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Abstract

In this paper, we give a definition of an optimally reduced basis for a lattice in the
sense that an optimally reduced basis is a shortest basis for the lattice. Then we present an
algorithm for computing an approximation of an optimally reduced basis for a lattice using
a novel unimodular transformation. To compare lattice bases, we propose a quantitative
measure of the degree of the linear independence of lattice basis vectors.
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1 Introduction

A lattice is a set of discrete points representing integer linear combinations of linearly indepen-
dent vectors. The set of linearly independent vectors generating a lattice is called a basis for the
lattice. A set of lattice points does not uniquely determine a basis. This leads to the problem
of finding a “nearly” orthogonal basis. Intuitively, shorter basis vectors are “more” orthogonal.
A basis reduction algorithm finds a reduced basis, that is, a basis whose vectors are reduced
in length. The lattice reduction problem arises from fields such as integer programming [2],
cryptology [6], number theory [4], and information theory [1]. In this paper, after a short intro-
duction to lattices and bases in Section 2, various definitions of reduced basis are described in
Section 3. They include the definitions of Minkowski-reduced basis, Hermite size-reduced basis,
HKZ-reduced basis, and LLL-reduced basis. Then we introduce the definition of an optimally
reduced basis, in the sense that an optimally reduced basis cannot be further reduced. Examples
are given to illustrate the relations among the different kinds of reduced bases. Following a brief
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Figure 1: The column vectors a1 and a2 of A in (1) and the lattice points generated by them.
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Figure 2: The columns of A and B and the lattice.

description of the LLL reduction algorithm in Section 4, we present an algorithm for computing
an approximation of an optimally reduced basis in Section 5. The key to our algorithm is a novel
lattice basis transformation. It allows us to transform a lattice basis into another basis whose
first vector is a shortest nonzero vector in the lattice. In Section 6, we prove that our algorithm
terminates in finite number of iterations. To compare reduction algorithms, in Section 7, we
propose a quantitative measurement, called linear independence number, for lattice bases. We
show that this number is a better measurement for lattice bases than the currently widely used
matrix condition number. Finally, our experimental results shown in Section 8 demonstrate that
our algorithm produces shorter bases than the HKZ and LLL algorithms.

2 Lattices and Bases

Given a real matrix A ∈ Rm×n, m ≥ n, of full column rank, the set

L = {Az, for all integer vectors z ∈ Zn},

containing discrete grid points, is called a lattice. The linearly independent columns of A form
a basis for L and n is called the rank of L. For example, Figure 1 depicts the lattice points
generated by the matrix

A = [a1 a2] =

[
2.0 2.7
0 0.7

]
. (1)

A set of lattice points does not uniquely determine a basis. For example, the matrix

B = [b1 b2] =

[
−0.7 1.3
−0.7 −0.7

]
(2)

generates the same lattice in Figure 1. Figure 2 shows the lattice and the columns of A and B.
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In general, if Z is an integer matrix whose inverse is also an integer matrix, then both A and
AZ generate the same lattice. For example, the matrices in (1) and (2) are related by

B = AZ, where Z =

[
1 2
−1 −1

]
.

From the following definition, a nonsingular integer matrix has an integer inverse if and only if
it is a unimodular matrix.

Definition 1 (Unimodular) A nonsingular integer matrix M is called unimodular if det(M) =
±1.

Obviously, from the definition, |det(A)| = |det(AM)|, for any unimodular M . Consequently,
if A generates a lattice L, the quantity

d(L) = |det(A)|

is independent of the choice of basis for L and thus defined as the determinant of a lattice L.
We can view the determinant as the volume of the parallelepiped spanned by a basis for the
lattice.

3 Reduced Bases

Since a lattice can have many bases, it is desirable to find a “good” basis. It is reasonable to
say that a basis consisting of shorter vectors is “better”, since we expect shorter basis vectors
are “more” orthogonal to each other. We say that a short basis is reduced. In terms of matrices,
if A is a lattice generator matrix, we want to find a unimodular matrix Z so that the columns
of AZ are short. We see from Figure 2 that a “better”, or “more” orthogonal, basis is shorter,
or reduced in length.

3.1 Minkowski Minima

The concept of reduced bases in the sense of Minkowski minima [12] is probably best illustrated
by an example. Using the matrix B in (2) and the lattice L for which the columns of B form
a basis, we consider the Euclidean length ‖Bz‖2 of a lattice point Bz. First we find a nonzero
lattice point of the shortest Euclidean length. This can be done because there are only finite
number of nonzero lattice points Bz satisfying

‖Bz‖2 ≤ ‖Be1‖2 = ‖b1‖2 ≈ 1.0,

where e1 is the first unit vector [1 0]T. Actually, as shown in Figure 2, in this case, the lattice
point Be1 = b1 is a shortest nonzero lattice vector. Next, we find a shortest lattice point which
is linearly independent of b1. This also can be done, because b2 is linearly independent of b1

and there are only finite number of lattice points satisfying

‖Bz‖2 ≤ ‖Be2‖2 = ‖b2‖2 ≈ 1.5,
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where e2 is the unit vector [0 1]T. Indeed, Be2 is one of the shortest lattice points linearly
independent of b1. Thus the columns of B form a “short” basis for the lattice. The two successive
minima ‖b1‖2 and ‖b2‖2 are called the Minkowski minima. The columns of B form a basis for
the lattice and their lengths simultaneously attain the successive minima in the same order. We
say that the columns of B form a Minkowski-reduced basis for the lattice. In comparison, A in
(1) is not reduced since its columns are not two shortest basis vectors for the lattice as shown
in Figure 2.

