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Abstract - In this paper, we present a rank-
revealing two-sided orthogonal decomposition method
for solving the STLS problem. An error analysis of
the algorithm is given. Our numerical experiments
show that this algorithm computes the STLS solution
as accurate as the SVD method with less computa-
tion.
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1 Introduction

Given an m-by-n, m ≥ n, matrix A and an m-vector
b, the problem of the least squares (LS) is to find a
minimizer x for

min
x

‖Ax − b‖2.

Equivalently, it is to find an m-vector r for the fol-
lowing minimization problem:

min
b−r∈range(A)

‖r‖2.

The problem of the total least squares (TLS) is to
find an m-by-n matrix E and an m-vector r for the
following minimization problem:

min
b−r∈range(A+E)

‖[E r]‖F.

Rao [6] unified the LS and the TLS problems by in-
troducing the scaled total least square (STLS) prob-
lem:

min
(b−r)∈range(A+E)

‖[E λr]‖F,

where λ is a scaling factor. Paige and Strakoš [5]
suggested a slightly different but equivalent formu-
lation:

min
(λb−r)∈range(A+E)

‖[E r]‖F. (1)

If the pair ESTLS and rSTLS solves the above problem
(1), then the solution xSTLS for x in the consistent
system (A + ESTLS)λx = λb − rSTLS is called the
STLS solution.

The scaled total least squares formulation unifies
LS and TLS in that the STLS reduces to the TLS
when λ = 1 and the STLS solution approaches the
LS solution as λ → 0 [4].

In the STLS literatures [4, 5, 6], A is assumed
to be of full rank. In this paper, we consider the
general case when rank(A) = k, k ≤ n. Let

C := [A λb] = UΣV T, (2)

be the singular value decomposition (SVD) of C,
where U is m-by-(n + 1) and has orthonormal
columns, V is of order n + 1 and orthogonal, and
Σ = diag(σ1(C), ..., σn+1(C)), σ1(C) ≥ σ2(C) ≥
· · · ≥ σk+1(C) > σk+2(C) = · · · = σn+1(C) = 0.
Then we partition U , Σ and V in (2) as:

Σ =

[
Σ1 0
0 Σ2

]
,
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U =
[

U1 U2

]
, (3)

V =

[
V11 V12

vT
21 vT

22

]
,

such that Σ1 = diag(σ1(C), . . . , σk(C)), Σ2 =
diag(σk+1(C), 0, · · · , 0), U1 and U2 are respectively
the first k columns and last n + 1 − k columns of
U , V11 ∈ Rn×k, V12 ∈ Rn×(n+1−k), v21 ∈ Rk×1, and
v22 ∈ R(n+1−k)×1. Accordingly, we denote the SVD
of A as

A = UA

[
ΣA 0
0 0

]
V T

A , UA =
[

UA1 UA2

]
,

where UA ∈ Rm×m and VA ∈ Rn×n are orthogo-
nal, ΣA = diag(σ1(A), ..., σk(A)), σ1(A) ≥ · · · ≥
σk(A) > 0, and UA1 and UA2 are respectively the
first k columns and the last m − k columns of UA.

The STLS problem can be solved by using the
SVD [10]. Specifically, the solution

λxSTLS

= −V12(v
T
22)

+ (4)

= (V T
11)

+v21

= (ATA − V12Σ
2
2V

T
12)

+(λATb − V12Σ
2
2v22),

where (vT
22)

+ denotes the pseudoinverse of vT
22. As

we know, computing the SVD is expensive. In this
paper, we present an algorithm for solving the STLS
problem using a rank revealing decomposition. This
algorithm is more efficient than the SVD method
and it is particularly efficient for the STLS problems
with same coefficient matrix A but multiple right
hand side vectors b. In Section 2, we first describe
a complete orthogonal decomposition (COD) [2] to
illustrate the ideas behind our algorithm. Then we
present a practical algorithm for solving the STLS
problem using the rank revealing ULV decomposi-
tion (RRULVD) [7]. The the computation of the
RRULVD is given in Section 3. A perturbation anal-
ysis of our STLS algorithm is given in Section 4 and
numerical experiments are presented in Section 5.

