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ABSTRACT
The Zhang neural network (ZNN), a recurrent neural network,
proposed in 2001, is particularly effective in solving time-vary-
ing problems. It has shown high efficiency and excellent per-
formance in various applications. The weighted pseudoinverse
is a useful tool in solving and analyzing the constrained least-
squares problems. In this paper, we propose a ZNN model for
computing the weighted pseudoinverse of a time-varying
matrix. We show that our model converges globally and expo-
nentially to the solution and our system is robust at the pres-
ence of small errors. A Matlab Simulink implementation of our
model is presented. Our convergence analysis is verified by
our experiments on testing matrices. A comparison study
shows that our model has superior performance over the con-
ventional gradient-based neural networks.
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1. Introduction

The generalized inverses have numerous applications, such as control, net-
works, statistics, econometrics. See the monograph [5] edited by Nashed
and published in 1976 and recently reprinted by Elsevier for theory, ana-
lysis, computational methods and applications. In particular, the weighted
pseudoinverse can be used in solving the constrained least-squares prob-
lems [2], which have wide applications. Algorithms for computing the
weighted generalized inverses have been proposed, for example, Galba,
Deineka, and Sergienko presented iterative methods for calculating the
weighted pseudoinverses [3]. Note that these methods are designed for
time-invariant matrices, that is, matrices with constant entries. However,
there are applications such as online frequency domain identification
processes where the weighted pseudoinverses of time-varying matrices are
involved [2, 11, 12]. The algorithms in [3] are not suitable for the time-
varying applications [8, 9, 26, 28].
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Due to its parallel processing nature, high performance in large-scale
online applications, and the convenience of hardware implementations, the
neural dynamics approach in the form of recurrent neural networks
(RNNs) has been investigated intensively and regarded as a powerful tool
for solving online linear and nonlinear problems. See [14–18] for
recent progresses.
Since 2001, a special class of RNNs, called the Zhang neural networks

(ZNNs), has been proposed for online solutions of various time-varying
problems [4, 22–25]. The ZNNs differ from the conventional gradient
neural networks (GNNs) in the types of the problems to be solved, error
functions, design formulas, dynamic equations, and the utilization of time
derivatives. By using the Zhang functions (ZFs), the basis for the ZNN, and
the time-derivative information of the time-varying coefficients, the ZNN
models guarantee the exponential global convergence.
In this paper, we present a ZNN model for computing the weighted

pseudoinverse of a time-varying matrix and prove its exponential global
convergence. The computer simulation of our ZNN model demonstrates its
efficiency and superiority over the conventional GNNs.
This paper is organized as follows. In Section 2 introduces some prelimi-

naries for the time-varying ML-weighted pseudoinverse. The design proced-
ure of our ZNN models is given in Section 3 and the simulations are
presented in Section 4.

2. Preliminaries and problem formulation

This section presents some necessary preliminaries of the time-varying
weighted pseudoinverse, including a definition, properties, and a limit
representation.
We modify the definition of the weighted, or more precisely ML-

weighted, pseudoinverse of a matrix K with constant (time-invariant)
entries in [2] into that of a matrix K(t) with time-varying entries [1, 2, 6,
10, 12, 13].

Definition 2.1. Given an m� n time-varying matrix K(t) and and two
weight matrices M(t), s�m, and L(t), l� n, whose entries are continuously

differentiable real-valued functions of time t, t � 0: Let PðtÞ ¼
In�½MðtÞKðtÞ�†MðtÞKðtÞ, then the time-varying ML-weighted pseudoin-
verse matrix of K(t) is defined by

K†
MLðtÞ ¼ In � ðLðtÞPðtÞÞ†LðtÞ

� �
MðtÞKðtÞ½ �†MðtÞ,

where ½MðtÞKðtÞ�† denotes the Moore-Penrose inverse of MðtÞKðtÞ:

2 S. QIAO ET AL.



The following theorem shows a relationship between the the ML-
weighted pseudoinverse and the ML-weighted least-squares (ML-WLS)
problem, which is similar to [2, Theorem 2.1].

Theorem 2.2. Given an m� n time-varying real matrix K(t) and two weight
matrices M(t), s�m, and L(t), l� n, for t � 0, the ML-weighted least-
squares (ML-WLS) problem is

min
f ðtÞ2B

jjf ðtÞjjLðtÞ,B ¼ ff ðtÞj jjKðtÞf ðtÞ�gðtÞjjMðtÞ is minimumg, 8t � 0,

(2.1)

where jj � jjMðtÞ and jj � jjLðtÞ are the ellipsoid semi-norms defined respectively

by

jjgðtÞjj2MðtÞ ¼ gðtÞTMðtÞTMðtÞgðtÞ and jjf ðtÞjj2LðtÞ ¼ f ðtÞTLðtÞTLðtÞf ðtÞ, 8t � 0:

The general solution to this problem is given by

f ðtÞ ¼ K†
MLðtÞgðtÞ þ PðtÞ½In � ðLðtÞPðtÞÞ†LðtÞPðtÞ�zðtÞ, 8t � 0, (2.2)

where z(t) is a time-varying n-vector. Moreover, the solution is unique if and
only if

nullðMðtÞKðtÞÞ \ nullðLðtÞÞ ¼ f0g: (2.3)

