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1. Introduction

The Drazin inverse has many applications, such as singular differential or difference 
equations and Markov chains. Iterative methods for computing the matrix Drazin inverse 
can be found in [5,6,11,35–37].

The neural network approach to parallel computing and signal processing has been 
successfully developed through a variety of neurodynamic models with learning capabil-
ities [14,22]. Various types of neural networks have been introduced to solve systems of 
linear algebraic equations.

A number of nonlinear and linear Hopfield-type recurrent neural network models 
were recently developed for computing the regular inverse of a nonsingular matrix and 
the generalized inverses of a full-rank rectangular matrix, see [17,24,29,30]. A method 
with high convergence rate for finding approximate inverses of nonsingular matrices 
was suggested and established analytically in [25]. In particular, a feedforward neural 
network architecture for computing the Drazin inverse AD of a square matrix A was 
proposed in [8]. Various recurrent neural networks (RNN) for computing the generalized 
inverses of rank-deficient matrices are presented in [31,34]. In [28], an RNN with linear 
activation functions for computing the Drazin inverse of a square matrix was proposed by 
Stanimirović, Zivković and Wei. The dynamic equation and its corresponding artificial 
RNN for computing the Drazin inverse of a square real matrix, with no restrictions on 
its eigenvalues, were presented in [27]. Four gradient-based recurrent neural networks 
(RNNs) for computing the Drazin inverse of a square real matrix were developed in [32].

A new type of complex-valued Zhang neural network (ZNN) was proposed and inves-
tigated in [20]. The ZNN models for computing the Moore–Penrose inverse of an online 
time-varying and full-rank matrix are investigated and analyzed in [42]. The design of 
the ZNN models is based on an indefinite error-monitoring function, called Zhang func-
tion (ZF), which can be real, complex, positive, zero, negative or unbounded. The ZF 
plays an important role in the development of the ZNN, and largely enriches the theory 
of the ZNN.

Complex matrices occur in situations where the problem contains online frequency 
domain identification processes, or the input signals incorporate both the magnitude 
and phase information [15,26]. Thus, problems in the complex domain have attracted 
extensive attention, [3,12,13,15,16,26,38]. Furthermore, there are applications involving 
the computation of the Drazin inverse of a time-varying matrix [1,4,41]. Two types of 
the ZNN models with various activation functions for computing the online time-varying 
Drazin inverse were proposed, investigated and analyzed by Wang, Wei and Stanimirović 
in [33].

In this paper, based on the idea of the ZF, we design two ZNNs for the online solution 
of the Drazin inverse of a time-varying complex matrix. In addition, inspired by the study 
of finite-time convergence [2,18,19,21,23,39], we use a novel activation function, called 
the Li activation function [18,19,21], to accelerate the ZNN to finite-time convergence to 
the Drazin inverse of a time-varying complex matrix.
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This paper is organized as follows. In Section 2, we review some preliminary results. 
Our two complex ZNN models with Li activation functions for online solution of the 
Drazin inverse of a time-varying complex matrix are presented in Section 3. Convergence 
properties of our complex ZNN models are discussed in Section 4. Illustrative numerical 
examples are presented in Section 5.

The main contributions of this paper are:
(1) This paper focuses on solving time-varying linear matrix equations in the complex 

domain, rather than static or time-varying linear matrix equations in the real domain.
(2) Two finite-time convergent neural dynamical models are proposed and investigated 

for online solution of the Drazin inverse of a time-varying complex matrix.
(3) The results in this paper are a generalization of those in [32] in two directions, one 

is real domain investigated in [32] is extended into the complex domain, and the other 
is Li activation is used and a finite time convergence achieved.

(4) The paper performs a theoretical analysis of our proposed ZNN models and shows 
that our models converge to the Drazin inverse of a time-varying complex matrix in finite 
time. In addition, upper bounds of the convergence time are derived via the Lyapunov 
theory.

