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A Symmetric Rank-Revealing Toeplitz Matrix DecompositionFRANKLIN T. LUKComputer Science Department, Rensselaer Polytechnic Institute, Troy, New York 12180, USASANZHENG QIAOCommunications Research Laboratory, McMaster University, Hamilton, Ontario L8S 4K1, CanadaAbstract. In signal and image processing, regularization often requires a rank-revealing decompositionof a symmetric Toeplitz matrix with a small rank de�ciency. In this paper, we present an e�cientfactorization method that exploits symmetry as well as the rank and Toeplitz properties of the givenmatrix.Keywords: Toeplitz matrix, regularization, symmetric rank-revealing decomposition1. IntroductionIn signal and image processing applications [5], [6],a noisy and distorted signal vector x̂ is given byx̂ = Tx+ w; (1)where x and w represent an unknown original sig-nal vector and a noise vector, respectively, and Tis a predetermined matrix describing the spreadof signals. This problem arises often in array pro-cessing, where the matrix T may be real, symmet-ric, and Toeplitz. Assuming the dimensions of Tto be n� n, we haveT = 0BBBB@ t1 t2 t3 : : : tnt2 t1 t2 : : : tn�1t3 t2 t1 : : : tn�2... ... ... . . . ...tn tn�1 tn�2 : : : t1

1CCCCA :To restore the original signal vector x from x̂, weshould invert T . Quite frequently, cf. [1], T is ill-conditioned and regularization is required. Onepopular method is the truncated singular valuedecomposition (TSVD) [4], which requires O(n3)oating-point operations (ops) because it is notknown how to compute the singular value decom-position (SVD) of a Toeplitz matrix in fewer ops.

For general matrices, less expensive rank-revealing methods like the URV decompositionhave been developed by Stewart [7] and othersto replace the SVD. But O(n3) ops are still re-quired. If the matrix is Toeplitz and bandedwith bandwidth b, Nagy [6] proposed an O(bn2)method for computing an approximate URV de-composition. However, no one has shown how toexploit the symmetry of T . We suggest a possibleapproach in Section 2.In addition, assume that T has a small rankde�ciency, viz.,rank(T ) = n� k;where k denotes a small integer. We will presentan O(kn2) method in Sections 3 to 5 for comput-ing a rank-revealing factorization. Our other con-tribution is to show how to avoid complex arith-metic in the computation. The examples in Sec-tion 6 show that our new method restores the sig-nal almost as accurately as the TSVD approach.The paper is organized as follows. We presentan extension of rank-revealing factorizations tosymmetric matrices in Section 2. In Section 3 wesketch a fast O(n2) triangularization scheme basedon hyperbolic rotations, and in Section 4 we showhow to avoid the use of complex arithmetic whenthese rotations are applied. Lastly, in Sections 5and 6, we discuss rank-revealing techniques andpresent simulation results.



2 Luk and Qiao2. Use SymmetryMany popular regularization techniques are basedon an SVD of T :T = U�V T ;where U and V are orthogonal, and � = diag(�i),with �1 � � � � � �n � 0:Select a tolerance � to �nd k such that�n�k > � � �n�k+1:We may say that T has k small singular values, orthat T has a numerical rank of n� k. Let�̂ = diag(�1; : : : ; �n�k ; 0; : : : ; 0):We restore the original signal x viax = V �̂+UT x̂;where �̂+ = diag(�+i ) denotes the pseudo-inverseof �̂.Although the TSVD is stable, it is expensive tocompute. Since regularization does not require thediagonalization of T , we may pick the less costlyURV decomposition:T = URV T ;where U and V are orthogonal, and R is uppertriangular, viz.,R = � �R E0 G� :The three submatrices �R, E and G (k�k) possessthe special properties that k �Rk is large, and kEkand kGk are small:8<: �min( �R) � �n�k ;kEk2F + kGk2F � �2n�k+1 + � � �+ �2n : (2)A regularized solution to (1) is obtained fromx = V � �R�1 00 0�UT x̂:

We wish to exploit the symmetry of T to saveon storage and work. Start by computing a sym-metric eigenvalue decomposition:T = V �V T ;where V is orthogonal, and � = diag(�i), withj�1j � � � � � j�nj � 0:Choose a tolerance � to �nd k such thatj�n�k j > � � j�n�k+1j;i.e., T has a numerical rank of n� k. Let�̂ = diag(�1; � � � ; �n�k; 0; � � � ; 0):The original signal is restored by the formula:x = V �̂+V T x̂:where �̂+ = diag(�+).We propose to generalize the URV decomposi-tion as follows:T = V SV T ; (3)where V is orthogonal and S symmetric. We shallcall (3) a V SV decomposition. Partition S:S � � �S EET G� ; (4)where the three submatrices �S, E and G (k � k)possess similar norm properties as in (2):8<: �min( �S) � �n�k ;kEk2F + ktriu(G)k2F � �2n�k+1 + � � �+ �2n : (5)We use triu(G) to denote the upper triangularpart of G. The signal vector x can be restoredby a truncated V SV decomposition:x = V � �S�1 00 0�V T x̂:Note that (5) is not an obvious extension of (2)to the symmetric case. Why do we use triu(G)?Roughly speaking, since E, ET and G in (4) aresmall and G is symmetric, it is reasonable to ex-clude the redundant data and consider only E andtriu(G). A more rigorous argument will be givenat the end of Section 5.



Symmetric Rank-Revealing Toeplitz Decomposition 33. Fast Triangular FactorizationIn this section we discuss a fast O(n2) triangular-ization of an n� n symmetric Toeplitz matrix.First, assume that t1 6= 0 and t1 > 0; otherwiseconsider �T . Use a displacement representationfor T [2]:T = RT1 R1 �RT2 R2; (6)where R1 and R2 are Toeplitz matrices:R1 = 1pt1 0BBBBBB@ t1 t2 t3 : : : tn�1 tn0 t1 t2 : : : tn�2 tn�10 0 t1 : : : tn�3 tn�2... ... ... . . . ... ...0 0 0 : : : t1 t20 0 0 : : : 0 t1
1CCCCCCAandR2 = 1pt1 0BBBBBB@ 0 t2 t3 : : : tn�1 tn0 0 t2 : : : tn�2 tn�10 0 0 : : : tn�3 tn�2... ... ... . . . ... ...0 0 0 : : : 0 t20 0 0 : : : 0 0
1CCCCCCA :Rewrite (6) to getT = (RT1 RT2 )� I 00 �I ��R1R2� ;and apply 2 � 2 real transformations (details inSection 4) to eliminate R2:T = (RT 0)�D1 00 D2��R0 � = RTDR; (7)where R is upper triangular, and D1 and D2 aresignature matrices (diagonal matrices with �1 onthe diagonal). We take care to eliminate R2 in aspecial order, so as to maintain the Toeplitz struc-tures of R1 and R2. Rotating the second row ofR1 against the �rst row of R2, we zero out the(1,2)-entry of R2. But a whole super-diagonal ofR2 can be annihilated by applying this same rota-tion to the (i+1)-st row of R1 and the i-th row ofR2, for i = 1; : : : ; n� 1. The key is that we storeand operate upon R1 and R2 as vectors, in view of

their Toeplitz structures. The calculation of theRDR decomposition de�ned by (7) requires onlyO(n2) ops.It is well known that the RDR decompositionwithout pivoting is numerically unstable. LetT = 0@ 1:00 0:999 �0:6020:999 1:00 0:999�0:602 0:999 1:00 1A :Using three-decimal-digit arithmetic with round-ing, the procedure computes D = diag(1; 1;�1),R = 0@ 1:00 0:999 �0:6020 0:0447 35:80 0 35:8 1A ;and T = RTDR+0@ 0 0 00 0 00 0 0:6381A :The matrix T has a small condition number of2.88; its eigenvalues are 2.14, 1.60, and �0:746.The problem is that its leading 2 � 2 principalsubmatrix is ill-conditioned. Pivoting can im-prove the stability, but it destroys the Toeplitzand symmetry structure, resulting in a slow algo-rithm. Since we are primarily interested in sepa-rating small eigenvalues from large ones, we canapply a moderately small shift to T to improvethe numerical stability. For the above example,we may apply the procedure to a shifted T , e.g.,T + 0:1I . ThenR̂ = 0@ 1:05 0:951 �0:5730 0:444 3:470 0 3:36 1AandT + 0:1I = R̂TDR̂+0@ 0 0 00 0 0:0040 0:004 0:02 1A :So the factorization error is much smaller.Second, when t1 = 0, the RDR decompositiondoes not exist. We may use the above shiftingtechnique to overcome the di�culty. However, thechoice of an appropriate shift can be a delicatematter.