2 Main Idea

The STLS solution expression (4) shows that to com-
pute the solution, we need only V12 and v22, which,
from the partition of V in (3), form the null space
and the right singular vector corresponding to the
smallest nonzero singular value of the augmented
matrix C defined in (2). It is unnecessary to com-
pute all the individual singular values and singular

vectors. Now, we consider the complete orthogonal
decomposition (COD):

C = P̄

[
L̄ 0
0 0

]
Q̄T,

where P̄ ∈ Rm×(n+1) has orthonormal columns,
Q̄ ∈ R(n+1)×(n+1) is orthogonal, and L̄ is a (k + 1)-
by-(k + 1) nonsingular lower triangular matrix. Let
w be the right singular vector corresponding to the
smallest nonzero singular value σk+1(L̄) of L̄ and
Q̄ = [Q̄1 Q̄2], where Q̄1 and Q̄2 are respectively the
first k+1 and the last n−k columns of Q̄. It is shown
in [8] that if UT

A1b 6= 0, V11 is of full rank and v22 is a
nonzero vector, then we can find a Householder ma-
trix H of order n−k+1 such that Q̃ = [Q̄1w Q̄2]H

and Q̃(n + 1, 2 : n − k + 1) = 0, that is, the last

row of Q̃ has the structure [×, 0, ..., 0], specifically,
vT

22H = ‖v22‖2[1, 0, ..., 0], and, from (4), the STLS
solution can be explicitly expressed as

λxSTLS = −Q̃(1 : n, 1)/Q̃(n + 1, 1).

Note that Q̃(n + 1, 1) = ‖v22‖2 6= 0, since v22 is a
nonzero vector.

Now that we have described a COD method for
computing the STLS solution. This method has the
following issues to be dealt with. First, the COD is
sensitive to perturbations and rounding errors when
the matrix is rank deficient. Second, we still need
to compute the right singular vector corresponding
to the smallest nonzero singular value of C. Third,
we may want to check the solution existence con-
dition σk(A) > σk+1(C), recalling that σk(A) and
σk+1(C) are the smallest nonzero singular values of
A and C respectively. To alleviate these problems,
we propose a rank revealing ULV decomposition [7]
(RRULVD) algorithm, which is an approximation of
the COD. The RRULVD of A ∈ Rm×n is defined as

A = PA

[
LA

HA FA

]
QT

A, (5)

where LA and FA are lower triangular, LA is of or-
der k = rank(A), the numerical rank of A, ‖FA‖2 ≈
σk+1(A) = 0 and ‖HA‖2 is sufficiently small so that
‖FA‖2 + ‖HA‖2 ≈ σk+1(A) = 0. Thus RRULVD
reveals the numerical rank of A. When both ‖HA‖2

and ‖FA‖2 are small, the RRULVD can be viewed
as an approximation of the COD of a rank-deficient
matrix. In addition, in the next section, we will show
that in the computation of the RRULVD of A, we
get an estimate for σk(A). Moreover, the RRULVD
can be efficiently updated when a column λb is ap-
pended to A. Also, in updating the decomposition,



we can get an estimate for σk+1(C) and its corre-
sponding right singular vector. Thus, all the infor-
mation needed for computing the STLS solution and
checking the condition σk(A) > σk+1(C) can be ob-
tained during the computation of the RRULVDs of
A and C. Letting

C := [A λb] = PC

[
LC

HC FC

]
QT

C (6)

be the updated RRULVD after λb is appended to
A, we present the following algorithm. The com-
putation of the RRULVD, the crucial part of the
algorithm, is described in the next section.

Algorithm 1 (RRULVD based) Given a pair A
and b, and λ, this algorithm computes the STLS so-
lution xSTLS using the RRULVD.

1. Compute the RRULVD (5) of A and an esti-
mate of σk(A);

2. Append λb to A, update the RRULVD, as in
(6), and compute an estimate for σk+1(C) and
its corresponding right singular vector w;

3. if (σk(A) = σk+1(C)) quit end;

4. Partition QC = [QC1 QC2] such that QC1 and
QC2 contain the first k + 1 and the last n − k
columns of QC respectively;

5. Find a Householder matrix H such that Q̃ =
[QC1w QC2]H and Q̃(n+1, 2 : n−k+1) = 0,

that is, the last row of Q̃ has the structure
[×, 0, ..., 0];

6. xSTLS = −λ−1Q̃(1 : n, 1)/Q̃(n + 1, 1).

3 Computing RRULVD

The RRULVD algorithm presented in this section is
based on Stewart’s method [7]. It is a column up-
dating scheme.

Let us consider one step of the RRULVD algo-
rithm: Update the RRULVD of a matrix when a
column is appended to the matrix. Assume that the
RRULVD (5) of A is available and a column a = λb
is appended to A. Let

y = PT
A a =

[
y1

y2

]
,

then, from (5), we have

[A a] = PA

[
LA 0 y1

HA FA y2

] [
QT

A
0

0 1

]
. (7)

What we need to do next is to restore the rank re-
vealing triangular structure of the middle matrix,
denoted by L̂, on the right side of the above equa-
tion (7). It consists of two steps described by the
following algorithm. See [9] for details.