Figure 2 shows a geometric interpretation of the Minkowski minima. Starting at the origin,
we expand a circle. The nonzero lattice point given by the first column b1 of B is one of the
first lattice points hitting the growing circle, shown as the dash circle in the figure. As the circle
continues to grow, the lattice point given by the second column b2 of B is one of the lattice
points that are linearly independent of the first column and first hit the circle, shown as the
solid circle in the figure. The figure also shows that A is not reduced since its columns do not
form a short basis for the lattice.

In general, we have the following definition of Minkowski minima.

Definition 2 (Minkowski Minima) Using the Euclidean norm as a distance function, we say
that λk, 1 ≤ k ≤ n, is the kth successive minimum with respect to a lattice L, if λk is the lower
bound of the radius λ of the sphere

‖Bz‖2 ≤ λ

that contains k linearly independent lattice points [3, Page 201].

In other words, λk is the lower bound for max(‖x1‖2, ‖x2‖2, ..., ‖xk‖2) over all sets of linearly
independent lattice points x1,x2, ...,xk. Note that originally, the Minkowski minima are defined
in terms of ‖xi‖22 in the context of quadratic form. Here, for simplicity, we define the Minkowski
minima in terms of ‖xi‖2. Of course, the disadvantage of using ‖xi‖2 is that when xi is a rational
vector, ‖xi‖2 can be irrational, whereas ‖xi‖22 is rational. Clearly, the Minkowski minima satisfy
the following two properties:

1. λ1 is the length of a shortest nonzero lattice vector;
2. λ1 ≤ λ2 ≤ · · · λn.

(3)

In the above example, λ1 ≈ 1.0 and λ2 ≈ 1.5.
We then have the following definition of Minkowski-reduced basis for a lattice.

Definition 3 (Minkowski-reduced) A lattice basis {b1,b2, ...,bn} is called Minkowski-reduced
if ‖bi‖2 = λi for i = 1, 2, ..., n.

3.2 LLL-reduced bases

Suppose that the columns b1,b2, ...,bn of matrix B are linearly independent and the application
of the Gram-Schmidt orthogonalization yields the decomposition

B = Q∗U, (4)
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where Q∗ has orthogonal columns q∗

i and U = [ui,j ] is upper triangular with a unit diagonal,
that is, ui,j = 0 for i > j and ui,i = 1. Setting the diagonal matrix D = diag(di) with di = ‖q∗

i ‖2,
we further decompose Q∗:

Q∗ = QD,

then Q = [q1 ... qn] has orthonormal columns. Let R = [ri,j ] = DU , then we have the QR
decomposition [5]:

B = QR. (5)

Thus we have the following relations:

qi = q∗

i /‖q∗

i ‖2, ri,i = di = ‖q∗

i ‖2, and ri,j = ri,iui,j = diui,j. (6)

To reduce the lengths of basis vectors, Hermite introduced a weak notion of reduction [13,
Page 37].

Definition 4 (Size-reduced) A lattice basis {b1,b2, ...,bn} is called size-reduced if the Gram-
Schmidt orthogonalization (4) of B = [b1 b2 ... bn] satisfies

|ui,j | ≤
1

2
, for 1 ≤ i < j ≤ n

or its QR decomposition (5) satisfies

|ri,j| ≤
1

2
|ri,i|, for 1 ≤ i < j ≤ n.

Often, size-reduced is a necessary condition for a reduced basis.
The LLL-reduced basis is defined as follows [10]. The columns bi of a full column rank

matrix B form an LLL-reduced basis for a lattice if the matrices Q∗ and U in the decomposition
(4) satisfy

|ui,j| ≤ 1/2, j > i (size-reduced),

and
‖q∗

i ‖22 + u2
i−1,i‖q∗

i−1‖22 ≥ ω‖q∗

i−1‖22,
where 1/4 < ω < 1. In terms of the QR decomposition (5), using the relations in (6), we have
the following definition [11].

Definition 5 (LLL-Reduced) Given an ω ∈ (0.25, 1.0), a lattice basis {b1,b2, ...,bn} is called
LLL-reduced if the upper triangular matrix R in the decomposition (5) of B = [b1 b2 ... bn]
satisfies

|ri,j | ≤ |ri,i|/2, j > i (size-reduced), (7)

and
r2
i,i + r2

i−1,i ≥ ω r2
i−1,i−1. (8)
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Since the conditions in the above definition solely depend on R, we may simply call R
LLL-reduced. In the rest of the paper, we adopt this QR decomposition approach.

In addition to the size-reduced condition (7) in the above definition, the second condition
(8) imposes some order on the column norms of the (i− 1, i) main diagonal two-by-two block of
R.