4 Luk and Qiao4. Avoid Complex ArithmeticSince the given matrix T is real and the resultantmatrices R and D are real, we want to restrict thecomputation to real arithmetic. In this section,we present details on how to construct a sequenceof 2� 2 real transformations Y to eliminate R2.Given two real quantities � and �, and twoscalars d1 = �1 and d2 = �1, consider the prob-lem of �nding a real transformation Y so thatY ��� � = � 0� (8)and Y �T � d1 00 d2�Y �1 = � d̂1 00 d̂2� ; (9)where d̂1 = �1 and d̂2 = �1. Then we get(� �) Y TY �T � d1 00 d2 �Y �1Y ��� �= ( 0)� d̂1 00 d̂2�� 0� :For simplicity, we will assume thatd1 = 1 :If needed, we can factor out a minus sign to forced1 = 1.1. Q-Rotate ( �, �, d2 )2. check that � 6= 0 and j�j 6= �d2j�j;3. if j�j > j�j then4. h := 1 + d2(�=�)2;5. r := ph � j�j;6. else7. h := (�=�)2 + d2;8. r :=pjhj � j�j;9. c := �=r; s := �=r;10. if h > 0;11.  := r; d̂1 := 1; d̂2 := d2;12. else13.  := �r; d̂1 := �1; d̂2 := �d2;14. return( , d̂1, d̂2, c, s ).15. End Q-RotateFig. 1. Generate Y for relations (8) and (9).

To zero out � in (8), we chooseZ = � c d2s�s c � ; (10)with c = �=r and s = �=r, wherer =p�2 + d2�2:So c2 + d2s2 = 1, andZ�1 = � c �d2ss c � :We see that (9) is satis�ed:Z�T � 1 00 d2�Z�1 = � 1 00 d2� :When d2 = 1, we get a circular (also known asGivens) rotation Z, whereZ = � c s�s c� ; Z�1 = ZT ;and c2 + s2 = 1. When d2 = �1, we get a hyper-bolic rotation Z satisfyingZ = � c �s�s c � ; Z�1 = � c ss c� ;and c2 � s2 = 1. Thus, our new transformation Zuni�es the circular and hyperbolic rotations. Werefer to Z as a quadratic rotation.When Z is real, viz., �2 + d2�2 > 0, the choiceis clear: Y = Z:But Z is complex when d2 = �1 and j�j < j�j, inwhich case we calculate~r =p�(�2 + d2�2) > 0;as well as ~c = �=~r and ~s = �=~r. De�ningY = � ~c d2~s�~s ~c � ;we see that Y is real and satis�es (8). So ~r = ir,where i = p�1. Thus,Y = �iZ;and d̂1 = �1, d̂2 = �d2.We summarize our results on quadratic rota-tions in a procedure called Q-Rotate in Figure 1.



Symmetric Rank-Revealing Toeplitz Decomposition 55. Reveal RankSuppose that we have decomposed T into the tri-angular factorization of (7):T = RTDR:In this section, we show how to use it to computea rank-revealing factorization.We start by �nding a normalized vector z thatapproximates the eigenvector zn corresponding tothe smallest (in magnitude) eigenvalue �n. Thenz = zn + u ;where u denotes an error vector satisfyingkuk2 < �for some small quantity �. Use the technique in[7] to �nd circular rotations (call the product V T )that transform z into the n-th unit vector en:V T z = en :Apply the transpose of these rotations from theright on R. However, when a circular rotation isapplied to the i-th and (i+1)-st columns of R, itcreates a nonzero (i+1; i) subdiagonal entry in R.To restore the triangular structure of R, apply aquadratic rotation from the left to annihilate thenewly created nonzero element. We haveT = V SV T ;where S = �RT �D �R;with �R and �D denoting, respectively, the resultanttriangular and signature matrices. To reveal rank,we partitionS = � �S yyT �� (11)where �S is (n� 1)� (n� 1); we also letV = (V1 z);where V1 is n�(n�1). Now, we show that the ma-trix S satis�es the norm properties (5) with k = 1.First, since � = eTnSen, we getj�nj � j�j :

