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Application

Application

code x

(integer)

channel A

(real) (real)

noise v (real)

+
signal y

A communication channel

x : code vector, integer
A: channel matrix, real
y : received signal, y = Ax + v

min
x∈Z m

‖Ax − y‖2
2
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Integer Least Squares

Integer Least Squares

min
x∈Z m

‖Ax − y‖2
2

A: Generating matrix, n-by-m, n ≥ m, real
y : n-vector, real
x : m-vector, solution, integer

y
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Integer Least Squares

A Naive Approach

A seemingly simple approach, Babai solution

x = ⌈A†y⌋

Example

A =





1 4
2 5
3 6



 y =





1
1
1
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Integer Least Squares

A Naive Approach

A seemingly simple approach, Babai solution

x = ⌈A†y⌋

Example

A =





1 4
2 5
3 6



 y =





1
1
1





real LS solution
[

−0.3333
0.3333

]

rounded to
[

0
0

]

,

giving residual ‖Ax − y‖2 =
√

3.
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Integer Least Squares

A Naive Approach (cont.)

The integer least squares solution

x =

[

−2
1

]

,

giving residual ‖Ax − y‖2 =
√

2.
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Integer Least Squares

Graph
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Integer Least Squares

Graph
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A graph of the naive approach

In general, integer least squares problem is non-polynomial
(NP) hard.
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Problem Setting

1 Search for all lattice points inside the sphere

‖Ax − y‖2 ≤ ρ

of radius ρ.
2 Among the lattice points inside the sphere, find the one

that minimizes ‖Ax − y‖2.
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Problem Setting

1 Search for all lattice points inside the sphere

‖Ax − y‖2 ≤ ρ

of radius ρ.
2 Among the lattice points inside the sphere, find the one

that minimizes ‖Ax − y‖2.

Choosing a radius ρ

Too large, too many lattice points inside sphere, expensive

Too small, no lattices points inside sphere
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Reducing Dimension

Reducing Dimension

QR decomposition

A = [Q1 Q2]

[

R
0

]

[Q1 Q2]: orthogonal
R: upper triangular, m-by-m
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Reducing Dimension

Reducing Dimension

QR decomposition

A = [Q1 Q2]

[

R
0

]

[Q1 Q2]: orthogonal
R: upper triangular, m-by-m

Then
‖Ax − y‖2

2 = ‖Rx − QT
1 y‖2

2 + ‖QT
2 y‖2

2
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Reducing Dimension

Reducing Dimension (cont.)

‖Ax − y‖2
2 ≤ ρ2

becomes the triangular ILS problem:

‖Rx − ŷ‖2
2 ≤ ρ̂2

ŷ = QT
1 y

ρ̂2 = ρ2 − ‖QT
2 y‖2

2

y
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Searching Lattice Points

Searching

Partition

Rx − ŷ =

[

R1:m−1,1:m−1 r1:m−1,m

0 rm,m

] [

x1:m−1

xm

]

−
[

ŷ1:m−1

ŷm

]
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Searching Lattice Points

Searching

Partition

Rx − ŷ =

[

R1:m−1,1:m−1 r1:m−1,m

0 rm,m

] [

x1:m−1

xm

]

−
[

ŷ1:m−1

ŷm

]

‖Rx − ŷ‖2
2 = ‖R1:m−1,1:m−1x1:m−1 − (ŷ1:m−1 − xmr1:m−1,m)‖2

2

+ (rm,mxm − ŷm)2

≤ ρ̂2
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Searching Lattice Points

Searching (cont.)

Two necessary conditions:
1 |rm,mxm − ŷm| ≤ ρ̂

2 ‖R1:m−1,1:m−1x1:m−1 − (ŷ1:m−1 − xmr1:m−1,m)‖2
2 ≤ ρ̃2,

ρ̃2 = ρ̂2 − (rm,mxm − ŷm)2
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Searching Lattice Points

Searching (cont.)

Two necessary conditions:
1 |rm,mxm − ŷm| ≤ ρ̂

2 ‖R1:m−1,1:m−1x1:m−1 − (ŷ1:m−1 − xmr1:m−1,m)‖2
2 ≤ ρ̃2,

ρ̃2 = ρ̂2 − (rm,mxm − ŷm)2

Sphere decoding:
Find all integers satisfying cond1;
For each integer solve cond2 recursively. (DFS)
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Choosing a Radius

Choosing ρ

Hassibi and Vikalo, 2005
In communications

y = Ax + v

v : white noise, variance σ2

Given a probability p,
1. Find α satisfying

p =

∫ αn/2

0

λn/2−1

Γ(n/2)
e−λdλ

2. ρ2 = αnσ2
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Choosing a Radius

Choosing ρ (cont.)

The solution lies in the sphere of radius ρ with probability p.

The expected complexity is polynomial, often roughly
cubic.

Works well when σ2 is small.
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Choosing a Radius

Choosing ρ (cont.)

The solution lies in the sphere of radius ρ with probability p.

The expected complexity is polynomial, often roughly
cubic.

Works well when σ2 is small.

Channel matrix A is not taken into consideration (assuming
some statistical characteristics).
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Choosing a Radius

Choosing ρ (cont.)

We propose:

1. Solve for real LS solution x̂ = R−1ŷ

2. ρ̂2 = ‖R⌈x̂⌋ − ŷ‖2
2
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Choosing a Radius

Choosing ρ (cont.)

We propose:

1. Solve for real LS solution x̂ = R−1ŷ

2. ρ̂2 = ‖R⌈x̂⌋ − ŷ‖2
2

At least one lattice point in sphere, deterministic.
Both R (A) and ŷ (v ) are taken into account.
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Choosing a Radius

Choosing ρ (cont.)

