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ABSTRACT

Lattice reduction aided decoding has been successfully used
for signal detection in multiinput and multioutput (MIMO)
systems and many other wireless communication applica-
tions. In this paper, we propose a novel enhanced Jacobi
(short as EJacobi) method for lattice basis reduction. To
assess the performance of the new EJacobi method, we com-
pared it with the LLL algorithm, a widely used algorithm
in wireless communications. Our experimental results show
that the EJacobi method is more efficient and produces better
results measured by both orthogonality defect and condition
number than the LLL algorithm.

Index Terms— MIMO, Wireless communication, Signal
processing algorithms, Least squares approximation, Lattices

1. INTRODUCTION

Recently, lattice reduction aided decoding has been success-
fully used in many signal processing applications, such as
Global Positioning System (GPS) [1, 2], multiinput multiout-
put (MIMO) system [3], frequency estimation, and particu-
larly data detection and precoding in wireless communication
systems. See [4] for more details about lattice basis reduction
with applications in wireless communications.

Consider an m× n MIMO system of n transmit antennas
and m receive antennas. The relation between an n× 1 trans-
mitted signal x and an m × 1 received signal y is modelled
by

y = Ax + n, (1.1)
where A and n represent the channel matrix and the addi-
tional noise, respectively. The matrix A is complex in a full-
rank flat-fading MIMO system, but it can be transformed into
a real matrix of double size straightforwardly [4]. Hence, in
this paper, we assume A is real. The optimum maximum like-
lihood (ML) decoding selects xML that is a solution for the
following minimization integer least squares problem:

xML = arg min
x∈A
||y −Ax||2, (1.2)

where A denotes the finite set of real-valued modulation al-
phabet being used. The complexity of solving (1.2) grows

exponentially corresponding to the number of antennas [1, 5].
Hence ML decoding is not feasible for large number of trans-
mit antennas. To reduce the decoding cost, many approximate
algorithms have been introduced to achieve high performance
with low complexity, such as zero-forcing (ZF) decoding and
successive interference cancellation (SIC) decoding [3]. The
performance of those decoding strategies heavily depends on
the orthogonality of the columns of A. Lattice reduction al-
gorithms can improve the orthogonality of the columns of the
channel matrix A.

Suppose A is an m × n (m ≥ n) real matrix of full col-
umn rank, a lattice generated by A is defined as L(A) =
{Az | z ∈ Zn}, where Zn is the set of all integer n-vectors.
The columns of A and n are respectively called the basis and
the dimension of the lattice. A lattice of dimension at least 2
has infinitely many bases [6]. Any two bases A and A′ for
the same lattice are related by a unimodular matrix Z, i.e., Z
is an integer matrix and |det(Z)| = 1, such that A = A′Z.
For a given basis, the lattice reduction algorithms are aimed to
find a reduced basis with relatively shorter and more orthog-
onal vectors. There are several notions of reduced basis, such
as the Minkowski reduced basis [7, 8] and the HKZ reduced
basis [9], both need exponential time to be computed. An-
other category of reduced basis can be found in polynomial
time, such as the Schnorr reduced basis [10] and the widely
used LLL reduced basis [11]. The latter is also used in many
number theory applications in addition to wireless communi-
cations, for example in cryptosystems [12].

In this paper, we present an enhanced Jacobi method, the
EJacobi method, for lattice basis reduction based on the Ja-
cobi method [13] introduced by S. Qiao. Our experimental
results indicate that the EJacobi method performs better than
the LLL algorithm in both output quality and time consump-
tion. The rest of the paper is organized as follows. In section
2, we review the Lagrange algorithm and the Jacobi method.
Both of them can be regarded as fundamental algorithms for
our new lattice reduction algorithm presented in section 3.
In section 4, we demonstrate the experimental results of the
comparison between the EJacobi method and the LLL algo-
rithm. Finally, the paper is concluded in section 5.



2. JACOBI METHOD

In this section, we recall the Lagrange reduction algorithm
[14], focusing on its one single iteration. The Lagrange iter-
ation is a part of our EJacobi method presented in the section
3.3. We also recall the Jacobi method [13, 15] in this section.

2.1. Lagrange Algorithm

We call a two dimensional basis matrix A = [a1,a2]
Lagrange-reduced (L-reduced), if

||a1||2 ≤ ||a2||2 and |aT1 a2| ≤
1

2
||a1||22. (2.1)

An L-reduced basis is Minkowski reduced [12, 14]. De-
note θ the angle between a1 and a2, then | cos(θ)| =
|aT1 a2|/(||a1||2||a2||2) ≤ |aT1 a2|/||a1||22 ≤ 1

2 , implying
that θ ∈ [π3 ,

2π
3 ] [13]. Thus, we may say that a1 and a2 are

close to being orthogonal to each other.
The Lagrange algorithm is a polynomial time iterative

method for computing an L-reduced basis. It deduces the
length of one of the two vectors in each iteration. We now
apply the Lagrange algorithm to a pair of columns ai and aj ,
i < j, of a lattice basis matrix A = [a1,a2, . . . ,an]. Let
G = [gij ] = ATA be the Gram Matrix, then gij = aTi aj
and gjj = ||aj ||22. Given the Gram matrix G and i < j, Pro-
cedure LAGRANGEIT(G, i, j) produces a unimodular matrix
Z [13] so that AZ performs one iteration of the Lagrange al-
gorithm on ai and aj , where ai is updated by ai ← ai − qaj
and the length ‖ai‖2 is reduced, hence ai and aj get closer to
being orthogonal to each other.