Proof. First, if MðtÞKðtÞ is of full column rank, then nullðMðtÞKðtÞÞ ¼ f0g,
and P(t) ¼ 0, and the theorem is true.
For the case rankðMðtÞKðtÞÞ< n, we use [7, (3.2.5)] to obtain

B ¼ ff ðtÞjf ðtÞ ¼ MðtÞKðtÞ½ �†MðtÞgðtÞ þ PðtÞyðtÞ, yðtÞ arbitraryg:

Put ~gðtÞ ¼ ½MðtÞKðtÞ�†MðtÞgðtÞ, we have

min
f ðtÞ2B

jjf ðtÞjjLðtÞ ¼ minjj~gðtÞ þ PðtÞyðtÞjjLðtÞ:

It follows from [7] that this least-squares problem has the general solution

yðtÞ ¼ � LðtÞPðtÞ½ �†LðtÞ~gðtÞ þ I�ðLðtÞPðtÞÞ†LðtÞPðtÞ
� �

zðtÞ,
where z(t) is arbitrary. Thus the general solution of (2.1) is

f ðtÞ ¼ MðtÞKðtÞ½ �†MðtÞgðtÞ�PðtÞ LðtÞPðtÞ½ �†LðtÞ~gðtÞ þ PðtÞ I�ðLðtÞPðtÞÞ†LðtÞPðtÞ
� �

zðtÞ
¼ I�PðtÞðLðtÞPðtÞÞ†LðtÞ
� �

ðMðtÞKðtÞÞ†MðtÞgðtÞ þ PðtÞ I�ðLðtÞPðtÞÞ†LðtÞPðtÞ
� �

zðtÞ:

It is obvious that PðtÞ½LðtÞPðtÞ�† ¼ ½LðtÞPðtÞ�† and thus we prove the
first part.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 3



For the second part, if (2.3) is not satisfied, then the solution cannot be
unique, for any element of the intersection of the nullspaces can be added
to the solution without changing the minimum.
If (2.3) is satisfied. Let z(t) be arbitrary and put wðtÞ ¼ PðtÞ

½I�ðLðtÞPðtÞ�†LðtÞPðtÞÞzðtÞ: Then wðtÞ 2 nullðMðtÞKðtÞÞ and wðtÞ 2
nullðLðtÞÞ: Thus by (2.3) w(t) ¼ 0, and the solution is unique. w

The time-varying ML-weighted pseudoinverse matrix K†
MLðtÞ has the fol-

lowing properties analogous to those of the Moore-Penrose inverse.

Lemma 2.3. Let K†
MLðtÞ ¼ XðtÞ, t � 0, then the following four equations hold

for all t � 0:

1. MðtÞKðtÞXðtÞKðtÞ ¼ MðtÞKðtÞ;
2. XðtÞKðtÞXðtÞ ¼ XðtÞ;
3. ½MðtÞTMðtÞKðtÞXðtÞ�T ¼ MðtÞTMðtÞKðtÞXðtÞ;
4. ½LðtÞTLðtÞXðtÞKðtÞ�T ¼ LðtÞTLðtÞXðtÞKðtÞ:

The following lemma gives a limit representation of K†
MLðtÞ:

Lemma 2.4. The limit

lim
k!0

ðMðtÞKðtÞÞTMðtÞKðtÞ þ k2LðtÞTLðtÞ
h i†

ðMðtÞKðtÞÞTMðtÞ (2.4)

exists and equals K†
MLðtÞ, for all t � 0:

Denoting DkðtÞ ¼ ½MðtÞKðtÞ�TMðtÞKðtÞ þ k2LðtÞTLðtÞ and SðtÞ ¼
½MðtÞKðtÞ�TMðtÞ, then the limit representation (2.4) becomes

K†
MLðtÞ ¼ lim

k!0
DkðtÞ†SðtÞ: (2.5)

Let DðtÞ ¼ limk!0DkðtÞ and X(t) be an approximation of K†
MLðtÞ, then

DðtÞ†SðtÞ�XðtÞ gives the approximation error. However, the computation

of the error requires DðtÞ†: How do we compute the error without the

pseudoinverse DðtÞ†? Indeed,
rangeðSðtÞÞ ¼ range ðMðtÞKðtÞÞTMðtÞ

h i
� range ðMðtÞKðtÞÞT

h i
¼ range ðMðtÞKðtÞÞTMðtÞKðtÞ

h i
¼ rangeðDðtÞÞ:

4 S. QIAO ET AL.



Thus DðtÞDðtÞ†SðtÞ ¼ SðtÞ, since DðtÞDðtÞ† is an orthogonal projection
onto rangeðDðtÞÞ, which includes rangeðSðtÞÞ: Consequently, K†

MLðtÞ�
DðtÞ†SðtÞ ¼ 0 implies DðtÞK†

MLðtÞ�SðtÞ ¼ 0: That is,

DkðtÞK†
MLðtÞ�SðtÞ ! 0, as k ! 0: (2.6)

If X(t) is an approximation of K†
ML, then DkðtÞXðtÞ�SðtÞ can be used as an

approximation error for small k.

Remark. The equation (2.6) is used as the error monitoring function in
our ZNN model, since it is easier to compute DkðtÞXðtÞ�SðtÞ than to com-

pute the pseudoinverse form DkðtÞ†SðtÞ�XðtÞ: As for numerical experi-
ments, a very small k should be avoided, as it can cause spurious results.