To justify that an LLL-reduced basis is a reasonable approximation of a Minkowski-reduced
basis, it is shown in [10] that if b1,b2, ...,bn form an LLL-reduced basis for a lattice, then

η1−iλ2
i ≤ ‖bi‖22 ≤ ηn−1λ2

i , (9)

where η = (ω−1/4)−1 and λ1, λ2, ..., λn are the Minkowski minima. In particular, when ω = 3/4,
then η = 2 and

21−iλ2
i ≤ ‖bi‖22 ≤ 2n−1λ2

i .

3.3 HKZ-reduced bases

In the nineteenth century, Korkine and Zolotarev, see [13, Page 37] and [8, 9], proposed a
definition of a reduced basis by strengthening Hermite’s size-reduction.

Definition 6 (HKZ-reduced) A lattice basis {b1,b2, ...,bn} is called HKZ-reduced if the up-
per triangular matrix R in the decomposition (5) of B = [b1 b2 ... bn] is size-reduced and for
each trailing (n− i+1)-by-(n− i+1) submatrix, 1 ≤ i < n, its first column is a shortest nonzero
vector in the lattice generated by the submatrix.

Since HKZ-reduced considers the trailing (n − i + 1)-by-(n − i + 1) submatrix while LLL-
reduced considers only the leading two-by-two block of the trailing submatrix, an HKZ-reduced
basis is LLL-reduced for any ω ∈ (0.25, 1.0).

3.4 Optimally reduced bases

A lattice may not have a Minkowski-reduced basis, first noticed by Korkine and Zolotarev in the
nineteenth century [13, Page 33]. For example, consider the lattice basis formed by the columns
of the following matrix 



2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 1




.

All its Minkowski minima equal two, since [0 0 0 0 2]T is a lattice vector linearly independent
of the first four columns and its length is two. However, this vector and the first four columns
of the above matrix do not form a basis for the lattice. Indeed, they form a basis for a proper
sublattice.

Since Minkowski-reduced basis may not always exist, we propose the following definition of
reduced basis by strengthening the Minkowski minima.
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Definition 7 (Optimally reduced) A lattice basis {b1,b2, ...,bn} is called optimally reduced
if for each bi, i = 1, 2, ..., n, its length ‖bi‖2 = min(‖b̂i‖2, ‖b̂i+1‖2, ..., ‖b̂n‖2) over all sets
{b̂i, b̂i+1, ..., b̂n} of lattice points such that {b1, ...,bi−1, b̂i, ..., b̂n} form a basis for the lattice.

In other words, each bi, for i = 1, 2, ..., n − 1, is a shortest nonzero lattice vector such that
{b1,b2, ...,bi} is extendable to a basis for the lattice.

In comparison, the Minkowski minima are defined by short and linearly independent lattice
vectors, that may not form a basis for the lattice, whereas the above definition is about short
basis vectors. Since basis vectors are linearly independent, our definition is more stringent than
the Minkowski minima, that is, a Minkowski-reduced basis, if it exists, is an optimally reduced
basis in the sense of Definition 7.

It can be shown that when n = 2, an HKZ-reduced basis is optimally reduced.
It follows from the above definition that if {b1,b2, ...,bn} is an optimally reduced basis

defined above, then

• bi is a shortest nonzero lattice vector in the sublattice generated by bi,bi+1, ...,bn;

• λ1 = ‖b1‖2 ≤ ‖b2‖2 ≤ · · · ≤ ‖bn‖2;

• ‖bi‖2 ≥ λi, 1 ≤ i ≤ n.

Note that the first two properties are consistent with the two properties (3) of Minkowski minima.

3.5 Examples

In this section, using three examples, we compare the reduced basis definitions in the previous
section.

First, the following example shows that an LLL-reduced basis may not be Minkowski-reduced
and a Minkowski-reduced basis may not be LLL-reduced.

Consider the upper triangular matrix




1 0 1/2
0 1 0
0 0 1− ǫ



 .

When 1−√ω < ǫ < 1, this matrix is not LLL-reduced for any ω ∈ (0.25, 1.0). On the other hand,
when 0 < ǫ ≤ 1−

√
3/2, it is Minkowski-reduced, thus optimally reduced, since (1−ǫ)2+1/4 ≥ 1.

Thus when 1 > ω >
√

3/2 and 1 − √ω < ǫ ≤ 1 −
√

3/2, the above matrix is not LLL-reduced
but Minkowski-reduced or optimally reduced. Now, permuting the last two columns and last
two rows of A, we get 


1 1/2 0
0 1− ǫ 0
0 0 1



 .

It can be verified that when 0 < ǫ ≤ 1 −
√

3/2, the above matrix is HKZ-reduced, thus LLL-
reduced for any ω ∈ (0.25, 1.0), but not Minkowski-reduced or optimally reduced, since the third
column is shorter than the second.

7



In general, since ω < 1, the first vector in an LLL-reduced basis may not be a shortest
lattice point. In other words, an LLL-reduced basis may not satisfy the two properties (3) of
the Minkowski minima. The above example shows that this is because the condition (8) in the
Definition 5 considers only a two-by-two diagonal block.

Second, recalling the matrix

C =





2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 1





in the previous section. Its corresponding lattice has no Minkowski-reduced basis. The trailing
2-by-2 submatrix indicates that it is not LLL-reduced when ω > 0.5, thus not HKZ-reduced.
However, it is optimally reduced defined in Definition 7. The basis formed by the columns of

D =





2 0 1 −1 −1
0 2 1 −1 −1
0 0 1 1 −1
0 0 1 −1 1
0 0 1 −1 −1





is HKZ-reduced. It can be verified that it is LLL-reduced for any ω ∈ (0.25, 1.0). Obviously, the
columns of C form a shorter basis than those of D. Thus D is not optimally reduced.

