◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Application of the LLL Algorithm in Sphere Decoding

Sanzheng Qiao

Department of Computing and Software McMaster University

August 20, 2008

Introduction	

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

- Application
- Integer Least Squares
- 2 Sphere Decoding
 - Reducing Dimension
 - Searching Lattice Points
 - Choosing a Radius
- 3 The LLL Algorithm

4 Conclusion

x: code vector, integer *A*: channel matrix, real *y*: received signal, y = Ax + v

$$\min_{x\in Z^m} \|Ax-y\|_2^2$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Introduction ○●○○○	Sphere Decoding	The LLL Algorithm	Conclusion
Integer Least Squares			
Integer Least	Squares		

$$\min_{\mathbf{x}\in\mathbf{Z}^m}\|A\mathbf{x}-\mathbf{y}\|_2^2$$

- A: Generating matrix, *n*-by-*m*, $n \ge m$, real
- y: n-vector, real
- x: m-vector, solution, integer

Introduction ○○●○○	Sphere Decoding	The LLL Algorithm	Conclusion
Integer Least Squares			
A Naive Appro	bach		

A seemingly simple approach, Babai solution

$$\mathbf{x} = \begin{bmatrix} \mathbf{A}^{\dagger} \mathbf{y} \end{bmatrix}$$

Example

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Introduction 00000	Sphere Decoding	The LLL Algorithm	Conclusion
Integer Least Squares			
A Naive Appro	bach		

A seemingly simple approach, Babai solution

$$x = \lceil A^{\dagger} y \rfloor$$

Example

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

real LS solution
$$\begin{bmatrix} -0.3333 \\ 0.3333 \end{bmatrix}$$
 rounded to
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

giving residual $||Ax - y||_2 = \sqrt{3}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction

Sphere Decoding

The LLL Algorithm

Conclusion

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Integer Least Squares

A Naive Approach (cont.)

The integer least squares solution

$$x = \begin{bmatrix} -2 \\ 1 \end{bmatrix},$$

giving residual $||Ax - y||_2 = \sqrt{2}$.

Introduction	
00000	

The LLL Algorithm

・ロン ・雪 と ・ ヨ と

æ

500

Conclusion

Integer Least Squares

Graph

Introduction	
00000	

The LLL Algorithm

<ロ> (四) (四) (三) (三) (三) (三)

Conclusion

Integer Least Squares

Graph

In general, integer least squares problem is non-polynomial (NP) hard.

Introduction	

The LLL Algorithm

Conclusion

Outline

Search for all lattice points inside the sphere

$$\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \le \rho$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

of radius ρ .

Among the lattice points inside the sphere, find the one that minimizes $||Ax - y||_2$.

Search for all lattice points inside the sphere

$$\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \le \rho$$

of radius ρ .

Among the lattice points inside the sphere, find the one that minimizes $||Ax - y||_2$.

Choosing a radius ρ

- Too large, too many lattice points inside sphere, expensive
- Too small, no lattices points inside sphere

Introduction 00000	Sphere Decoding ●●●●●●●	The LLL Algorithm	Conclusion
Reducing Dimension			
Reducing Di	mension		

QR decomposition

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $\begin{bmatrix} Q_1 & Q_2 \end{bmatrix}$: orthogonal *R*: upper triangular, *m*-by-*m*

Introduction 00000	Sphere Decoding	The LLL Algorithm	Conclusion
Reducing Dimension			
Reducing Di	mension		

QR decomposition

$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}$$

[Q₁ Q₂]: orthogonal *R*: upper triangular, *m*-by-*m*

Then

$$\|Ax - y\|_2^2 = \|Rx - Q_1^Ty\|_2^2 + \|Q_2^Ty\|_2^2$$

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Introduction

Sphere Decoding

The LLL Algorithm

Conclusion

Reducing Dimension

Reducing Dimension (cont.)

$$\|A\mathbf{x} - \mathbf{y}\|_2^2 \le \rho^2$$

becomes the triangular ILS problem:

$$\|\boldsymbol{R}\boldsymbol{x} - \hat{\boldsymbol{y}}\|_2^2 \le \hat{\rho}^2$$

$$\hat{\mathbf{y}} = \mathbf{Q}_1^T \mathbf{y}$$
$$\hat{\rho}^2 = \rho^2 - \|\mathbf{Q}_2^T \mathbf{y}\|_2^2$$