2. Preliminaries

For any matrix A ∈ C
n×n, we denote its column space and null space by R(A) and 

N(A) respectively. The index of A, denoted by Ind(A), is the smallest nonnegative integer 
k for which N(Ak) = N(Ak+1). We write ‖ · ‖ for the spectral norm. Given a matrix 
A ∈ C

n×n, A�, AH, ARe and AIm are the transpose, the complex conjugated transpose, 
real part and imaginary part of A, respectively. For given matrices A, B ∈ C

n×n, A ◦B
denotes the Hadamard product of A and B, i.e., A ◦B = [aijbij ]. We use |E| = (|Eij |) and 
Θ(E) = (Θ(Eij)) to denote the element-wise modulus and the element-wise argument of 
the matrix E ∈ C

n×n, respectively. Thus, for a given E ∈ C
n×n, E = |E| ◦ exp(ιΘ(E)), 

where ι is the imaginary unit 
√
−1.

A square matrix X ∈ C
n×n is called the Drazin inverse of a matrix A ∈ C

n×n, if X
satisfies

Ak+1X = Ak, XAX = X, AX = XA, for some k > 0.

We write X = AD for the Drazin inverse of A [9]. Furthermore, if the index k = 1, the 
Drazin inverse is reduced to the group inverse and denoted by A�.

In the present paper, we solve the time varying Drazin inverse problem by using two 
limit representations of the Drazin inverse, stated in the following two lemmas. The first 
limit representation of AD can be derived from the results in [7].

Lemma 2.1. ([7]) Let A ∈ C
n×n, then a closed-form solution of AD is given by

AD = lim
(
Al(A2l+1)HAl+1 + λI

)−1
Al(A2l+1)HAl, for l ≥ Ind(A). (2.1)
λ→0
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Campbell and Meyer [5] gave another limit representation of the Drazin inverse of a 
complex matrix.

Lemma 2.2. ([5]) Let A ∈ C
n×n, then its Drazin inverse has the limit representation:

AD = lim
λ→0

(
Al+1 + λI

)−1
Al, for l ≥ Ind(A). (2.2)

The above two limit presentations are the bases for our two ZNN models proposed in 
the next section.

3. Neural network models based on the ZNN

Now we are ready for the design of our ZNN models for computing the Drazin inverse 
of a complex time-varying matrix A(t), for which we make the following assumption.

Assumption 3.1. The time-varying matrix A(t) ∈ C
n×n in our discussion has the proper-

ties: Ind(A(t)) = k, for t ∈ [0, +∞); A(t)m, m > 0, are continuously differentiable with 
respect to the time t; A(t)m and their time derivatives are uniformly bounded.

Following the three steps outlined in [20,21,42], we present two ZNN models, named 
ZNN-I and ZNN-II, based on the two limit representations (2.1) and (2.2).

3.1. Neural network model ZNN-I

Let Ė(t) denote the time derivative of the complex function E(t), our design procedure 
consists of three steps.

Step 1 (Construct the Zhang Function). In this first step, the ZF, a matrix-valued 
error-monitoring function, is constructed. In this model we use the limit representa-
tion (2.1), which suggests the use of the matrix G(t) = A(t)l

(
A(t)2l+1)H A(t)l. Since 

A(t)l+1A(t)D = A(t)l holds for any l ≥ k, we have the following complex matrix iden-
tity:

G(t)A(t)A(t)D = G(t),

where G(t), A(t), A(t)D ∈ C
n×n.

To convert the above complex matrix identity into a real one, we first rewrite it as

((G(t)A(t))Re + ι(G(t)A(t))Im)
(
A(t)DRe + ιA(t)DIm

)
= (G(t)Re + ιG(t)Im) ,

where (G(t)A(t))Re, (G(t)A(t))Im, A(t)DRe, A(t)DIm, G(t)Re, G(t)Im ∈ R
n×n. Then, equat-

ing the real part and the imaginary part and writing it in matrix form, we obtain[
(G(t)A(t))Re −(G(t)A(t))Im
(G(t)A(t))Im (G(t)A(t))Re

] [
A(t)DRe
A(t)D

]
=

[
G(t)Re
G(t)Im

]
.