Remark. Since

DkðtÞ ¼
MðtÞKðtÞ
kLðtÞ

" #T
MðtÞKðtÞ
kLðtÞ

" #
,

when

rank
MðtÞKðtÞ
kLðtÞ

" # !
¼ n, for any t � 0, as k ! 0,

then rankðDkðtÞÞ ¼ n and ðDkðtÞÞ† ¼ ðDkðtÞÞ�1, as k ! 0: In this case

DðtÞK†
MLðtÞ�SðtÞ ¼ 0 is equivalent to DðtÞ†SðtÞ�K†

MLðtÞ ¼ 0:

Remark. (Regularization) If

rank
Mðt0ÞKðt0Þ

kLðt0Þ

" # !
< n, for some t0 � 0, as k ! 0,

then DkðtÞ is not invertible for all t, as k ! 0: To alleviate the problem, we
introduce a small regularization parameter l into DkðtÞ :

DkðtÞ ¼ MðtÞKðtÞ½ �TMðtÞKðtÞ þ ðk2 þ lÞLðtÞTLðtÞ, as k ! 0:

In our experiments, we chose l� 10�8, the square root of the dou-
ble precision.

3. Design of the ZNN model

In this section, we present the design procedure of our ZNN model. The
ZF is the design basis for a ZNN model, for simplicity, we denote E(t) as

the ZF and _EðtÞ as the time derivative of E(t).

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 5



To achieve global exponential convergence of E(t) to zero, we choose

_EðtÞ :¼ dEðtÞ
dt

¼ �cUðEðtÞÞ, (3.1)

called the ZNN design formula, where the design parameter c> 0 corre-
sponds to the inductance parameter or the reciprocal of a capacitance par-
ameter, which should be set as large as the hardware permits, and U is an
activation array to be specified in subsection 3.2.

3.1. The ZNN model for the time-varying ML-weighted pseudoinverse matrix

We define the ZF

EðtÞ ¼ DkðtÞXðtÞ�SðtÞ
as the fundamental error-monitoring function, where X(t) is an approxima-
tion of K†

MLðtÞ: Its derivative is then

_EðtÞ ¼ _DkðtÞXðtÞ þ DkðtÞ _XðtÞ� _SðtÞ,
as k ! 0: Applying the ZNN design formula (3.1), we have the correspond-
ing dynamic equation of the ZNN model:

_DkðtÞXðtÞ þ DkðtÞ _XðtÞ� _SðtÞ ¼ �cUðDkðtÞXðtÞ�SðtÞÞ, (3.2)

which is equivalent to:

DkðtÞ _XðtÞ ¼ �cUðDkðtÞXðtÞ�SðtÞÞ� _DkðtÞXðtÞ þ _SðtÞ, (3.3)

or

_XðtÞ ¼ �cUðDkðtÞXðtÞ�SðtÞÞ� _DkðtÞXðtÞ þ _SðtÞ�DkðtÞ _XðtÞ þ _XðtÞ: (3.4)

The (ij)th-neuron dynamic equation of the ZNN model (3.4) is

_xijðtÞ ¼ �
Xn
k¼1

_dikðtÞxkjðtÞ � dikðtÞ _xkjðtÞ
� �

þ _sijðtÞ�c/
Xn
k¼1

dikðtÞxkjðtÞ � sijðtÞ
� � !

þ _xijðtÞ,

where xijðtÞ, _xijðtÞ, dijðtÞ, _dijðtÞ, sijðtÞ, and _sijðtÞ denote the (ij)th entries of

their corresponding matrices X(t), _XðtÞ, D(t), _DðtÞ, S(t), _SðtÞ: The block
diagram realizing the ZNN model (3.4) is shown in Figure 1.

3.2. Four types of the activation array Uð�Þ
The activation array U can be one of the following four types:

6 S. QIAO ET AL.



	 linear function: /ðuÞ ¼ u;
	 bipolar-sigmoid function: /ðuÞ ¼ 1� exp ð�quÞ

1þ exp ð�quÞ , q � 1;

	 power-sigmoid function: /ðuÞ ¼ 1þ exp ðqÞ
1� exp ðqÞ � 1� exp ð�quÞ

1þ exp ð�quÞ , q � 1, if juj< 1
or /ðuÞ ¼ up, p � 3, otherwise.

3.3. Global exponential convergence of the ZNN-ML model (3.4)

Now, we show that the ZNN-ML model (3.4) converges globally and expo-
nentially to the ML-weighted pseudoinverse under the following condition.

Invertibility Condition A. There exists a positive real number a1> 0 such
that

min
1
i
n

jkiðDðtÞÞj � a1, for any t � 0,

where kiðDðtÞÞ denotes the ith eigenvalue of matrix D(t) of order n.
Before proving the convergence, we state the following result [26,

Lemma 4.2.1].

Lemma 3.1. If DkðtÞ satisfies the Invertibility Condition A and is bounded
above by b, that is, jjDkðtÞjjF 
 b, for all t � 0, as k ! 0, then its inverse is
uniformly upper bounded, that is,

jjD�1
k ðtÞjjF 
 uðbÞ :¼

Xn�2

i¼0

ðCi
nb

n�i�1=an�i
1 þ n3=2=a1Þ, for t � 0, as k ! 0,

where Ci
n ¼ n!=ði!ðn�iÞ!Þ, recalling that a1 is a lower bound for the

eigenvalues.