Also, since S = V TTV and V en = z, we have� = zTTz = �n + 2�nuT zn + uTTu ;and so j�j � j�nj+ 2j�nj �+ kTk2 �2:Second, check the vector:y = V T1 Tz = V T1 T (zn + u) = �nV T1 zn + V T1 Tu:Since V T1 z = 0, we haveV T1 zn = �V T1 u :It follows thaty = V T1 (T � �nI)uandkyk2 < kV T1 (T � �nI)k2 � � kT � �nIk2 �:Consequently, when z � zn, we getkyk22 + �2 � �2n:Third, check �min( �S). Let�S = ~V ~D ~V Tbe an eigenvalue decomposition of �S. ThenT = V SV T = V � �S yyT ��V Tand soT = V � ~V 00 1�� ~D ~V T yyT ~V � �� ~V T 00 1�V T :Gerschgorin theorem states that if � is su�cientlysmall and if the eigenvalues of T are distinct, thenj�min( �S)� �n�1j � k ~V T yk2 � kT � �nIk2 � ;showing that�min( �S) � �n�1:In summary, if z � zn and the eigenvalues of Tare distinct, then8<: kyk22 + �2 � �2n ;�min( �S) � �n�1 ;which are simply the properties (5) when k = 1.



6 Luk and QiaoIf the estimated smallest eigenvalue is less thanthe preset tolerance, we deate T and repeat theprocedure on �S in (11). As before, we get�S = ~V � ~S ~y~yT ~�� ~V T (12)and 8<: k~yk22 + ~�2 � �2n�1 ;�min( ~S) � �n�2 :Now, kyk22 + k~yk22 + �2 + ~�2 � �2n�1 + �2n:Combining (11) and (12), we getT = V̂ � ~S EET G� V̂ Twhere G is 2� 2. Then we have8<: kEk2F + ktriu(G)k2F � �2n�1 + �2n ;�min( ~S) � �n�2 ;which are precisely (5) for the case where k = 2.This also justi�es the use of triu(G) in (5).We continue the deation procedure until theestimated eigenvalue exceeds the tolerance. Con-sequently, we obtain the desired V SV decomposi-tion of (3). This factorization, including the eigen-vector estimation, costs O(kn2) ops.

Fig. 2. The 48 smallest eigenvalues in Example 3.

6. ExamplesWe present three examples to show how our newmethod performs as well as the SVD approach.The three models of T are adopted from [6]. Wewrote a program in matlab and ran it on aSUN/Sparc2000 computer. Each estimated eigen-vector was computed using seven inverse power it-erations [3], and the singular value decompositionwas computed using the matlab function svd.In our examples, we calculate the conditionnumber of T , viz. �2(T ), and determine its nu-merical rank n� k using the tolerance� = 10�3:The matrices are ill-conditioned (calling for regu-larization), and our new technique always calcu-lates the numerical rank correctly. After comput-ing the rank-revealing decompositionT = V SV T ;where S = � �S EET G� ;we partitionV = (VS ; VN );where VN is n � k. Denote by xS the restoredsignal vector computed by our new symmetric de-composition. ThenxS = VS �S�1V TS x̂:Correspondingly, in the SVDT = U�W T ;we partitionW = (WS ; WN ) and U = (US ; UN ) ;where WN and UN are n� k matrices; similarly,� = diag(�S ; �S) ;where 8<: �S = diag(�1; : : : ; �n�k) ;�N = diag(�n�k+1; : : : ; �n) :



