012 Spring World Congress on Engineering and Technology
(SCET2012). Vol. 2. IEEE. May 27-30, 2012, Xi’an, China. 649-652.

[2] J.L. Lagrange. Recherches d’arithmeétique. Nouveaux Mémoires de
l’Académie de Berlin, 1773.

[3] F.T. Luk, S. Qiao, and W. Zhang. A Lattice Basis Reduction Algorithm.
Technical Report 10-04. Institute for Computational Mathematics, Hong
Kong Baptist University, Kowloon, Hong Kong, China, 2010.

[4] The LLL Algorithm: Survey and Applications. Information Security and
Cryptography, Texts and Monographs. Editors Phong Q. Nguyen and
Brigitte Vallée. Springer Heidelberg Dordrecht London New York, 2010.

[5] G.H. Golub and C. F. Van Loan. Matrix Computations, Third Edition.
The Johns Hopkins University Press, Baltimore, MD, 1996.

13

[6] X. Wang and S. Qiao. A Parallel Jacobi Method for the Takagi Factor-
ization. In Proceedings of the international Conference on Parallel and
Distributed Processing Techniques and Applications - Volume 1, 2002.

[7] NVIDIA. Parallel Programming and Computing Platform. Online, avail-
able at http://www.nvidia.com/object/cuda_home_new.html. Ac-
cessed June 3, 2013.

[8] G.S. Sachdev et al. Takagi Factorization on GPU using CUDA. Technical
Report. School of Computing, University of Utah, UT, 2010.

14

http://www.nvidia.com/object/cuda_home_new.html

	Introduction
	Jacobi Method
	A Parallel Algorithm
	GPU Implementation
	Experiments