Algorithm 2 (Triangularization) Denote

L̂ =

[
LA 0 y1

HA FA y2

]

as the middle matrix on the right side of (7), this

algorithm triangularizes L̂ using two-side orthogonal
transformations.

1. Two sequences of rotations are applied to the
both sides of the bottom part of L̂ to elim-
inate y2 except its first entry, while keeping
the lower triangular structure of the FA blcok;

2. A sequence of rotations is applied to the
columns of L̂ resulted from the previous step
to eliminate y1 and the first entry of y2 using
the diagonal of L̂.

After the above triangularization, we obtain the
decomposition (6), where LC is lower triangular of
order k + 1. However, the rank of C can be either
k or k + 1. To reveal the numerical rank of C, we
apply the deflation procedure presented in [7], using
the Van Loan’s 2-norm condition number estimator
[3] to estimate the smallest singular value σk+1(LC)
of LC in (6) and its corresponding right singular vec-
tor w. We refer the details of the deflation to [7] or
[9].

It is shown in [1] that the quality of the subspaces
obtained by the RRULVD algorithm, which deter-
mines the accuracy of the computed STLS solution,
depends on the quality of the condition estimator of
the lower triangular matrix LC . We propose the
following techniques of improving the approxima-
tions of σk+1(LC) and its corresponding right sin-
gular vector w.

We first apply the Van Loan’s method [3] to get
an approximation y of the right singular vector of
LT

C
. Then we solve the linear system LCx = y.

Now, w = x/‖x‖2 is an improved right singular vec-
tor, and an improved singular value σk+1(LC) can
be obtained from w. Since LC is lower triangular,
the overhead introduced by this technique is insignif-
icant comparing with the total cost, while the accu-
racy is significantly improved.

The accuracy of the computed STLS solution de-
pends on the quality of not only the estimates of the



smallest singular value and its corresponding singu-
lar vector, but also the null space of C, measured
by the norm of the block HC in (6). The refinement
technique in [7] can be used to improve the accuracy
of the null space by reducing the norm of HC .

In summary, to compute the RRULVD of A,
starting with the RRULVD of the first column of A,
we append one column of A at a time and update
the RRULVD using Algorithm 2 followed by defla-
tion. Then, we append λb to A and update the
RRULVD. Refinement may be applied in updating
to improve the quality of the null space. Since only
one right singular vector and the null space of C are
required for computing the STLS solution, updat-
ing PA in (5) is unnecessary when we compute the
RRULVD of C. This saves the computational cost
significantly when m is much larger than n.

4 Perturbation Analysis

Algorithm 1 first computes the RRULVD:

C := [A λb] = PC

[
LC 0
HC FC

]
QT

C ,

where the blocks HC and FC are introduced by
rounding errors and approximations. Then the algo-
rithm computes the STLS solution using the trun-
cated RRULVD as an approximation of the COD of
C:

PC

[
LC 0
0 0

]
QT

C =: [Â λb̂] = Ĉ.

Since HC and FC are introduced by rounding errors,
we assume that

E := C − Ĉ = −P

[
0 0

HC FC

]
QT,

is small, specifically,

‖HC‖2 + ‖FC‖2 ≤ c u ‖C‖2 =: η, (8)

where c is a moderate constant and u is the unit of
roundoff. What is the difference between the so-
lution corresponding to C = [A λb] and that of

Ĉ = [Â λb̂]? In this section, we give an upper
bound for the error ‖xSTLS − x̂STLS‖2, where xSTLS

and x̂STLS denote the solutions corresponding to C
and Ĉ respectively.

Theorem 1 Suppose that C = [A λb] and Ĉ =

C + E =: [Â λb̂] and ‖E‖2 ≈ c u ‖C‖2 =: η, where

c is a moderate constant and u is the unit of round-
off. Let xSTLS and x̂STLS be the STLS solutions cor-
responding to C and Ĉ respectively, then

‖xSTLS − x̂STLS‖2

≤
(σk(A) + σk+1(C))(‖xSTLS‖2 + λ−1) + η

σk(A) − σk+1(C) − 2η
,

provided that σk(A) − σk+1(C) > 2η.

Proof. Before deriving a bound for ‖xSTLS−x̂STLS‖2,
it is necessary to verify the existence condition.
From (8), it follows that

σk(Â) − σk+1(Ĉ)

= σk(A) − σk+1(C) + σk(Â) − σk(A)

+ σk+1(C) − σk+1(Ĉ)

≥ σk(A) − σk+1(C) − 2η.