Finally, we consider the matrix

A =





1 −1

2
−1

2
· · · −1

2

1 −1

2
· · · −1

2

. . .
. . .

...
. . . −1

2

1




(10)

of order n. It is HKZ-reduced, thus LLL-reduced. However, when n > 2, it is not optimally
reduced. Indeed, when n = 3, the columns of the matrix

B =




1 −1

2
0

0 1 1

2

0 0 1



 =




1 −1

2
−1

2

0 1 −1

2

0 0 1








1 0 1
0 1 1
0 0 1





form an optimally reduced or Minkowski-reduced basis.

4 The LLL Algorithm

Given a matrix A, whose columns form a basis for a lattice L, the LLL algorithm computes a
matrix B, whose columns form an LLL-reduced basis, in the sense of Definition 5, for L. The
algorithm consists of two stages. The first stage computes the QR decomposition [5]:

A = Q1S,
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where Q1 has orthonormal columns and S = [si,j] is upper triangular. In the second stage, the
LLL algorithm computes the QRZ decomposition:

S = Q2RZ−1, (11)

where Q2 is orthogonal, Z is unimodular, and R is LLL-reduced defined in Definition 5. The
parameter ω in (8) controls the termination of the algorithm. The smaller the ω is, the sooner the
algorithm terminates. Let Q = Q1Q2, then A = QRZ−1. Thus the columns of B = QR = AZ
form an LLL-reduced basis for L.

The second stage essentially consists of two procedures that impose the two conditions (7)
and (8). When |ri,j| > |ri,i|/2, for some i and j > i, the following procedure is invoked to enforce
the size-reduction condition (7).

Procedure 1 (Decrease(i, j)) . Given R and Z, calculate γ = ⌈ri,j/ri,i⌋ (⌈a⌋ denotes an
integer that is closest to a), form Zij = In − γeie

T
j , where ei is the ith unit vector, and apply

Zij to both R and Z:
R← RZij and Z ← ZZij .

Thus if |ri,i| < 2|ri,j | in the current R, then in the updated R, we have |ri,i| ≥ 2|ri,j| satisfying
the condition (7).

When the condition (8) is not satisfied, provided that 2|ri−1,i| ≤ |ri−1,i−1|, the columns i− 1
and i are swapped and then the upper triangular structure of R is restored. When this happens,
the algorithm steps back to recheck the conditions (7) and (8). For details of the algorithm, see
[10] or [11].

5 A New Reduction Algorithm

We present an algorithm that computes an approximate of an optimally reduced basis defined
in Definition 7.

5.1 Basic idea

Suppose that An = [a1,a2, ...,an], m-by-n (m ≥ n), is a generator matrix for a lattice L. The
basic idea behind the algorithm is:

1. Find a shortest nonzero lattice vector b1 in the lattice L;

2. Find a unimodular matrix that transforms the basis a1,a2, ...,an into a new basis b1,
b̃2, ..., b̃n for L;

3. Deflate An to An−1 = [b̃2 ... b̃n], then the columns of An−1 form a basis for an (n − 1)-
dimensional sublattice of L;

4. Size reduce An−1;

5. Repeat the above steps until the dimension of the sublattice is deflated to one.
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For step 1, there are methods for finding a shortest nonzero lattice point. See [1] and [13,
Chapter 2], for example. The LLL algorithm can be used as a preprocessor to significantly
accelerate the speed.

Step 2 is the key to the algorithm. It solves the following problem: Given a basis {a1,a2, ...,an}
for a lattice L and a shortest nonzero lattice point b1 = Anz, extend b1 to a new basis for L.
In [7], Kannan gave an algorithm for this problem. Here we present a novel unimodular matrix
transformation method.

A sufficient and necessary condition that b1 = Anz is extendable to a basis is that the entries
z1, z2, ..., zn of z have no common factor other than ±1 [3, Page 14], that is, gcd(z1, z2, ..., zn) =
±1. If b1 = Anz is a shortest nonzero lattice point, then gcd(z1, z2, ..., zn) = ±1, since otherwise
if z = αz̃ for some |α| > 1 and z̃ ∈ Zn, then Anz̃ would be shorter than Anz, a contradiction.
Given b1, how do we extend it to a basis for Ln? In terms of matrices, that is to find a
unimodular matrix Z whose first column is z, in other words, Ze1 = z, where e1 is the first unit
vector. Then AnZe1 = Anz = b1, meaning that the first column of AnZ, whose columns form a
basis for Ln, is b1, as desired. In other words, the unimodular matrix Z transforms a basis into
another basis whose first basis vector is b1. In the following section, we show how to compute
a unimodular Z whose first column is a given integer vector z = [zi], where gcd(zi) = ±1.

5.2 A unimodular transformation

If the first column of a unimodular matrix Z is a given integer vector z, then Z−1z = e1,
which says that Z−1 transforms z into the first unit vector e1. Thus the problem of finding a
unimodular matrix with a specified first column is equivalent to the problem of transforming an
integer vector into the first unit vector using a unimodular matrix.