Introduction 00000	Sphere Decoding	The LLL Algorithm	Conclusion
Searching Lattice Points			
Searching			

Partition

$$R\mathbf{x} - \hat{\mathbf{y}} = \begin{bmatrix} R_{1:m-1,1:m-1} & r_{1:m-1,m} \\ 0 & r_{m,m} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1:m-1} \\ \mathbf{x}_m \end{bmatrix} - \begin{bmatrix} \hat{\mathbf{y}}_{1:m-1} \\ \hat{\mathbf{y}}_m \end{bmatrix}$$

<□ > < @ > < E > < E > E のQ @

Introduction 00000	Sphere Decoding	The LLL Algorithm	Conclusion
Searching Lattice Points			
Searching			

Partition

$$Rx - \hat{y} = \begin{bmatrix} R_{1:m-1,1:m-1} & r_{1:m-1,m} \\ 0 & r_{m,m} \end{bmatrix} \begin{bmatrix} x_{1:m-1} \\ x_m \end{bmatrix} - \begin{bmatrix} \hat{y}_{1:m-1} \\ \hat{y}_m \end{bmatrix}$$

$$\begin{aligned} \|R\mathbf{x} - \hat{\mathbf{y}}\|_{2}^{2} &= \|R_{1:m-1,1:m-1}\mathbf{x}_{1:m-1} - (\hat{\mathbf{y}}_{1:m-1} - \mathbf{x}_{m}\mathbf{r}_{1:m-1,m})\|_{2}^{2} \\ &+ (\mathbf{r}_{m,m}\mathbf{x}_{m} - \hat{\mathbf{y}}_{m})^{2} \\ &\leq \hat{\rho}^{2} \end{aligned}$$

<ロ> < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I = < I

Introduction 00000	Sphere Decoding ○○○●○○○	The LLL Algorithm	Conclusion
Searching Lattice Points			
Searching (co	nt.)		

Two necessary conditions:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction 00000	Sphere Decoding ○○○●○○○	The LLL Algorithm	Conclusion
Searching Lattice Points			
Searching (co	nt.)		

Two necessary conditions:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Sphere decoding: Find all integers satisfying cond1; For each integer solve cond2 recursively. (DFS)

Introduction	Sphere Decoding	The LLL Algorithm	Conclusion
Choosing a Radius			
Choosing ρ			

Hassibi and Vikalo, 2005 In communications

$$y = Ax + v$$

v: white noise, variance σ^2

Given a probability *p*,

1. Find α satisfying

$$p = \int_0^{\alpha n/2} \frac{\lambda^{n/2-1}}{\Gamma(n/2)} e^{-\lambda} d\lambda$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2. $\rho^2 = \alpha n \sigma^2$

• The solution lies in the sphere of radius ρ with probability p.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- The expected complexity is polynomial, often roughly cubic.
- Works well when σ^2 is small.

- The solution lies in the sphere of radius ρ with probability p.
- The expected complexity is polynomial, often roughly cubic.
- Works well when σ^2 is small.
- Channel matrix A is not taken into consideration (assuming some statistical characteristics).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Introduction	Sphere Decoding ○○○○○●	The LLL Algorithm	Conclusion
Choosing a Radius			
Choosing ρ (c	ont.)		

We propose:

1. Solve for real LS solution $\hat{x} = R^{-1}\hat{y}$

2.
$$\hat{\rho}^2 = \|\boldsymbol{R}[\hat{\boldsymbol{x}}] - \hat{\boldsymbol{y}}\|_2^2$$

Introduction	Sphere Decoding	The LLL Algorithm	Conclusion
Choosing a Radius			
Choosing ρ (c	ont.)		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We propose:

1. Solve for real LS solution $\hat{x} = R^{-1}\hat{y}$

2.
$$\hat{\rho}^2 = \|\boldsymbol{R}[\hat{\boldsymbol{x}}] - \hat{\boldsymbol{y}}\|_2^2$$

At least one lattice point in sphere, deterministic. Both *R* (*A*) and $\hat{y}(v)$ are taken into account.

Introduction	Sphere Decoding	The LLL Algorithm	Conclusion
Choosing a Radius			
Choosing ρ (c	ont.)		