Im
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In order to ensure the existence of the unique solution at any time instant t ∈ [0, +∞), 
we introduce the bias matrix [

λI 0
0 λI

]
,

where λ ∈ R, λ > 0 and I ∈ R
n×n is the identity matrix, to the above equation and 

obtain the equation[
(G(t)A(t))Re + λI −(G(t)A(t))Im

(G(t)A(t))Im (G(t)A(t))Re + λI

] [
V (t)Re
V (t)Im

]
=

[
G(t)Re
G(t)Im

]
. (3.1)

Thus, from (2.1), V (t)Re and V (t)Im approach to A(t)DRe and A(t)DIm respectively as 
λ → 0. This process of replacing a possible singular matrix with a well-conditioned 
matrix is known as the Tikhonov regularization method [10]. Thus we define the following 
complex function as the fundamental error-monitoring function, called ZF1:

E(t) =
[

(G(t)A(t))Re + λI −(G(t)A(t))Im
(G(t)A(t))Im (G(t)A(t))Re + λI

] [
V (t)Re
V (t)Im

]
−

[
G(t)Re
G(t)Im

]
. (3.2)

For simplicity, we express the above error-monitoring ZF as

E(t) = U(t)V (t) −D(t), (3.3)

where U(t), V (t), D(t) ∈ R
2n×n are respectively the first, second, and third matrices 

in (3.2).
Step 2 (Choose an activation-function). To ensure the convergence of the error-

monitoring function E(t) to zero, we assume its derivative

Ė(t) := dE(t)
dt = −γΨ(E(t)), (3.4)

where the design parameter γ ∈ R, γ > 0, corresponds to the inductance parameter or the 
reciprocal of the capacitance parameter, and Ψ(·) is a specially constructed activation-
function, a matrix mapping of the neural network. The design parameter γ should be as 
large as the hardware permits [20]. The following four real-valued functions are widely 
used as the activation-function. For more details see, for example [40].

The linear function:

f(x) = x.

The Power-sigmoid function:

f(x) =
{

xp, if |x| ≥ 1
1+exp(−q) · 1−exp(−qx) , otherwise , q > 2, p ≥ 3.

1−exp(−q) 1+exp(−qx)
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The Bipolar-sigmoid function:

f(x) = 1 + exp(−q)
1 − exp(−q) · 1 − exp(−qx)

1 + exp(−qx) , q > 2.

The Smooth power-sigmoid function:

f(x) = 1
2x

p + 1 + exp(−q)
1 − exp(−q) · 1 − exp(−qx)

1 + exp(−qx) , p ≥ 3, q > 2.

To accelerate our ZNN to finite-time convergence, we use the Li activation-function 
matrix Ψ(A) = [ψ(aij)] adopted from [21], whose (i, j)-entry is given by

ψ(e(t)ij) = Lipσ + Lip1/σ, (3.5)

where e(t)ij denotes the (i, j)-entry of E(t) and the function Lipσ with the parameter σ
is defined by

Lipσ =

⎧⎪⎨
⎪⎩

|e(t)ij |σ, e(t)ij > 0,
0, e(t)ij = 0,
−|e(t)ij |σ, e(t)ij < 0,

where 0 < σ < 1.
Step 3 (Derive the dynamic equation of the ZNN model). Combining the following 

time derivative of (3.3):

Ė(t) = U̇(t)V (t) + U(t)V̇ (t) − Ḋ(t) (3.6)

and (3.4), we obtain the implicit dynamic equation of our ZNN-I model:

U(t)V̇ (t) = Ḋ(t) − U̇(t)V (t) − γΨ (U(t)V (t) −D(t)) . (3.7)

3.2. Neural network model II

Analogous to the design of the ZNN-I model, from the limit representation (2.2), we 
propose the complex matrix equation

(A(t)l+1 + λI)A(t)D = A(t)l, for l ≥ k = Ind(A(t)),

where A(t), A(t)D ∈ C
n×n, λ ∈ R, λ > 0, and I is the identity matrix of order n. 