We first present a plane unimodular transformation.

Algorithm 1 (Unim2(p, q)) Let [p q]T be a nonzero integer vector and gcd(p, q) = d. Using the
extended Euclidean algorithm, find integers a and b such that ap + bq = d. The integer matrix

M =

[
p/d −b
q/d a

]
, (12)

is unimodular and

M−1

[
p
q

]
=

[
d
0

]
, M−1 =

[
a b

−q/d p/d

]
.

The above algorithm shows that given a nonzero integer vector [p q]T, gcd(p, q) = d, we can
construct an integer unimodular matrix (12) whose first column is [p/d q/d]T. Moreover, its
inverse can be applied to [p q]T to annihilate its second entry. In particular, if gcd(p, q) = ±1,
then [p q]T can be transformed into the first unit vector. In the trivial case when p = 0 and
q = ±1, M is a permutation matrix.

Now we consider the general case. Let z = [zi] be a nonzero integer vector and gcd(zi) =
±1, then a sequence of plane unimodular transformations described above can be applied to
transform z into the first unit vector. Consequently, given the integer coordinate vector z of a
lattice point under a given basis for the lattice, we can transform the given basis into a new one
whose first vector is the given lattice point, as shown in the following algorithm,
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Procedure 2 (Transform(k, z)) Given R, Z, Q, and an integer vector z ∈ Zn−k+1, 1 ≤ k ≤
n− 1, such that gcd(zi) = ±1,

for j = n− k + 1 downto 2
Mj = Unim2(zj−1, zj);
Uj = diag(Ij−2,Mj , In−j−k+1);

z← U−1

j z;

Zj = diag(Ik−1, Uj);
R← RZj ;
Z ← ZZj;
find a plane reflection Qj to restore the structure of R;
R← QjR;
Q← QQj ;

end

As in the LLL algorithm, each time when a new basis is constructed, we enforce the size-
reduced condition (7).

Procedure 3 (BlockDecrease(k)) Given R and Z,

for i = n− 1 downto 1
for j = n downto max(i + 1, k)

Decrease(i, j);
end

end

Putting all things together, we present our first lattice basis reduction algorithm. Note that
in the kth iteration, the structure of Rk = [ri,j] is: n-by-(n−k+1) and ri,j = 0, for i > j +k−1.

Algorithm 2 (One-pass algorithm) Given a lattice generator matrix A, this algorithm com-
putes the QRZ decomposition A = QRZ−1, where the columns of QR = AZ form an approxi-
mation of an optimally reduced basis defined by Definition 7 for the lattice.

Initial QRZ decomposition: A = QR and Z = I;
BlockDecrease(1);
for k = 1 to n− 1

Let Rk consist of the last n− k + 1 columns of R;
Find a nonzero integer vector z so that Rkz is a shortest nonzero point

in the sublattice generated by Rk;
Transform(k, z);
BlockDecrease(k);

end

As shown above, our algorithm computes a basis whose first vector is a shortest nonzero
lattice point in the lattice. The subsequent basis vectors are shortest nonzero lattice points
in some size-reduced sublattices. Thus the above algorithm computes an approximation of a
reduced basis defined by Definition 7.
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Figure 3: From left to right, starting from the basis formed by the columns of A (1), Algorithm 2
first finds a shortest nonzero lattice point as the first basis vector, then size reduces the basis.

Given a Minkowski-reduced basis, since it is optimally reduced, our algorithm will keep the
basis unchanged. In contrast, since a Minkowski-reduced basis may not be LLL-reduced as
shown in section 3.5, the LLL algorithm may change a Minkowski-reduced basis into a longer
basis.

Like any reduction algorithm that requires size reduction, our algorithm uses the integer
unimodular matrices of the form [

1 −γ
0 1

]

in the procedure Decrease. However, our algorithm differs from the LLL algorithm in that in
addition to the above unimodular matrix, it also uses the unimodular matrices of the form (12)
whereas the LLL algorithm exclusively uses permutation, which is a trivial case of (12) when
p = 0 and q = ±1. For example, when Algorithm 2 is applied to the lattice generator matrix A
in (1), it first finds a shortest nonzero lattice point

A

[
1
−1

]
=

[
−0.7
−0.7

]

and then extends the shortest vector to a new basis
[
−0.7 2.7
−0.7 0.7

]
= A

[
1 0
−1 1

]
.

Finally, after a size reduction, a reduced basis is obtained:
[
−0.7 1.3
−0.7 −0.7

]
= A

[
1 2
−1 −1

]
.

Figure 3 depicts the process.
When the LLL algorithm is applied to the same matrix A in (1), it first size reduces the

second vector, [
2.0 0.7

0 0.7

]
= A

[
1 −1
0 1

]
.

followed by permuting two basis vectors,
[

0.7 2.0
0.7 0

]
= A

[
−1 1

1 0

]
.

then again applies size reduction
[

0.7 1.3
0.7 −0.7

]
= A

[
−1 2

1 −1

]
.

Figure 4 shows the process.
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Figure 4: From left to right, starting from the basis formed by the columns of A (1), the LLL-
algorithm first applies a size reduction, followed by swapping the two basis vectors, then size
reduces the second basis vector against the first.