We propose:

1. Solve for real LS solution $\hat{x} = R^{-1}\hat{y}$

$$2. \ \hat{\rho}^2 = \|\boldsymbol{R}[\hat{\boldsymbol{x}}] - \hat{\boldsymbol{y}}\|_2^2$$

At least one lattice point in sphere, deterministic. Both *R* (*A*) and \hat{y} (*v*) are taken into account.

Error in the computed $R^{-1}\hat{y}$ must be addresses.

(日) (日) (日) (日) (日) (日) (日)

Introduction	

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

Introduction 00000 Sphere Decodin

The LLL Algorithm

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

What is the LLL algorithm?

A.K. Lenstra, H.W. Lenstra, and L. Lovász (1982)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

What is the LLL algorithm?

A.K. Lenstra, H.W. Lenstra, and L. Lovász (1982)

QRZ decomposition

$$A = QRZ^{-1}$$

- Q: orthonormal columns
- Z: unimodular, integer, $det(Z) = \pm 1$
- R: upper triangular, reduced

The LLL Algorithm

Conclusion

What is the LLL algorithm?

A.K. Lenstra, H.W. Lenstra, and L. Lovász (1982)

QRZ decomposition

$$A = QRZ^{-1}$$

Q: orthonormal columns

Z: unimodular, integer,
$$\det(Z) = \pm 1$$

R: upper triangular, reduced

1.
$$|r_{i,j}| \le |r_{i,i}|/2, \quad j > i$$

2.
$$r_{i+1,i+1}^2 \ge \omega r_{i,i}^2 - r_{i,i+1}^2, \quad 0.25 \le \omega \le 1$$

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

What is the LLL algorithm? (cont.)

Application: Cryptography (integer arithmetic)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

What is the LLL algorithm? (cont.)

Application: Cryptography (integer arithmetic)

Luk and Tracy (2008), floating-point Integer Gram-Schmidt scheme? Combination of Givens reflection and integer Gaussian reduction.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

What is the LLL algorithm? (cont.)

Application: Cryptography (integer arithmetic)

Luk and Tracy (2008), floating-point Integer Gram-Schmidt scheme? Combination of Givens reflection and integer Gaussian reduction.

Luk and SQ (2007), numerical properties

The LLL Algorithm

Conclusion

What does the LLL algorithm do?

Example ($\omega = 0.75$)

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} = QRZ^{-1} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 1 & -1 \end{bmatrix}^{-1}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The LLL Algorithm

Conclusion

(日) (日) (日) (日) (日) (日) (日)

What does the LLL algorithm do?

Example ($\omega = 0.75$) $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} = QRZ^{-1} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 1 & -1 \end{bmatrix}^{-1}$

Making a lattice grid closer to orthogonal.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

How may the LLL algorithm help?

Two ways: Reduce search radius Reduce the number of search paths

(日) (日) (日) (日) (日) (日) (日)

How may the LLL algorithm help?

Two ways: Reduce search radius Reduce the number of search paths Example

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

ILS solution
$$\mathbf{z} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

distance $\|A\mathbf{z} - \mathbf{b}\|_2 = \sqrt{2}$

The LLL Algorithm

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Reducing search radius

QR decomposition

$$R = \begin{bmatrix} 3.7417 & 8.5524 \\ 0 & 1.9640 \end{bmatrix} \quad \hat{\mathbf{b}} = \begin{bmatrix} 1.6036 \\ 0.6547 \end{bmatrix}$$
LLL algorithm ($\omega = 0.75$)

$$\tilde{R} = \begin{bmatrix} 2.2361 & -0.4472 \\ 0 & 3.2864 \end{bmatrix} \quad \tilde{\mathbf{b}} = \begin{bmatrix} 1.3416 \\ 1.0955 \end{bmatrix}$$

The LLL Algorithm

Conclusion

▲□▶▲□▶▲□▶▲□▶ □ のQで

Reducing search radius

QR decomposition

$$R = \begin{bmatrix} 3.7417 & 8.5524 \\ 0 & 1.9640 \end{bmatrix} \quad \hat{\mathbf{b}} = \begin{bmatrix} 1.6036 \\ 0.6547 \end{bmatrix}$$

LLL algorithm ($\omega = 0.75$)

$$\tilde{R} = \begin{bmatrix} 2.2361 & -0.4472 \\ 0 & 3.2864 \end{bmatrix} \quad \tilde{\mathbf{b}} = \begin{bmatrix} 1.3416 \\ 1.0955 \end{bmatrix}$$