Theorem 3.2. Given an m� n smoothly time-varying matrix K(t) and two
smoothly time-varying weight matrices M(t), s�m, and L(t), l� n. If DkðtÞ

Figure 1. Block Diagram of the ZNN model (3.4).
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satisfies the Invertibility Condition A, as k ! 0þ, and Uð�Þ is a monotonic-
ally increasing odd function array, then the n�m state matrix X(t) of the
ZNN-ML model (3.4), starting from any initial X(0), globally converges to
the time-varying pseudoinverse K†

MLðtÞ of matrix K(t).

Proof. Since D(t) satisfies Invertibility Condition A,

rankðDkðtÞÞ ¼ rank
MðtÞKðtÞ
kLðtÞ

� 	
 �
¼ n, for any t � 0, as k ! 0þ:

So, (2.6) holds and the ZNN-ML model (3.4) is applicable. Let X�ðtÞ denote
the exact solution K†

MLðtÞ and ~XðtÞ ¼ XðtÞ�X�ðtÞ the difference between
the solution X(t) generated by the ZNN-ML model (3.4) and the exact
solution. As k ! 0þ, we have DðtÞX�ðtÞ�SðtÞ ¼ 0 and its time derivative

_DðtÞX�ðtÞ þ DðtÞ _X�ðtÞ� _SðtÞ ¼ 0: (3.5)

Substituting X�ðtÞ ¼ XðtÞ�~XðtÞ into the above equation (3.5), we get

_DðtÞ~XðtÞ þ DðtÞ _~XðtÞ ¼ �cUðDðtÞ~XðtÞÞ: (3.6)

It then follows that the difference ~XðtÞ is the solution ensuing the dynamics

with the initial state ~Xð0Þ ¼ Xð0Þ�~Xð0Þ:
Since EðtÞ ¼ DðtÞXðtÞ�SðtÞ ¼ DðtÞðX�ðtÞ þ ~XðtÞÞ�SðtÞ ¼ DðtÞ~XðtÞ and

_EðtÞ ¼ _DðtÞ~XðtÞ þ DðtÞ _~XðtÞ, Equation (3.6) can be rewritten as

_EðtÞ ¼ �cUðEðtÞÞ,
which is a compact matrix form of the following set of n2 equations

_eijðtÞ ¼ �c/ðeijðtÞÞ, for all i, j 2 f1, 2, :::, ng: (3.7)

Now, we define a Lyapunov function candidate vijðtÞ ¼ e2ijðtÞ=2 for the

(ij)th subsystem (3.7) with its time derivative

dvijðtÞ
dt

¼ eijðtÞ_eijðtÞ ¼ �ceijðtÞ/ðeijðtÞÞ: (3.8)

Because the activation functions /ðuÞ are monotonically increasing odd
functions, we have /ð�uÞ ¼ �/ðuÞ and

/ðuÞ ¼
> 0, if u> 0;
¼ 0, if u ¼ 0;
< 0, if u< 0,

8<
:

which guarantees the negative definiteness of _vijðtÞ, that is, _vijðtÞ< 0, for eijðtÞ 6¼
0, and _vijðtÞ ¼ 0, for eijðtÞ ¼ 0: By the Lyapunov stability theory, eijðtÞ globally
converges to zero for any i, j 2 f1, 2, :::, ng: Thus from EðtÞ ¼ DðtÞ~XðtÞ and

8 S. QIAO ET AL.



Invertibility Condition A, we have ~XðtÞ ! 0 as t ! 1, i.e., the neural state X(t)
is globally convergent to the exact inverse X�ðtÞ: This completes the proof of the
global convergence. Moreover, EðtÞ ¼ DðtÞ~XðtÞ ¼ DðtÞ½XðtÞ�X�ðtÞ�,
Invertibility Condition A, and Lemma 3.1 imply that

jjXðtÞ�X�ðtÞjjF 
 jjD�1ðtÞjjFjjEðtÞjjF 
 uðbÞ
Xn
i

Xn
j

e2ijðtÞ
 !1=2


 nuðbÞ max
1
i, j
n

jeijðtÞj
� �

,

showing that the error and the network convergence can be estimated by
the maximum entry error eijðtÞ in (3.8). w

For the simple linear case where /ðeijðtÞÞ ¼ eijðtÞ and _eijðtÞ ¼ �ceijðtÞ,
we have

eijðtÞ ¼ exp ð�ctÞeijð0Þ:
Thus there exists a constant f> 0, such that

jjXðtÞ�X�ðtÞjjF 
 f exp ð�ctÞ:
This means that the neural network possesses the exponential convergence
at the rate c, when using the linear activation function /ðuÞ ¼ u:
Next, we consider an alternative invertibility condition.

Invertibility Condition B. There exists a positive real number a2> 0 such
that

rminðDkðtÞÞ � aðtÞ> a2, for any t � 0, as k ! 0,

where rminðDkðtÞÞ denotes the minimum singular value of matrix DkðtÞ:
Lemma 3.3. When DkðtÞ satisfies Invertibility Condition B, then

jjD�1
k ðtÞjj2 ¼

1
rminðDkðtÞÞ 


1
aðtÞ <

1
a2

:

Theorem 3.4. Given an m� n KðtÞ and two weight matrices M(t), s�m and
L(t), l� n. If DkðtÞ satisfies the Invertibility Condition B, as k ! 0þ and a
monotonically increasing odd function array Uð�Þ is used, then the n�m state
matrix X(t) of the ZNN-ML model (3.4), starting from any initial X(0), globally
converges to the time-varying pseudoinverse K†

MLðtÞ of matrix K(t).