5.3 Ordering lengths

The basis vectors produced by Algorithm 2 may not be ordered in their lengths, which is a
property of an optimally reduced basis defined in Definition 7. It is illustrated by the following
simple example.

Let the lattice generator matrix

A =




1 0.62 0.42
0 0.15 −0.22
0 0 −0.22



 .

At the end of the first iteration, k = 1, the upper triangular matrix R and the unimodular
matrix Z in the QRZ decomposition are respectively

R ≈




0.23431 −0.06359 0.10968

0.98532 0.36666
−0.14294



 and Z =




1 −2 −1
−1 1 1
−1 1 0



 .

The third column of R is shorter than the second. Thus in the next iteration, k = 2, the
algorithm finds that the third column is a shortest lattice point in the sublattice generated
by the second and third columns. Then the algorithm swaps the second and third columns
and restores the upper triangular structure, resulting the following upper triangular matrix and
unimodular matrix:

R ≈




0.23431 −0.10968 −0.06359

0.39353 −0.91803
−0.35789



 and Z =




1 1 −2
−1 −1 1
−1 0 1



 .

Notice that the above R is not size-reduced. Consequently, at the end of the iteration k = 2, a
size-reduction is performed and the upper triangular matrix and the unimodular matrix become

R ≈




0.23431 −0.10968 −0.04865

0.39353 −0.13096
−0.35789



 and Z =




1 1 1
−1 −1 −2
−1 0 0



 .

Now the length 0.38419 of the last column of R is shorter than the length 0.40853 of the
second column. This also shows that after size-reduction, the sublattice generated by the last
two columns of R is changed. To enforce the ordering of the basis vectors, we present the
following modification of Algorithm 2: After the size-reduction at the end of the kth iteration in
Algorithm 2, we check the column norms. If there is a column j, j > k, whose length is shorter
than a previous column i, i ≤ k, we retreat to the ith step.
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Algorithm 3 (Modified algorithm) Given a lattice generator matrix A, this algorithm com-
putes the QRZ decomposition A = QRZ−1, where the columns of QR = AZ form an approxi-
mation of an optimally reduced basis for the lattice in the sense of Definition 7.

Initial QRZ decomposition: A = QR and Z = I;
BlockDecrease(1);
k = 1;
while k < n

Let Rk consist of the last n− k + 1 columns of R;
Find a nonzero integer vector z so that Rkz is a shortest nonzero point

in the sublattice generated by Rk;
Transform(k, z);
BlockDecrease(k);
next = k + 1;
Partition R = [R1 R2], where R1 consists of the first k columns of R;
Search for the smallest index p of a column in R1 that is longer than

the shortest column in R2;
if p ≤ k, next = p;
k = next;

end

Since the above algorithm produces a basis not longer than the one computed by Algorithm 2,
the algorithm gives a better approximation of an optimally reduced basis.

6 Complexity and Termination

The major computational cost of Algorithm 2 is the search for a shortest nonzero lattice point in
a sublattice. There are exact and approximate methods for the shortest lattice point problem.
See [13, Page 39] and references there. In particular, for example, the LLL algorithm or the
blockwise algorithms can be used as a preprocessing to provide an approximate shortest nonzero
lattice point and significantly speed up the search, such as sphere decoding, for an exact shortest
nonzero lattice point.

The other major contributor to the computation is the procedure Transform. For each value
of k, it requires O(n(n − k)) floating-point operations. Thus the total cost from Transform is
O(n3).

The first part of Algorithm 3 is identical to Algorithm 2. In the second part, it retreats to
an earlier step when necessary. This raises the question of the termination of the program. We
will show that the program terminates in finite number of iterations. Indeed, when the program
detects that the length of the jth column is shorter than that of the ith column, j > i, it retreats
to the ith step. It then finds the shortest nonzero lattice point in the sublattice containing the
jth column and replaces the ith column. Thus the length of the ith column is reduced by
at least the difference between the lengths of the ith and jth columns. Since there are finite
number of lattice vectors whose lengths are between the shortest nonzero length and the length
of the longest column, the differences among the lengths of the columns are bounded below by
a positive constant. Moreover, the length of any nonzero lattice vector is bounded below by
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the the length of a shortest nonzero lattice vector. Therefore, the length of any column can be
reduced by finite number of times, implying that Algorithm 3 terminates.

7 A Measurement

Lattice reduction is to transform a lattice basis into another that is “more” orthogonal, or
“more” linearly independent. How do we measure the degree of linear independence of a re-
duced basis produced by a lattice basis reduction algorithm? The condition number for matrix
inversion could be a candidate. However, it does not always precisely measure the degree of
linear independence of the columns of a matrix. For example, the condition number of the
diagonal matrix [

1 0
0 10k

]

is 10k when k > 0, which is large when k is large. However, the columns are orthogonal, or
highly linearly independent. In this section, we propose a more precise measure of the degree of
linear independence of basis vectors.

It suffices to consider the upper triangular matrix R in the QRZ decomposition. We begin
with the two-dimension case [

r1,1 r1,2

0 r2,2

]
.

The cosine of the angle θ2 between the two columns is

cos θ2 =
r1,1r1,2

|r1,1|
√

r2
1,2 + r2

2,2

.

Denoting the column length l2 =
√

r2
1,2 + r2

2,2 and assuming 0 < θ2 < π, we have

sin θ2 =
|r2,2|
l2

.