Equating the real part and the imaginary part of the both sides of the above equation, 
we get its corresponding real matrix equations in the matrix form

[
A(t)l+1

Re + λI −A(t)l+1
Im

A(t)l+1 A(t)l+1 + λI

] [
V (t)Re
V (t)Im

]
=

[
A(t)lRe
A(t)l

]
. (3.8)
Im Re Im
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Since the nonzero eigenvalues of A(t)l+1, l ≥ k, lie in the open right-half plane, we define

E1(t) = H(t)V (t) −Q(t), (3.9)

where

H(t) =
[
A(t)l+1

Re + λI −A(t)l+1
Im

A(t)l+1
Im A(t)l+1

Re + λI

]
, V (t) =

[
V (t)Re
V (t)Im

]
, Q(t) =

[
A(t)lRe
A(t)lIm

]
,

as the fundamental error-monitoring function. Its derivative with respect to the time t, 
then equals to

Ė1(t) = H(t)V̇ (t) + Ḣ(t)V (t) − Q̇(t).

Finally, applying the above derivative to the design pattern (3.4), we obtain the implicit 
dynamic equation

H(t)V̇ (t) = Q̇(t) − Ḣ(t)V (t) − γΨ(H(t)V (t) −Q(t)) (3.10)

for our second ZNN model, named ZNN-II. Thus, from (2.2), the state matrix V (t)
approaches the Drazin inverse as λ in H(t) tends to zero.

4. Convergence analyses

In this section, we show that the both neural network models ZNN-I and ZNN-II 
globally converge to the theoretical time-varying solutions for (3.1) and (3.8) respectively 
in finite time. Thus, they lead to the Drazin inverse as λ → 0.

4.1. Convergence of the model ZNN-I

We first state the following lemma, which is useful for the convergence analysis of the 
model ZNN-I.

Lemma 4.1. [33] Let A(t) ∈ C
n×n be of index k, then the eigenvalues λ of the matrix 

G(t)A(t) = A(t)l
(
A(t)2l+1)H A(t)l+1, l ≥ k satisfy Re(λ) ≥ 0.

We then have the following result of the convergence of the ZNN-I model.

Theorem 4.1. Given a time-varying complex matrix A(t) ∈ C
n×n. Under Assumption 3.1, 

if the Li activation function (3.5) is used, then the state matrix V (t) ∈ R
2n×n of the 

dynamic equation (3.7) of the ZNN model ZNN-I, starting from an arbitrary initial state 
V (0), converges to the theoretical solution of (3.1) in finite time
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tf < max
{
|e−(0)|1−σ

γ(1 − σ) ,
|e+(0)|1−σ

γ(1 − σ)

}
, (4.1)

where e+(0) and e−(0) are the largest and the smallest elements in the matrix E(0) =
U(0)V (0) −D(0), respectively.

Proof. Let the real matrix V (t) be the state matrix generated by the dynamic equation 
(3.7) and V∗(t) the solution of the matrix equation (3.1). We consider the difference 
E∗(t) = V (t) − V∗(t). The time derivative of

U(t)V∗(t) −D(t) = 0 (4.2)

is

U̇(t)V∗(t) + U(t)V̇∗(t) − Ḋ(t) = 0. (4.3)

Since V (t) = V∗(t) + E∗(t), (4.2) implies

E(t) = U(t)V (t) −D(t) = U(t)E∗(t).

Applying (4.3) and V (t) = V∗(t) + E∗(t) to the model (3.7), we obtain

U̇(t)E∗(t) + U(t)Ė∗(t) = −γ Ψ(U(t)E∗(t)),

that is,

Ė(t) = −γ Ψ(E(t)),

whose elementwise expression is

ėij(t) = −γψ (eij(t)) , i, j = 1, 2, ..., n.

In order to show the global convergence of eij(t), we consider the Lyapunov function 
L(t) = [lij(t)], where

lij(t) =
e2
ij(t)
2 .

It then follows that

l̇ij(t) = eij(t)ėij(t) = −γeij(t)ψ (eij(t)) .

Since

ψ (eij(t))

⎧⎪⎨
⎪⎩

> 0, eij > 0,
= 0, eij = 0,
< 0, e < 0,
ij
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and γ > 0, we get

l̇ij(t)
{

< 0, eij(t) 	= 0,
= 0, eij(t) = 0.