Thus, if σk(A) − σk+1(C) > 2η, then the existence

condition σk(Â) > σk+1(Ĉ) for the perturbed STLS
problem is satisfied.

Now, we derive the error bound. Using the SVD
(2) of C and the partitions (3), we define

EA := A − U2Σ2V
T
12 = U1Σ1V

T
11

and

λ eb := λb − U2Σ2v22 = U1Σ1v21.

Then, from (4), it can be verified that

λxSTLS = (V T
11)

+v21 = λE+
A
eb. (9)

Note that when σk(A) > σk+1(C) V11 is of full
column rank [8], implying that I = V +

11V11 =
V T

11(V
T
11)

+. Consequently,

EAxSTLS = U1Σ1V
T
11xSTLS

= λ−1U1Σ1V
T
11(V

T
11)

+v21

= λ−1U1Σ1v21

= eb.

Similarly, letting Ĉ = Û Σ̂V̂ T be the SVD of Ĉ,
partitioning Û , Σ̂, and V̂ according to (3), and defin-
ing

E
Â

:= Â − Û2Σ̂2V̂
T
12 = Û1Σ̂1V̂

T
11

and

λe
b̂

:= λb̂ − Û2Σ̂2v̂22 = Û1Σ̂1v̂21,

we have the solution

x̂STLS = E+

Â
e

b̂
. (10)



Comparing the two solutions (9) and (10), we get

xSTLS − x̂STLS

= xSTLS − E+

Â
e

b̂

= xSTLS − E+

Â
E

Â
xSTLS + E+

Â
E

Â
xSTLS

− E+

Â
eb − E+

Â
(e

b̂
− eb)

= xSTLS − E+

Â
E

Â
xSTLS + E+

Â
E

Â
xSTLS

− E+

Â
EAxSTLS − E+

Â
(e

b̂
− eb)

= (I − E+

Â
E

Â
)xSTLS + E+

Â
(E

Â
− EA)xSTLS

− E+

Â
(e

b̂
− eb).

Obviously, ‖(I − E+

Â
E

Â
)xSTLS‖2 ≤ ‖xSTLS‖2. From

E
Â

= Â − Û2Σ̂2V̂
T
12, we have

σk(E
Â
) ≥ σk(Â) − ‖Û2Σ̂2V̂

T
12‖2

≥ σk(Â) − σk+1(Ĉ)

≥ σk(A) − σk+1(C) − 2η,

which implies that

‖E+

Â
‖2 = (σk(E

Â
))−1

≤
1

σk(A) − σk+1(C) − 2η
, (11)

since rank(E
Â
) = k. Furthermore, we have

‖E
Â
− EA‖2

= ‖Â − A − Û2Σ̂2V̂
T
12 + U2Σ2V

T
12‖2

≤ ‖Â − A‖2 + ‖Û2Σ̂2V̂
T
12‖2 + ‖U2Σ2V

T
12‖2

≤ ‖Ĉ − C‖2 + σk+1(Ĉ) + σk+1(C)

≤ η + σk+1(C) + σk+1(Ĉ)

≤ 2η + 2σk+1(C) (12)

and

‖e
b̂
− eb‖2

= ‖b̂ − b − λ−1Û2Σ̂2v̂22 + λ−1U2Σ2v22‖2

≤ ‖b̂ − b‖2 + λ−1(σk+1(Ĉ) + σk+1(C))

= η + λ−1(2σk+1(C) + η). (13)

Putting the above three inequalities (11), (12), and
(13) together, we get

‖xSTLS − x̂STLS‖2

≤ ‖xSTLS‖2 + ‖E+

Â
‖2 ‖EÂ

− EA‖2 ‖xSTLS‖2

+ ‖E+

Â
‖2 ‖eb̂

− eb‖2

≤ ‖xSTLS‖2 +
2σk+1(C) + 2η

σk(A) − σk+1(C) − 2η
‖xSTLS‖2

+
λ−1(2σk+1(C) + η) + η

σk(A) − σk+1(C) − 2η

=
σk(A) + σk+1(C)

σk(A) − σk+1(C) − 2η
‖xSTLS‖2

+
λ−1(2σk+1(C) + η) + η

σk(A) − σk+1(C) − 2η

<
(σk(A) + σk+1(C))(‖xSTLS‖2 + λ−1) + η

σk(A) − σk+1(C) − 2η
,

since η < σk(A) − σk+1(C). 2

This theorem says that if the perturbation η =
‖E‖2 is small, we can expect a small error ‖xSTLS −
x̂STLS‖2 as long as σk(A) and σk+1(C) are not closely
clustered. If σk(A) is very close to σk+1(C), the com-
puted solution x̂STLS may be very different from the
exact solution xSTLS. Moreover, as λ approaches to
zero, both σk+1(C) and σk+1(Ĉ) approach to zero
as fast as λ does. Specifically, limλ→0 σk+1(C)/λ =
‖r‖2, where r is the residual of the least square prob-
lem minx ‖Ax−b‖2 [10]. Then the inequality in the
theorem reduces to

‖xSTLS − x̂STLS‖2 ≤ (1 +
η

σk(A)
)‖xSTLS‖2

+
η

σk(A)
(1 + ‖r̂‖2 + ‖r‖2).