Suppose we use

$$\begin{array}{rcl} \rho & = & \|R\lceil R^{-1}\hat{\mathbf{b}}\rfloor - \hat{\mathbf{b}}\|_2 \\ \tilde{\rho} & = & \|\tilde{R}\lceil R^{-1}\tilde{\mathbf{b}}\rfloor - \tilde{\mathbf{b}}\|_2 \end{array}$$

as the search radii, then

$$ho = 1.7321$$
 and $ho = 1.4142$

The LLL Algorithm

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Reducing the number of search paths

$$R = \begin{bmatrix} 3.7417 & 8.5524 \\ 0 & 1.9640 \end{bmatrix} \quad \hat{\mathbf{b}} = \begin{bmatrix} 1.6036 \\ 0.6547 \end{bmatrix}$$

There are two integers $x_2 = 0, 1$ satisfying

$$|r_{2,2}\mathbf{x}_2 - \hat{b}_2| \le \rho (1.7321)$$

The LLL Algorithm

Conclusion

Reducing the number of search paths

$$R = \begin{bmatrix} 3.7417 & 8.5524 \\ 0 & 1.9640 \end{bmatrix} \quad \hat{\mathbf{b}} = \begin{bmatrix} 1.6036 \\ 0.6547 \end{bmatrix}$$

There are two integers $x_2 = 0, 1$ satisfying

$$|r_{2,2}\mathbf{x}_2 - \hat{b}_2| \le \rho (1.7321)$$

$$\tilde{R} = \begin{bmatrix} 2.2361 & -0.4472 \\ 0 & 3.2864 \end{bmatrix} \quad \tilde{\mathbf{b}} = \begin{bmatrix} 1.3416 \\ 1.0955 \end{bmatrix}$$

There is one integer $x_2 = 0$ satisfying

$$|\tilde{r}_{2,2}\mathbf{x}_2 - \tilde{b}_2| \le \tilde{
ho} \ (1.4142)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

The LLL Algorithm

Conclusion

Reducing the number of search paths

$$R = \begin{bmatrix} 3.7417 & 8.5524 \\ 0 & 1.9640 \end{bmatrix} \quad \hat{\mathbf{b}} = \begin{bmatrix} 1.6036 \\ 0.6547 \end{bmatrix}$$

There are two integers $x_2 = 0, 1$ satisfying

$$|r_{2,2}\mathbf{x}_2 - \hat{b}_2| \le \rho (1.7321)$$

$$\tilde{R} = \begin{bmatrix} 2.2361 & -0.4472 \\ 0 & 3.2864 \end{bmatrix} \quad \tilde{\mathbf{b}} = \begin{bmatrix} 1.3416 \\ 1.0955 \end{bmatrix}$$

There is one integer $x_2 = 0$ satisfying

$$|\tilde{r}_{2,2}\mathbf{x}_2 - \tilde{b}_2| \le \tilde{
ho} \ (1.4142)$$

Even if we use 1.7321 as the radius here, there is still one integer 0.

Introduction 00000	Sphere Decoding	The LLL Algorithm	Conclusion
Search trees			

 $\left[\begin{array}{c} -2\\1\end{array}\right] = Z \left[\begin{array}{c} 1\\0\end{array}\right]$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Introduction 00000	Sphere Decoding	The LLL Algorithm	Conclusion
Search trees			

Reducing the number of search paths in the early stages of a DFS can significantly reduce the total number of search paths.

Introduction	

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Outline

Introduction 00000	Sphere Decoding	The LLL Algorithm	Conclusion
Conclusion			

Our preliminary experiments show:

The combination of our technique for choosing search radius and the LLL algorithm can reduce running time by almost 50%.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction 00000	Sphere Decoding	The

Our preliminary experiments show:

The combination of our technique for choosing search radius and the LLL algorithm can reduce running time by almost 50%.

LLL Algorithm

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Future work

Conclusion

- complex
- consider computational error in calculating search radius
- extensive experiments on various A and b to investigate numerical behavior

Introduction 00000 Sphere Decodin

The LLL Algorithm

Conclusion

Thank you!

Introduction

Sphere Decoding

The LLL Algorithm

Conclusion

Thank you!

Questions?