Following the argument in the proof of Theorem 1 in [21], by the Lyapunov stability 
theory, eij(t), 1 ≤ i, j ≤ n, globally converges to zero. Thus, from the nonsingularity of 
U(t) in E(t) = U(t)V (t) −D(t), the state matrix V (t) globally converges to the solution 
of (3.1), as the time t increases, with any initial state V (0), and approaches the Drazin 
inverse, as λ → 0.

Next, we prove that the ZNN-I model converges in finite time.
Let e+(t) be the entry in E(t) such that e+(0) = max(E(0)) and let e−(t) be the 

entry in E(t) such that e−(0) = min(E(0)). Following the proof of Theorem 1 in [21], 
we have

e−(t) ≤ eij(t) ≤ e+(t), for 1 ≤ i, j ≤ n.

Thus it remains to show that both e−(t) and e+(t) converge to zero in finite time. We 
first investigate the convergence time of e+(t), which satisfies

ė+ = −γψ
(
e+(t)

)
with e+(0) = max(E(0)),

where ψ(·) is the Li activation function (3.5). Considering an alternative Lyapunov func-
tion l+(t) = |e+(t)|2 ≥ 0, we have

l̇+(t) = −2γ|e+(t)|ψ
(
|e+(t)|

)
= −2γ

(
|e+(t)|σ+1 + |e+(t)|1/σ+1

)
≤ −2γ|e+(t)|σ+1

= −2γ l(σ+1)/2
+ (t).

Solving the differential inequality

l̇+(t) ≤ −2γ l(σ+1)/2
+ (t)

with the initial condition l+(0) = |e+(0)|2, we obtain

l
(1−σ)/2
+

{
≤ |e+(0)|1−σ − γ(1 − σ)t, when t ≤ |e+(0)|1−σ

γ(1−σ) ,

0, otherwise.

That is, l+(t) = |e+(t)|2 converges to zero before the time t = |e+(0)|1−σ/(γ(1 − σ)). 
Similarly, |e−(t)|2 converges to zero before the time t = |e−(0)|1−σ/(γ(1 − σ)). Putting 
things together, we have the convergence time (4.1). �
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4.2. Convergence of the model ZNN-II

Analogous to Theorem 4.1, we can prove the following theorem of the finite-time 
convergence of the model ZNN-II.

Theorem 4.2. Let A(t) ∈ C
n×n be a time-varying complex matrix. Under the Assump-

tion 3.1. If the Li activation function Ψ(·) is used, then the state matrix V (t) ∈ R
2n×n

of the dynamic equation (3.10) of the neural network model ZNN-II, starting from any 
initial state V (0), globally converges to the theoretical solution of (3.8) in finite time

tf < max
{
|e−1 (0)|1−σ

γ(1 − σ) ,
|e+

1 (0)|1−σ

γ(1 − σ)

}
,

where e+
1 (0) and e−1 (0) are the largest and the smallest elements in the matrix E1(0) =

H(0)V (0) −Q(0), respectively.

5. Numerical examples

For the purpose of comparison, we state the following two gradient-based neural net-
works (GNN) [27,28]

V̇ (t) = −γU(t)�Ψ
(
U(t)V (t) −D(t)

)
, with V (0) = 0, (5.1)

and

V̇ (t) = −γH(t)�Ψ
(
H(t)V (t) −Q(t)

)
, with V (0) = 0, (5.2)

where

U(t) =
[

(G(t)A(t))Re + λI −(G(t)A(t))Im
(G(t)A(t))Im (G(t)A(t))Re + λI

]
,

V (t) =
[
V (t)Re
V (t)Im

]
, D(t) =

[
G(t)Re
G(t)Im

]
,

and

H(t) =
[
A(t)l+1

Re + λI −A(t)l+1
Im

A(t)l+1
Im A(t)l+1

Re + λI

]
, Q(t) =

[
A(t)lRe
A(t)lIm

]
,

and Ψ(·) is the Li activation function defined in (3.5).
We first present our test results on the ZNNs, then we present our test results on the 

GNNs for comparison.
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Fig. 1. Componentwise convergence of the model ZNN-I in Example 1.