Proof. The proof is similar to that of Theorem 3.2, we only give the error
bound:

jjXðtÞ�X�ðtÞjjF ¼ jjD�1ðtÞEðtÞjjF 
 jjD�1ðtÞjj2jjEðtÞjjF,

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 9



which implies that

jjXðtÞ�X�ðtÞjjF 
 jjD�1ðtÞjj2jjEðtÞjjF <
1
a2

� n �max
i, j

jeijj:

Finally, we consider the third condition.

Invertibility Condition C. The matrix DkðtÞ is strictly diagonally dominant.

Lemma 3.5. Varga gives a bound of jjA�1jj1 for a strictly diagonally domin-
ant matrix A:

jjA�1jj1 
 max
i

1
jaiij � KiðAÞ ,

where KiðAÞ ¼
Pn

k¼1, k 6¼i jaikj:

Theorem 3.6. Given an m� n smoothly time-varying matrix K(t) and two weight
matrices M(t), s�m and L(t), l� n. If DkðtÞ satisfies the Invertibility Condition C
as k ! 0þ and a monotonically increasing odd function array Uð�Þ is used, then
the n�m state matrix X(t) of the ZNN-ML model (3.4), starting from any initial
X(0), globally converges to the time-varying pseudoinverse K†

MLðtÞ of matrix K(t).

Proof. The proof is similar to that of Theorem 3.2, we give the error bound:

jjXðtÞ�X�ðtÞjjF 
 jjD�1
k ðtÞjj2jjEðtÞjjF 
 ffiffiffi

n
p � jjD�1

k ðtÞjj1jjEðtÞjjF
which implies that

jjXðtÞ�X�ðtÞjjF 
 n3=2 �max
t

max
i

1
jdiiðtÞj � KiðDðtÞÞmax

i, j
jeijj:

w

We provide the above three conditions to provide alternative ways of
checking the invertibility of DkðtÞ, depending on the available information.

Remark. Zhang has proven that the bipolar sigmoid activation function,
the power activation function, and the power sigmoid activation function
have superior convergence over the linear function, but the superior con-
vergence occurs only when the error falls in some special interval. Also,
when using these functions, we can only perform the level-1 BLAS opera-
tions, instead of the more efficient level-3 BLAS operations.

3.3.1. Robustness of ZNN-ML model (3.3)
In this section, we consider the effect of errors on the ZNN-ML model (3.3).
Let DBðtÞ (n� n) be the differentiation error and DRðtÞ (n� n) the model-
implementation error, and the ZNN-ML model (3.3) with these errors is
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DðtÞ _XðtÞ ¼ �ð _DðtÞ þ DBðtÞÞXðtÞ þ _SðtÞ�cUðDðtÞXðtÞ�SðtÞÞ þ DRðtÞ, (3.9)

considered for the general robustness properties of the ZNN-ML model
[26, Theorem 4.3.2].

Theorem 3.7. Suppose that jjDBðtÞjjF 
 �1, jjDRðtÞjjF 
 �2, and D(t) satisfies
the Invertibility Condition A, so Lemma 3.1 holds, then the error
jjXðtÞ�X�ðtÞjjF is bounded.

Proof. Defining the error matrix

EðtÞ ¼ DðtÞðXðtÞ�X�ðtÞÞ,
we have XðtÞ ¼ D�1ðtÞEðtÞ þ X�ðtÞ, since X�ðtÞ ¼ D�1ðtÞSðtÞ: Then (3.9)
can be reformulated as

_EðtÞ ¼ �DBðtÞD�1ðtÞEðtÞ�cUðEÞ þ ðDRðtÞ�DBðtÞX�ðtÞÞ,
whose equivalent vector form is

_eðtÞ ¼ �cUðeðtÞÞ þ BðtÞeðtÞ þ cðtÞ,
where

eðtÞ : ¼ vecðEðtÞÞ,BðtÞ :¼ I � ð�DBðtÞD�1ðtÞÞ, and

cðtÞ : ¼ vecðDRðtÞ�DBðtÞX�ðtÞÞÞ:
Define the Lyapunov function candidate vðtÞ ¼ eTðtÞeðtÞ=2 � 0 for the
error dynamics. The time derivative of v(t) is

dv
dt

¼ eTðtÞ_eðtÞ
¼ eTðtÞð�cUðeðtÞÞ þ BðtÞeðtÞ þ cðtÞÞ

¼ �ceTðtÞUðeðtÞÞ þ eTðtÞBðtÞ þ BTðtÞ
2

eðtÞ þ eTðtÞcðtÞ:

It then follows from the logarithmic norm, the inequality maxi jkiðAÞj 

jjAjj2 
 jjAjjF and Lemma 3.1 that

eTðtÞBðtÞ þ BTðtÞ
2

eðtÞ 
 eTðtÞeðtÞ max
1
i
n2

jkiððBðtÞ þ BTðtÞÞ=2Þj
� �

¼ eTðtÞeðtÞ max
1
i
n2

jkiððI � ðDBðtÞD�1ðtÞ þ ðDBðtÞD�1ðtÞÞTÞÞ=2Þj
� �

¼ eTðtÞeðtÞ max
1
i
n

jkiððDBðtÞD�1ðtÞ þ ðDBðtÞD�1ðtÞÞTÞ=2Þj
� �


 eTðtÞeðtÞ jjDBðtÞjjFjjD�1ðtÞjjF

 eTðtÞeðtÞ�1u:

Similarly, it follows from jjEðtÞjj2F ¼
Pn

i¼1

Pm
j¼1 jeijðtÞj2 that jciðtÞj 


jjDRðtÞ�DBðtÞX�ðtÞjjF 
 jjDRðtÞjjF þ jjDBðtÞX�ðtÞjjF ¼ �2 þ �1u, for i ¼
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1, 2, :::, n2: Thus, eTðtÞcðtÞ 
 ð�2 þ �1uÞ
Pn

i¼1

Pm
j¼1 jeijj: Finally, from the

above argument and the symmetry property of /ð�Þ, we have

dvðtÞ
dt


 �ceTðtÞUðeðtÞÞ þ �1ue
TðtÞeðtÞ þ eTðtÞcðtÞ

¼
Xn
i¼1

Xm
j¼1

jeijðtÞjðc/ðjeijðtÞjÞ��1ujeijðtÞj��2��1uÞ:
(3.10)

During the time evolution of eijðtÞ, the above equation falls into the situ-
ation c/ðjeijðtÞjÞ��1ujeijðtÞj��2��1u � 0 or c/ðjeijðtÞjÞ��1ujeijðtÞj��2�
�1u< 0: If in the time interval ½t0, t1Þ, the trajectory of the system (3.9) is
in the first situation, then _vðtÞ 
 0 and (3.10) implies that X(t) converges
to X�ðtÞ as time evolves. For any time t when the trajectory falls into the
second situation, the difference between X(t) and X�ðtÞ may not decrease,
however, even in the worst case, the entry error jeijðtÞj is also bounded by
the steady-state entry residual error �eijðtÞ ¼ ð�2 þ �1uÞ=ðcq��1uÞ, where
the insensitivity parameter q> 0 is between /ðeijð0ÞÞ=eijð0Þ and /0ð0Þ, and
the design parameter c satisfies c>�1u=q: It then follows that

lim
t!1 jjXðtÞ�X�ðtÞjjF 
 nuð�2 þ �1uÞ=ðcq��1uÞ:

Clearly, this steady-state residual error caused by differentiation and imple-
mentation errors can be made arbitrarily small as the design parameter c
increases. w

4. Simulations and verifications

In this section, the related simulation techniques are presented and some
illustrative examples are given to verify the efficacy and the superiority of
the proposed ZNN model for the time-varying ML-weighted pseudoinverse.

4.1. Kronecker product and vectorization

In the previous sections, we have developed a ZNN model. The model is
described in the matrix form, which cannot be directly simulated. Thus,
the Kronecker product and vectorization techniques are necessary to
transform such matrix-form differential equations into vector-from for
simulation purposes.
For the ZNN-ML model (3.3), based on the Kronecker product, denoted

by �, and vectorization techniques, we transform the model into the fol-
lowing vector-form:
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ðIm � DðtÞÞvecð _XðtÞÞ ¼ �cUððIm � DðtÞÞvecðXðtÞÞ�vecðSðtÞÞÞ
�ðIm � _DðtÞvecðXðtÞÞ þ vecð _SðtÞÞ

For simplicity, we write

MðtÞ _xðtÞ ¼ � _MðtÞxðtÞ�cUðMðtÞxðtÞ�ŜðtÞÞ þ _̂SðtÞ, (4.1)

where the activation-function array Uð�Þ is defined in (3.3), except that its
dimensions are changed so that Uð�Þ : Rmn�1 ! R

mn�1, the so-called mass

matrix MðtÞ :¼ I � DðtÞ, xðtÞ :¼ vecðXðtÞÞ, and ŜðtÞ ¼ vecðSðtÞÞ:

4.2. Computer simulation examples

In this subsection, some computer-simulation examples are demonstrated
to verify the efficacy and the superiority of the proposed ZNN-ML model.
All the tests were performed on an OSX 10.9.5 machine, with 4GB RAM.

Example 4.1. Consider the first group of matrices

K1ðtÞ ¼
1 0

1 0

0 1

2
64

3
75, M1ðtÞ ¼

1 0 0

0 1 0

0 0 t2 þ 10�3

2
64

3
75, L1ðtÞ ¼

0 0

0 0

" #
,

thus m¼ 3, n¼ 2, s¼ 3, and l¼ 2. The (3,3)-entry of M1ðtÞ is set to t2 þ
10�3 to avoid its rank deficiency when t starts from 0.
Then

M1ðtÞK1ðtÞ
kL1ðtÞ

" #
¼

1 0

1 0

0 t2 þ 10�3

0 0

0 0

2
6666664

3
7777775
,

and

DkðtÞ ¼ M1ðtÞK1ðtÞÞTkðL1ðtÞÞT
h i M1ðtÞK1ðtÞ

kL1ðtÞ

" #
¼ 2 0

0 ðt2 þ 10�3Þ2
" #

is invertible. The ML-weighted pseudoinverse of K1ðtÞ is

ðK1Þ†ML ¼ lim
k!0

D�1
k ðtÞðM1ðtÞK1ðtÞÞTM1ðtÞ ¼

1=2 1=2 0

0 0 1

" #
:

The computer simulation is based on the system (3.1) of differential
equations. For the parameters, the terminal time was set to 10�7 second for
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this small problem, the relative error tolerance 10�9, the absolute error tol-
erance 10�9: We started the Matlab function ode45 with the zero vector.
The convergence behavior of the network in the time interval ½0, 2� 10�8s�
is shown in Figure 2. The system converges very quickly and is stabilized
after 2� 10�8 s.
The approximation produced by our ZNN-ML model at t ¼ 10�7 s is

X1ð10�7Þ ¼ 0:5000 0:5000 0

0 0 1:0000

" #
:

Example 4.2. The second group of matrices

K2ðtÞ ¼
1 0

t t

0 1

2
64

3
75, M2ðtÞ ¼

1 0 0

0 1 0

0 0
ffiffiffiffiffiffi
0:2

p

2
64

3
75, L2ðtÞ ¼

0 0

0 0

" #
:

The exact ML-weighted pseudoinverse of K2ðtÞ is

ðK2ðtÞÞ†ML ¼
1

t2 þ 1
t

t2 þ 1
�1

0 0 �1

2
4

3
5:

The error behavior of the ZNN-ML model for 0 
 t 
 10�7 is shown in
Figure 3, where the four errors are defined by

Error1 ¼ jjMðtÞKðtÞXðtÞKðtÞ�MðtÞKðtÞjjF,
Error2 ¼ jjXðtÞKðtÞXðtÞ�XðtÞjjF,
Error3 ¼ jjððMðtÞKðtÞÞTðMðtÞKðtÞÞ þ k2LðtÞTLðtÞÞXðtÞ�ðMðtÞKðtÞÞTMðtÞjjF,
Error4 ¼ jjðKðtÞÞ†ML�XðtÞjjF,

Take initial vector as zero vector, c ¼ 109 and linear function. As shown
in Figure 3, all four errors remain small after the convergence. Table 1 lists
more precise four errors at t¼ 10 s in Examples 4.1 and 4.2.

Example 4.3. In this example, we consider the following time-varying
matrix K(t):

KðtÞ ¼

sin ðtÞ þ 2 0 0

0 t 0

0 0 3�t

0 0 cos ðtÞ

2
66664

3
77775,

and two weight matrices:
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MðtÞ ¼

2 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

2
66664

3
77775 and LðtÞ ¼

0 0 0

0 1 0

0 0 1

2
64

3
75:

Both M(t) and L(t) are rank deficient for all t � 0, but the augmented
matrix

GðtÞ ¼ MðtÞKðtÞ
LðtÞ

" #
¼

2 sin ðtÞ þ 4 0 0

0 0 0

0 0 3�t

0 0 cos ðtÞ
0 0 0

0 1 0

0 0 1

2
666666666664

3
777777777775

is of full column rank for all t � 0: The exact ML-weighted pseudoinverse
K†
MLðtÞ is

K†
MLðtÞ ¼

1
sin ðtÞ þ 2

0 0 0

0 0 0 0

0 0 � t�3

ðt�3Þ2 þ cos2ðtÞ
cos ðtÞ

ðt�3Þ2 þ cos 2ðtÞ

2
666664

3
777775:

At time t¼ 20, the relative errors in the three nonzero components of the
computed pseudoinverse are 8:48� 10�11, 3:28� 10�8, and 1:01� 10�7:

Example 4.4. In this example, we compare the four types of activation
functions. Consider the symmetric testing matrix

SnðtÞ ¼

t þ 1 t ::: ::: ::: t t þ 1
t t�1 t ::: ::: ::: t
..
.

t t þ 1 t ::: ::: ..
.

..

. . .
.

t t�1 t ::: ..
.

..

. . .
. . .

.
t . .

.
t ..

.

t . .
. . .

. . .
.

t t�1 t
t þ 1 t ::: ::: ::: t t þ 1

2
666666666664

3
777777777775

of order n, where n � 3 is an odd integer. Its rank is n � 1 [27]. The two
weight matrices are:
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MðtÞ ¼ In and LðtÞ ¼ In:

Thus the ML-weighted pseudoinverse of SnðtÞ equals the Moore-Penrose
inverse given by

SnðtÞ†ML ¼

�t þ 1 2t �2t 2t ::: 2t �t þ 1

2t �4t�4 4t �4t 4t �4t 2t

�2t 4t �4t þ 4 . .
. . .

.
4t �2t

2t �4t . .
. . .

. . .
. �4t 2t

..

.
4t . .

. . .
. . .

.
4t ..

.

2t �4t 4t �4t 4t �4t�4 2t

�t þ 1 2t �2t 2t ::: 2t �t þ 1

2
666666666666664

3
777777777777775

:

We set the components of the initial vectors as zero vectors, c ¼ 109, and
k ¼ 10�3: We tested our ZNN-ML model in the time interval ½0, 1� 10�2s�
on the above matrices with n¼ 1000 using the linear activation function.
Trajectories of Error3, generated by using the ZNN-ML model, are shown
in Figure 4. The terminal time of Examples 4.4 is 900 seconds.
We found that all three types of functions led to the system convergence.

The two nonlinear functions slightly accelerated the convergence and they
had the same accelerating behavior.