Symmetric Rank-Revealing Toeplitz Decomposition 7Since T is symmetric, U and W are the same ex-cept for signs in their columns. Let xT denotethe restored signal vector computed by the TSVDmethod. ThenxT =WS��1S UTS x̂:We use the parameter� = kV TNWSk2to measure the distance between the two sub-spaces Range(VS) and Range(WS) [3].Example 1. We pick a 250 � 250 banded sym-metric Toeplitz matrix T :tm = 8>>>><>>>>: 1; if m = 1;sin2((m� 1)=!)((m� 1)=!)2 ; if 2 � m � 5;0; otherwise;with ! = 4:0. The matrix is ill-conditioned:�2(T ) � 2:2� 106 :Its numerical rank equals 248, as detected by bothmethods; hencek = 2 ;a small rank de�ciency. After regularization, weget a much better conditioned matrix �S:�2( �S) � 3:5� 102:In Table 1, we present the three (= k + 1) small-est (in magnitude) eigenvalues �i computed by thematlab svd routine and �̂i computed by our newalgorithm.Since the eigenvalues are well isolated, the esti-mates are accurate. As predicted by the analysisin Section 5, the o�-diagonal blocks E and triu(G)are small:8<: kEkF = 7:45� 10�12 ;ktriu(G)kF = 1:19� 10�4 �p�2249 + �2250 :Furthermore, the error � equals 4:0 � 10�9, andso the subspace approximation of Range(WS) byRange(VS) is also very good.

Example 2. Consider a band Toeplitz matrix Tof order 150:tm =8>>>><>>>>: 2!; if m = 1;sin(2�!(m� 1))�(m� 1) ; if 2 � m � 9;0; otherwise;with ! = 0:05. While the condition number of thegiven matrix T is large:�2(T ) � 1:2� 106;the condition number of the regularized matrix �Sis acceptable:�2( �S) � 9:5� 102:Both methods computed the rank de�ciency ask = 5 :Table 2 lists the six smallest (in magnitude) eigen-values as computed by the matlab routine and asestimated by our procedure.Since the three smallest eigenvalues are closelyclustered, the approximate eigenvalues �̂148 and�̂149 are inaccurate and8<: kEkF = 1:36� 10�1 ;ktriu(G)kF = 7:46� 10�3 :The error � equals 1:4�10�2 and so the estimationof Range(WS) by Range(VS) is o�.Example 3. We choose a 120� 120 positive de�-nite Toeplitz matrix T :tm =8<: 1p2��2 e� (m�1)22�2 ; if 1 � m � 8;0; otherwise;with � = 2:0. The matrix T is ill-conditioned:�2(T ) � 1:6� 106:Note thatk = 47with both methods and�2( �S) � 1:1� 103:



8 Luk and QiaoTable 1. Three smallest eigenvalues in Example 1.i 248 249 250� 2:26e� 2 1:19e� 4 3:51e� 6�̂i 2:17e� 2 1:19e� 4 3:51e� 6Table 2. Six smallest eigenvalues in Example 2.i 145 146 147�i 1:19e� 3 4:88e� 4 1:71e� 4�̂i 1:19e� 3 4:86e� 4 1:50e� 4i 148 149 150�i 2:76e� 5 1:00e� 5 9:37e� 6�̂i 5:83e� 5 5:94e� 5 9:43e� 6Figure 2 plots the forty-eight (= k + 1) smallesteigenvalues computed by the matlab svd routine(represented by a solid line) against those esti-

mated by our symmetric rank-revealing program(represented by a dashed line).As shown in Figure 2, the eigenvalues decreasegradually and �n�k is close to �n�k+1. Just as inExample 2, we observe sizable errors:8<: kEkF = 5:26� 10�2 ;ktriu(G)kF = 3:97� 10�2 :The error � equals 4:8�10�1. So, Range(VS) doesnot estimate Range(WS) very well.What have we learned from these three exam-ples? The TSVD and our method perform wellwhen there is a signi�cant gap between the largeeigenvalues and the small ones (such as in Exam-ple 1), and may not work well otherwise. In Ex-ample 4, we show that even in the case where theeigenvalues decrease gradually (as in Examples 2and 3) both the TSVD and our new approach stilldo good jobs in restoring the original signal vector.

Fig. 3. Original signal vector x (left) and noisy signal vector x̂ (right) in Example 4.Example 4. We stay with the same matrix as inExample 3. In addition, we choose an original sig-nal vector x 2 R120 given by Nagy [6]. The noisevector w is a random vector generated in matlabby a normal distribution with zero mean and unitvariance. The noise is scaled so thatkwk2=kTxk2 = 0:001:
We use this ratio as the tolerance � for the nu-merical rank. Figure 3 depicts the original signalvector x on the left and the noisy signal vector x̂on the right, and Figure 4 presents the signal vec-tor xT restored by the TSVD method (left) andvector xS restored by our method (right). The re-sults show that the restoration capabilities of bothmethods are comparable.
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