5.1. Numerical tests based on ZNN

Example 1. Consider the complex time-varying matrix

A(t) =

⎡
⎢⎣ ι sin(2t) ι cos(2t) −ι sin(2t)
−ι cos(2t) ι sin(2t) ι cos(2t)
ι sin(2t) ι cos(2t) 0

⎤
⎥⎦ .

Numerical values of A(t)D at time t are computed numerically via the formula

A(t)D = A(t)k
(
A(t)2k+1)† A(t)k, (5.3)

where k = Ind(A(t)) = 1 and A† denotes the Moore–Penrose inverse of A. The exact 
Drazin inverse of A(t) is

A(t)D =

⎡
⎢⎣ ι cos(2t) cot(2t) ι cos(2t) −ι csc(2t)

−ι cos(2t) −2ι cos(t) sin(t) 0
ι csc(2t) 0 −ι csc(2t)

⎤
⎥⎦ .

We set l = 2, the initial state V (0) as the matrix of appropriate dimensions whose entries 
are ones and chose the Li activation function as Ψ(·) defined in (3.5) with σ = 0.8. In 
our ZNN-I model, we set γ = 3 × 105 and λ = 10−6.

To show the convergence, Fig. 1 depicts the componentwise absolute difference 
|A(t)D − V (t)| between the Drazin inverse A(t)D computed using (5.3) and the state 
matrix V (t) produced by our ZNN-I model. In particular, Fig. 1 (a) shows the three 
components of the first column of |A(t)D − V (t)|, where the first component is rep-
resented by ‘∗’, the second component by ‘◦’, and the third by ‘+’. Fig. 1 (b) and (c) 
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Fig. 2. Trajectory of Frobenius norm of the residual (5.4) in Example 1.

depict the second and third columns respectively. The figures show that our ZNN-I model 
converges to the Drazin inverse A(t)D.

Our ZNN-I model produces an approximation of the solution V (t) for (3.1). Thus, to 
verify the upper bound for the convergence time given by Theorem 4.1, in Fig. 2, for 
given different λ, we plot the trajectory of the Frobenius norm for the residual error∥∥∥∥∥

[
(G(t)A(t))Re + λI −(G(t)A(t))Im

(G(t)A(t))Im (G(t)A(t))Re + λI

] [
V (t)Re
V (t)Im

]
−
[
G(t)Re
G(t)Im

]∥∥∥∥∥
F

.

Note that the theoretical upper bound for the convergence time of this example, where 
γ = 3 × 105, λ = 10−6, and σ = 0.8, can be obtained by

max
{
|e−(0)|1−σ

γ(1 − σ) ,
|e+(0)|1−σ

γ(1 − σ)

}
= λ0.2

0.2γ ≈ 1.0 × 10−6. (5.4)

As expected, in this example, our model converges before the above theoretical upper 
bound. It is worth pointing out that, as shown in Fig. 2, the convergence time of ZNN-I 
model can be shortened from 1.4 × 10−6 s to 0.9 × 10−6 s and even to 0.6 × 10−6 s when 
the value of parameter λ decreases from 10−4 to 10−5 and to 10−6. These simulative 
observations have shown different values of λ can influence the speed of convergence for 
ZNN-I model.

Example 2. Consider the time-varying matrix

A(t) =

⎡
⎢⎢⎢⎣

2 sin(t) + ι cos(t) ι sin(t) 1 sin(t) + ι cos(t)
ι sin(t) cos(t)(ι + 1) 2 sin(t) + 2ι cos(t) ι sin(t) + 1

cos(t) + ι sin(t) ιt + 1 0 2 cos(t) + 2ι sin(t)
ι + 1 2 cos(t) + 2ι sin(t) sin(t) + ι cos(t) 0

⎤
⎥⎥⎥⎦ .
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Fig. 3. Componentwise convergence of the model ZNN-II in Example 2.