Example 4.5. Finally, we compare our ZNN-ML model with a conventional
gradient-based neural networks (GNN) for computing the ML-weighted

Figure 2. Convergence behavior of the ZNN-ML model in the time interval ½0, 2� 10�8s� for
Example 4.1, where KijðtÞ are the entries of the exact time-varying pseudoinverse and VijðtÞ are
the entries of the system state matrix.
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pseudoinverse of a time-varying matrix. Following the design methods in
[19–21] and defining the scalar-valued error functions as

�ðtÞ ¼ jjððMðtÞKðtÞÞTMðtÞKðtÞ þ k2LðtÞTLðtÞÞVðtÞ�ðMðtÞKðtÞÞTMðtÞjj22
2

,

where V(t) is the system state matrix, we have the following GNN model:

_VðtÞ ¼ �cGTðtÞðGðtÞVðtÞ�FðtÞ

Figure 3. Error behavior of the ZNN-ML model for Example 4.2.

Figure 4. When n¼ 1000, Error3 behaviors of the ZNN-ML model with the linear activation
function for Example 4.4.
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for time-varying ML-weighted pseudoinverse, where GðtÞ ¼ ½MðtÞ
KðtÞ�TMðtÞKðtÞ þ k2LðtÞTLðtÞ and FðtÞ ¼ ½MðtÞKðtÞÞ�TMðtÞ: We tested our
ZNN-ML and the GNN on the matrix KðtÞ ¼ SnðtÞ in Example 4.4 with
MðtÞ ¼ LðtÞ ¼ In, where n¼ 1001, and measured the logarithm of a typical
relative error defined by

Error ¼ log 10ðjjVðtÞKðtÞVðtÞ�VðtÞjjF=jjKðtÞjjFÞ:

Table 2 compares the errors at t ¼ tfinal in the two networks and shows the
superior performance of our ZNN-ML model over the GNN model.

4.3. Simulink modeling and verification

MATLAB Simulink, a graphical-design based modeling tool, exploits exist-
ing function blocks to construct mathematical and logical models as well as
process flow. A Simulink model is a representation of the design or imple-
mentation of a system satisfying a set of requirements. In Section 3, we
described the mathematical model (3.3) of our ZNN-ML system. In this
section, we investigate the MATLAB Simulink modeling techniques.

4.3.1. Basic function blocks
MATLAB Simulink includes a comprehensive block library of sinks, sour-
ces, linear and nonlinear components, connectors, and so on. The basic
function blocks used in the construction of the dynamic system (3.3) are
briefly listed as follows.

	 The Sine Wave block can generate the sine wave OðtÞ ¼ A sin ðft þ
/Þ þ D, where A is the amplitude, f the frequency, / the phase, and D
the bias;

	 The Product block allows two types of multiplications: element-wise
and matrix multiplication. In our implementation, the default element-
wise multiplication is changed to the matrix multiplication;

	 The Math Function block represents mathematical functions, including
logarithmic, exponential, power and modulus functions;

	 The Integrator block makes continuous-time integration on the
input signals.

Table 1. Errors in Examples 4.1 and 4.2.
Example Terminal Time Error1 Error2 Error3 Error4
4.1 10 s 4.58�10�12 1.43�10�11 2.07�10�13 5.89�10�11

4.2 10 s 9.9996�10�10 5.0988�10�18 1.6214�10�9 5.2412�10�9
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4.3.2. Illustrative example
Based on the MATLAB Simulink modeling techniques described in the pre-
vious subsection, we implemented our ZNN-ML model (3.3) for computing
the ML-weighted pseudoinverse with the following matrices:

MðtÞ ¼ sin ðtÞ cos ðtÞ
cos ðtÞ � sin ðtÞ

" #
, KðtÞ ¼ sin ðtÞ cos ðtÞ

cos ðtÞ � sin ðtÞ

" #
,

and LðtÞ ¼ sin ðtÞ cos ðtÞ
cos ðtÞ � sin ðtÞ

" #
:

The exact ML-weighted pseudoinverse is

K†
MLðtÞ ¼

sin ðtÞ cos ðtÞ
cos ðtÞ � sin ðtÞ

� 	
:

A block diagram of the Simulink model of the ZNN-ML system (3.3) for
online time-varying ML-weighted pseudoinverse is depicted in Figure 5. As
expected, the ZNN-ML system converged quickly to the time-varying ML-
weighted pseudoinverse.

5. Conclusion

The Zhang neural network is a kind of recurrent neural network that is
effective on time-varying matrix problems. This paper presents a Zhang

Table 2. Compare the errors at t ¼ tfinal in the GNN
with the ZNN-ML.

GNN ZNN-ML

Error �7.3527 �7.2048
tfinal 497.423s 64.500s

Figure 5. Diagram of the Simulink model of the ZNN-ML model (3.3) for online time-varying
ML-weighted pseudoinverse.
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neural network model, called ZNN-ML model, for computing the ML-
weighted pseudoinverse of a time-varying matrix. We prove the global and
exponential convergence and robustness of the ZNN-ML model. We pro-
vide three alternative invertibility conditions for the robustness. In our
model, the positive definiteness of the weight matrices is not required. Our
numerical experiments on several test matrices demonstrate that our ZNN-
ML model produces accurate results quickly. A comparison study shows
that our model is superior over the conventional gradient-based neural net-
work. A MATLAB Simulink implementation of our model is
also presented.
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