It shows that the difference between xSTLS and x̂STLS

is independent of the scalar λ, when λ approaches
to zero.

5 Numerical Experiments

In the STLS formulation (1), a scalar λ is intro-
duced to the right side vector b. The residual to
be minimized is [E r], same as the TLS problem.
In this section, we compare STLS with TLS. The
STLS problem is solved by the RRULVD method
presented in the previous sections, whereas the TLS
problem is solved by the SVD method.

All of our numerical experiments were performed
in MATLAB on a Sun SPARC workstation Ultra 10
using double precision. The rank deficient matrices
were generated as the product

A = U

[
Σ 0
0 Z

]
V T,

where U ∈ Rm×n and V ∈ Rn×n, m > n, are ran-
dom matrices with orthonormal columns, Σ diagonal
of order k, whose diagonal elements are random vari-
ables uniformly distributed over [0, 1], and Z a zero
matrix of order n − k. The right-hand side vectors
b were generated as vectors with entries uniformly



λ cos θS cos θT resS resT

0.01 0.9428 0.2610 0.0164 0.8050
0.1 0.9428 0.2610 0.1632 0.8050
1 0.6073 0.2610 0.9489 0.8050
5 0.8916 0.2610 1.0450 0.8050

Table 1: Comparison of the STLS solution with the TLS solution for a 64-by-48 matrix A of rank 43.

distributed over [0, 1]. The random perturbations E
and r on A and b respectively were constructed by

E = ξ randn(m,n), r = ξ randn(m, 1),

where ξ is a parameter controlling the magnitude
of the perturbations, and the function randn gen-
erates random numbers normally distributed with
zero mean and unit variance. In all examples, we
set ξ = 3 × 10−8 and the numerical rank tolerance
to 2 × 10−5. Since the perturbations are smaller
than the numerical rank tolerance, all matrices are
numerically rank deficient.

To compare STLS and TLS, we denote θS and θT

as the angles between b and AxSTLS and between b
and AxTLS, respectively, that is,

cos θS := ‖bTAxSTLS‖2/(‖AxSTLS‖2‖b‖2) and

cos θT := ‖bTAxTLS‖2/(‖AxTLS‖2‖b‖2).

Also, we denote the residual

rS := ‖[ESTLS rSTLS]‖F,

which is equal to σk+1(C) [10], and rT :=
‖[ETLS rTLS]‖F = σk+1(C) [8]. Note that θT and
rT are independent of λ.

Table 1 shows:

• For small values of λ, AxSTLS is closer to b
than AxTLS is, and the STLS residual is much
smaller than the TLS residual;

• When λ is small, θS is insensitive to the change
of λ.

We note that

• In theory, when λ = 1, xSTLS = xTLS. The
differences in the table when λ = 1 are due to
the different algorithms used to compute the
STLS solution and the TLS solution. In the
STLS algorithm, the RRULVD, which is an ap-
proximation of the COD, is computed, whereas
in the TLS algorithm, the SVD is computed.
However, we can see that the corresponding
values are in the same magnitude order.

• For large values of λ, large vectors λb are
appended to A to form C. Consequently,
the right singular vectors corresponding to
σk+1(C) of the resulting matrices C vary little
with different b. Recall that the STLS solu-
tion depends on the right singular vector and
the null space. Thus, the STLS solutions vary
little for large values of λ with different b.

Conclusion: Choose λ < 1.

6 Conclusion

We presented an algorithm for solving the scaled
total least squares problems using the rank reveal-
ing ULV decomposition, which is an approximation
of the complete orthogonal decomposition. To im-
prove accuracy, in addition to the refinement, we
proposed a technique for improving the accuracy of
the estimates for the smallest nonzero singular value
and its corresponding right singular vector. Our
perturbation analysis showed that if the smallest
nonzero singular values σk(A) and σk+1(C) of the
coefficient matrix A and the augmented matrix C
respectively are not closely clustered, accurate solu-
tions are expected from our method. Experiments
demonstrated that our method produces solutions as
accurate as the SVD method with less computation.
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