Let the determinant of a lattice denote its volume V2, then

V2 = |r1,1r2,2|.

Defining V1 = |r1,1|, l1 = |r1,1|, and θ1 = π/2, we have

V2 = (l1 sin θ1)(l2 sin θ2) = V1(l2 sin θ2). (13)

If we view V1 as the base, then V2/V1 gives the height. Thus sin θ2 = (V2/V1)/l2 is the ratio
between the height and the length as usual.

Now we generalize (13) into order n by letting

Vk = Vk−1(lk sin θk) =

k∏

i=1

(li sin θi), 1 ≤ k ≤ n.
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Since Vk =
∏k

i=1
|ri,i|, we have

sin θk =
|rk,k|

lk
.

Similarly,, |rk,k| = Vk/Vk−1 can be viewed as the height. Indeed, [0, ..., 0, rk,k ]T is the projection
of the kth column onto the subspace orthogonal to the subspace spanned by the first k − 1
columns of R. Thus, θk represents the angle between the kth column and the subspace spanned
by the first k − 1 columns of R. It is then reasonable to use sin θk as a measure for the degree
of linear independence of the kth column from the subspace spanned by the first k− 1 columns
of R. Therefore, we propose a linear independence number σ defined by

σn =

n∏

i=1

sin θi =

n∏

i=1

|ri,i|
li

=
d(L)∏n
i=1

li
(14)

as a measure for the degree of linear independence of a lattice basis. Thus σ is the geometric
mean of sin θi. Note that 0 ≤ σ ≤ 1, and σ = 1 for any diagonal matrix, and σ = 0 for any
singular matrix. Since the volume Vn =

∏n
i=1
|ri,i| = d(L) is a constant for a given lattice L,

by reducing the lengths li, the linear independence number σ in (14) is improved. This explains
why reduction algorithms improve the degree of linear independence by reducing the lengths of
basis vectors.

For example, the matrix

C =





2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 1





is optimally reduced but not HKZ-reduced. Its condition number and the linear independence
number are respectively

κC ≈ 4.27 and σC ≈ 0.8493.

The matrix

D =





2 0 1 −1 −1
0 2 1 −1 −1
0 0 1 1 −1
0 0 1 −1 1
0 0 1 −1 −1





is HKZ-reduced for the same lattice, but not optimally reduced. Its condition number and the
linear independence number are respectively

κD ≈ 4.09 and σD ≈ 0.8143.

Although C is worse conditioned than D, the basis formed by C is better reduced than the basis
formed by D, which is revealed by the linear independence numbers. This example shows that
the linear independence number defined in (14) is a better measurement for reduced bases.
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column 1 2 3 4 5 6 7 8 9 10 11 12

‖ai‖22 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75

‖bi‖22 1.0 1.25 1.5 1.75 1.75 1.75 2.0 2.0 2.0 2.25 2.25 2.25

Table 1: Norms of the columns ai of A (10) the norms of the columns bi of B (15).

8 Experimental Results

In this section, we present our experimental results on comparing Algorithm 3 with the LLL-
algorithm. We first compare the algorithms by the lengths of the reduced basis vectors computed
by the algorithms. Our criterion is: the shorter the basis vectors, the better. Then we compare
the algorithms using both the condition numbers κ and the linear independent numbers σ of
the matrices reduced by the algorithms. As we know, the smaller the κ or the closer to one the
σ, the better. We present our results on two types of matrices: The matrices of the form A in
(10) in section 3.5 and random matrices.

Recalling the matrix A in (10), it is HKZ-reduced, thus LLL-reduced for any ω ∈ (0.25, 1.0).
However, we have shown that it is not optimally reduced when n > 2. Algorithm 3 does not
change A for n < 11. When n = 12, however, it produces an approximation

B =





1 −1

2
−1

2
−1

2
0 −1

2
0 0 −1

2
0 1

2

1

2

0 1 −1

2
−1

2
−1

2
0 0 0 −1

2

1

2
−1

2
−1

2

0 0 1 −1

2
−1

2
0 0 1

2
−1

2

1

2
0 −1

2

0 0 0 1 0 −1

2
−1

2

1

2
−1

2
0 1

2
0

0 0 0 0 −1

2
0 0 0 1 0 0 0

0 0 0 0 1 1

2
0 1

2
0 0 0 −1

2

0 0 0 0 0 1 0 −1

2
0 1

2
−1

2
0

0 0 0 0 0 0 1

2
1 0 1

2
0 1

2

0 0 0 0 0 0 1

2
0 0 0 1

2
1

0 0 0 0 0 0 0 0 0 1

2
1 0

0 0 0 0 0 0 1

2
0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0





(15)

of an optimally reduced basis. Table 1 compares the column norms of A and B. Notice that B
has multiple columns of the same length. Interestingly, as n increases, there are more multiple
basis vectors of the same length.