We propose:

1. Solve for real LS solution x̂ = R−1ŷ

2. ρ̂2 = ‖R⌈x̂⌋ − ŷ‖2
2

At least one lattice point in sphere, deterministic.
Both R (A) and ŷ (v ) are taken into account.

Error in the computed R−1ŷ must be addresses.
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What is the LLL algorithm?

A.K. Lenstra, H.W. Lenstra, and L. Lovász (1982)
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What is the LLL algorithm?

A.K. Lenstra, H.W. Lenstra, and L. Lovász (1982)

QRZ decomposition
A = QRZ−1

Q: orthonormal columns
Z : unimodular, integer, det(Z ) = ±1
R: upper triangular, reduced
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What is the LLL algorithm?

A.K. Lenstra, H.W. Lenstra, and L. Lovász (1982)

QRZ decomposition
A = QRZ−1

Q: orthonormal columns
Z : unimodular, integer, det(Z ) = ±1
R: upper triangular, reduced

1. |ri,j | ≤ |ri,i |/2, j > i

2. r2
i+1,i+1 ≥ ωr2

i,i − r2
i,i+1, 0.25 ≤ ω ≤ 1
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What is the LLL algorithm? (cont.)

Application:
Cryptography (integer arithmetic)
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What is the LLL algorithm? (cont.)

Application:
Cryptography (integer arithmetic)

Luk and Tracy (2008), floating-point
Integer Gram-Schmidt scheme?
Combination of Givens reflection and integer Gaussian
reduction.
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What is the LLL algorithm? (cont.)

Application:
Cryptography (integer arithmetic)

Luk and Tracy (2008), floating-point
Integer Gram-Schmidt scheme?
Combination of Givens reflection and integer Gaussian
reduction.

Luk and SQ (2007), numerical properties
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What does the LLL algorithm do?

Example (ω = 0.75)




1 4
2 5
3 6



 = QRZ−1 =





2 −1
1 1
0 3





[

−2 3
1 −1

]−1
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What does the LLL algorithm do?

Example (ω = 0.75)




1 4
2 5
3 6



 = QRZ−1 =





2 −1
1 1
0 3





[

−2 3
1 −1

]−1

Making a lattice grid closer to orthogonal.
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How may the LLL algorithm help?

Two ways:
Reduce search radius
Reduce the number of search paths
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How may the LLL algorithm help?

Two ways:
Reduce search radius
Reduce the number of search paths
Example

A =





1 4
2 5
3 6



 b =





1
1
1





ILS solutionz =

[

−2
1

]

distance‖Az − b‖2 =
√

2
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Reducing search radius

QR decomposition

R =

[

3.7417 8.5524
0 1.9640

]

b̂ =

[

1.6036
0.6547

]

LLL algorithm (ω = 0.75)

R̃ =

[

2.2361 −0.4472
0 3.2864

]

b̃ =

[

1.3416
1.0955

]
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Reducing search radius

QR decomposition

R =

[

3.7417 8.5524
0 1.9640

]

b̂ =

[

1.6036
0.6547

]

LLL algorithm (ω = 0.75)

R̃ =

[

2.2361 −0.4472
0 3.2864

]

b̃ =

[

1.3416
1.0955

]

Suppose we use

ρ = ‖R⌈R−1b̂⌋ − b̂‖2

ρ̃ = ‖R̃⌈R−1b̃⌋ − b̃‖2

as the search radii, then

ρ = 1.7321 and ρ̃ = 1.4142
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Reducing the number of search paths

R =

[

3.7417 8.5524
0 1.9640

]

b̂ =

[

1.6036
0.6547

]

There are two integers x2 = 0, 1 satisfying

|r2,2x2 − b̂2| ≤ ρ (1.7321)
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Reducing the number of search paths

R =

[

3.7417 8.5524
0 1.9640

]

b̂ =

[

1.6036
0.6547

]

There are two integers x2 = 0, 1 satisfying

|r2,2x2 − b̂2| ≤ ρ (1.7321)

R̃ =

[

2.2361 −0.4472
0 3.2864

]

b̃ =

[

1.3416
1.0955

]

There is one integer x2 = 0 satisfying

|r̃2,2x2 − b̃2| ≤ ρ̃ (1.4142)
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Reducing the number of search paths

R =

[

3.7417 8.5524
0 1.9640

]

b̂ =

[

1.6036
0.6547

]

There are two integers x2 = 0, 1 satisfying

|r2,2x2 − b̂2| ≤ ρ (1.7321)

R̃ =

[

2.2361 −0.4472
0 3.2864

]

b̃ =

[

1.3416
1.0955

]

There is one integer x2 = 0 satisfying

|r̃2,2x2 − b̃2| ≤ ρ̃ (1.4142)

Even if we use 1.7321 as the radius here, there is still one
integer 0.
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Search trees

0

1

10

−2

Q̃R̃ = RZ , Z =

[

−2 3
1 −1

]

[

−2
1

]

= Z
[

1
0

]
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Search trees

0

1

10

−2

Q̃R̃ = RZ , Z =

[

−2 3
1 −1

]

[

−2
1

]

= Z
[

1
0

]

Reducing the number of search paths in the early stages of a
DFS can significantly reduce the total number of search paths.
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Conclusion

Our preliminary experiments show:
The combination of our technique for choosing search radius
and the LLL algorithm can reduce running time by almost 50%.
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Conclusion

Our preliminary experiments show:
The combination of our technique for choosing search radius
and the LLL algorithm can reduce running time by almost 50%.

Future work

complex

consider computational error in calculating search radius

extensive experiments on various A and b to investigate
numerical behavior
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Thank you!
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Thank you!

Questions?
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