For any t ≥ 0, A(t) is an invertible matrix. Thus A(t)D = A(t)−1. Numerical values of 
A(t)−1 at time t were computed by calling the Matlab function inv(A(t)). We set l = 2, 
the initial state V (0) as the matrix of appropriate dimensions whose entries are ones and 
chose the Li activation function as Ψ(·) defined in (3.5) with σ = 0.8. In our ZNN-II 
model, we set γ = 106 and λ = 10−6.

Fig. 3 shows the convergence by depicting the componentwise absolute difference 
|A(t)−1−V (t)| between A(t)−1 computed by Matlab and the state matrix V (t) produced 
by our ZNN-II model. In particular, Fig. 3 (a) shows the four components of the first 
column of |A(t)−1 − V (t)|, where the first component is represented by ‘∗’, the second 
component by ‘◦’, the third by ‘+’, and the forth by ‘
’. Fig. 3 (b), (c) and (d) depict the 
second, third and forth columns respectively. The figures show that our ZNN-II model 
converges to the inverse A(t)−1.
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Fig. 4. Trajectory of the Frobenius norm of the residual ‖H(t)V (t) − Q(t)‖F in Example 2.

Our ZNN-II model produces an approximation of the solution V (t) for (3.8). Thus, 
to verify the upper bound for the convergence time given by Theorem 4.2, in Fig. 4, we 
plot the trajectory of the Frobenius norm of the residual error ‖H(t)V (t) − Q(t)‖F in 
(3.9) by taking different values of λ.

Note that the theoretical upper bound for the convergence time of this example, where 
γ = 106, λ = 10−6, and σ = 0.8, can be obtained by

max
{
|e−1 (0)|1−σ

γ(1 − σ) ,
|e+

1 (0)|1−σ

γ(1 − σ)

}
= 180.2

0.2γ ≈ 8.9 × 10−6. (5.5)

As expected, in this example, our model converges before the above theoretical upper 
bound. Similar to the Example 1, we can see different values of λ can influence the speed 
of convergence for ZNN-II model.

5.2. Numerical tests based on GNN

Now we compare our ZNN-I model with the GNN model (5.2) to show the superiority 
of the ZNN model over the GNN model.

Example 3. We apply the GNN model (5.2) to Example 1 with the same Li activation 
function and the same parameters.

Fig. 5 displays the componentwise absolute difference |A(t)D − V (t)| between A(t)D
computed using (5.3) and the state matrix V (t) produced by the GNN model (5.2). In 
particular, Fig. 5 (a) shows the three components of the first column of |A(t)D − V (t)|, 
where the first component is represented by ‘∗’, the second component by ‘◦’, and the 
third by ‘+’. Fig. 5 (b) and (c) depict the second and third columns respectively. From 
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Fig. 5. Componentwise absolute error in the GNN model (5.2) in Example 3.

the figures, we can see that especially the first component of each column of V (t) does 
not converge to its counterpart in the Drazin inverse A(t)D.

From the Figs. 1, 3 and 5, we can see that the ZNN state matrix V (t) converges to the 
Drazin inverse, whereas the GNN state matrix V (t) diverges from the Drazin inverse.

The reason for the superiority of the ZNN over the GNN is that the ZNN exploits 
the time-derivative information during the real-time inverting process, which ensures 
its global exponential convergence to the solution of the time-varying Drazin inverse 
problem. In contrast, the GNN, which does not exploit the time-derivative information, 
is ineffective on solving such time-varying Drazin inverse problem.

6. Conclusion

Two ZNN models (3.7) and (3.10) are developed for computing the Drazin inverse of a 
complex time-varying matrix. The proposed network models are based on the two limit 
representations (2.1) and (2.2) of the Drazin inverse. Applying the Lyapunov theory, 
we prove the finite-time global convergence of our models and drive upper bounds for 
the convergence time in Theorem 4.1 and Theorem 4.2. Our experiments verify our 
theoretical analysis and demonstrate the superiority of the ZNN over the gradient-based 
GNN. Since the ZNN exploits the time-derivative information, it is more effective on the 
time-varying problems than the GNN.
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