Now, we use this example to explain why Algorithm 3 only computes an approximation of
an optimally reduced basis. Consider the case when n = 3. Applying Algorithm 3 keeps the
matrix unchanged. Howver, if we transform A into

Â =




1 1

2
−1

2

0 1 −1

2

0 0 1



 (16)

by adding the first column of A to its second column, then Algorithm 3 produces

B =




1 0 1

2

0 1

2
1

0 1 0



 =




1 −1

2
−1

2

0 1 −1

2

0 0 1








1 1 1
0 1 1
0 1 0



 ,
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size n 8 12 16 20

LLL or HKZ 23.002 171.46 1179.8 7604.8

Algorithm 3 23.002 15.094 17.059 40.490

Table 2: Condition numbers κ of reduced matrices by applying Algorithm 3 to A in (10) of
various sizes. Since A is LLL-reduced, the condition number of an LLL-reduced matrix equals
the condition number of A.

size n 8 12 16 20

LLL or HKZ 0.7492 0.6739 0.6186 0.5757

Algorithm 3 0.7492 0.7527 0.7208 0.6828

Table 3: Linear independence numbers σ corresponding to the condition numbers in Table 2.

which is optimally or Minkowski-reduced. The reason is that after the first iteration, the algo-
rithm works on the sublattice generated by the last two columns. While the sublattice generated
by the last two columns of Â in (16) contains the lattice point [0 1

2
1], which is an optimally

reduced basis vector, the sublattice generated by last two columns of A does not contain an op-
timally reduced basis vector. In other words, Algorithm 3 works on some particular sublattices.

Table 2 lists the condition numbers of the reduced matrices by applying the LLL algorithm
and Algorithm 3 to A in (10) of various sizes. Since A is LLL-reduced, the condition number
of LLL-reduced matrix equals that of A. We know that the condition number of A grows
exponentially as n increases.

Table 3 lists the linear independence numbers of the matrices corresponding to Table 2.
It shows that in this case the linear independence numbers are consistent with the condition
numbers

Now we present our results on random matrices. A random matrix with a predetermined
condition number κ ≥ 1 was generated as follows. First, n singular values evenly spaced between
1.0 and κ−1 were generated. Then two random orthogonal matrices U and V were obtained from
the QR decompositions of two random matrices. Finally, a random matrix with condition num-
ber κ was constructed by UΣV T, with Σ the diagonal singular value matrix. In our experiments,
the size n was set to 20. Table 4 shows the condition numbers of matrices reduced by the LLL
algorithm, the HKZ algorithm, and Algorithm 3. The parameter ω in the LLL algorithm was
set to 0.95. Each condition number in the table is an average of five cases. The table shows that
all three algorithms significantly improved the conditioning of an ill-conditioned random matrix
and Algorithm 3 consistently outperformed the LLL algorithm and the HKZ algorithm. Table 5
lists the linear dependence numbers corresponding to the condition numbers in Table 4. Table 5
shows that Algorithm 3 produces better reduced bases than the LLL algorithm and the HKZ
algorithm. In our experiments, occasionally the condition numbers of the matrices produced by
Algorithm 3 were slightly worse than those from the LLL algorithm and the HKZ algorithm,
whereas their linear independence numbers were always better, i.e., closer to one, than those
from the other two algorithms.
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original 103 105 107

LLL 17.007 15.392 16.404

HKZ 16.932 15.978 15.360

Algorithm 3 11.399 11.987 12.331

Table 4: Condition numbers κ of random matrices of order 20 and the condition numbers of the
reduced matrices by the LLL algorithm, the HKZ algorithm, and Algorithm 3.

original 0.5350 0.4235 0.3370

LLL 0.6823 0.6874 0.6815

HKZ 0.6838 0.6953 0.6870

Algorithm 3 0.6939 0.7046 0.6986

Table 5: Linear independence numbers σ corresponding to the condition numbers in Table 4.

Conclusion

In this paper, we have introduced the definition of an optimally reduced lattice basis and pre-
sented an algorithm for computing an approximation of an optimally reduced basis for a lat-
tice. We term it an optimally reduced basis, because a Minkowski-reduced basis, if it exists,
is optimally reduced by our definition. The pivotal part of our reduction algorithm is a novel
unimodular transformation. Given a lattice vector extendable to a basis, it allows us to trans-
form a lattice basis into another basis containing the given lattice vector. In particular, it can
be used to transform a basis for a lattice into another basis that contains a shortest nonzero
lattice vector. It distinguishes our algorithm from the LLL algorithm, which, other than size
reduction, is restricted to permutations of basis vectors based on their projections.

To compare lattice bases, the currently commonly used measurement is the matrix condition
number. The smaller the condition number of a basis matrix, the better the basis. In this paper,
we have proposed a quantitative measurement called linear independent number. The closer to
one the linear independence number, the better the basis. We believe that in the context of
lattice bases this number is a better measurement than the matrix condition number. When
basis vectors are orthogonal to each other, the linear independence number equals one, whereas
the condition number can be arbitrarily large. Moreover, the linear independence number reveals
that shorter basis vectors tend to be “more” orthogonal, because the determinant (volume) of
a lattice is a constant. Our experiments have shown that our algorithm produces shorter basis
vectors than the HKZ and LLL algorithms. Thus our algorithm is suitable for the applications
where a shortest basis is desirable. This advantage comes with the price of more computational
cost. Nevertheless, the efficiency of our algorithm can be improved, for example, by replacing an
exact method for finding a shortest nonzero lattice point by an more efficient but approximate
method. The impact of our algorithm, the unimodular matrix transformation, and the linear
independent number on applications requires further investigation.
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