Procedure LagrangeIT(G, i, j)
Input : The Gram matrix G and a pair (i, j) of indices
Output: A unimodular matrix Z, s.t. AZ performs one

iteration of the Lagrange algorithm on ai and
aj

1 q = b gijgjj e ; // Nearest integer rounding

2 Set Z = In except zji = −q;

Having Procedure LAGRANGEIT(G, i, j), Algorithm 1
produces a unimodular matrix Zij , such that the ith and jth
columns of AZij form an L-reduced basis for the lattice
L([ai aj ]).

2.2. Jacobi Method for Lattice Basis Reduction

In 1846, C. Jacobi originally proposed a method for solving
eigenvalue problems of real symmetric matrices [16, 17]. S.
Qiao introduced a Jacobi method for lattice basis reduction in
2012 [13], which embeds the Lagrange algorithm to reduce
every pair of basis vectors in an n dimensional lattice and
produces a reduced basis defined below.

Algorithm 1: Lagrange2(G, i, j)
Input : The Gram matrix G and a pair of indices (i, j)
Output: Updated G and a unimodular matrix Zij , s.t.

the ith and jth columns of AZij form an
L-reduced basis

1 Zij = In ;
2 if gii < gjj then
3 Swap the ith and jth columns of G ;
4 Swap the ith and jth rows of G ;
5 Swap the ith and jth columns of Zij ;

6 repeat
7 Z = LAGRANGEIT(G, i, j) ;
8 G← ZTGZ ;
9 Zij ← ZijZ ;

10 Swap the ith and jth columns of G ;
11 Swap the ith and jth rows of G ;
12 Swap the ith and jth columns of Zij ;
13 until gii ≤ gjj ;

Definition 2.1 (Reduced). A basis matrix A = [a1,a2, . . . ,an]
is reduced, if :
||ai||2 ≤ ||aj ||2 (for all 1 ≤ i < j ≤ n); (2.2a)

|aTi aj | ≤
1

2
||ai||22 (for all 1 ≤ i < j ≤ n). (2.2b)

We can see that in an n dimensional reduced basis defined
in Definition 2.1, each pair of basis vectors is L-reduced. Al-
gorithm 2, the Jacobi method, computes a reduced basis by
reducing every pair of vectors using a while loop until all
pairs are L-reduced.

Algorithm 2: Jacobi method
Input : A basis matrix A = [a1,a2, . . . ,an]
Output: A unimodular matrix Z, s. t. AZ is a reduced

basis defined by 2.1
1 Z = In, G = ATA ;
2 while not all pairs (ai,aj) satisfy (2.1) do
3 for i = 1 to n− 1 do
4 for j = i+ 1 to n do
5 [G,Zij ] = LAGRANGE2(G, i, j) ;
6 Z← ZZij ;

3. AN ENHANCED JACOBI METHOD

From Definition 2.1, we expect that the columns of the basis
matrix computed by Algorithm 2 are closer to being orthogo-
nal than the original basis matrix. However, our experiments
show that it is not effective on reducing the lengths of basis
vectors or improving the condition number of a basis matrix.



For example, consider the following matrix [18],

A = [a1,a2,a3] =

1 1
2

1
2

0
√
3
2 −

√
3
2

0 0 1
2

 .
It can be verified that A satisfies the Definition 2.1 and its
condition number K(A) ≈ 4.7387. The condition number
can be improved by reducing the size ||a3||2. Specifically,
let a = a3 − a1 + a2 = [0, 0, 12 ]T , we then have ||a||2 <
||ai||2 (i = 1, 2, 3). Set a3 = a, then the condition number of
the new A is improved to 2.4495. In this section, we propose
an enhancement of Algorithm 2 by integrating size reduction
into the algorithm. Specifically, a technique called partial size
reduction is introduced into Algorithm 2.

3.1. Partial Size Reduction

The size reduced condition [4] is enforced by many lattice re-
duction algorithms, such as the LLL algorithm [19] and the
Schnoor’s algorithm [10, 20]. Let A be an n dimensional
basis matrix of full-column rank and A = QR be its QR de-
composition [17], then A is called size-reduced, if the upper
triangular matrix R satisfies

|ri,j | ≤
1

2
|ri,i| (for all 1 ≤ i < j ≤ n). (3.1)

Now we introduce a notion of partial size reduction. A basis
matrix A is said to be partially size reduced with respect to
an index pair (i, j) (i < j), if

|rk,j | ≤
1

2
|rk,k| (for 1 ≤ k ≤ i). (3.2)

Thus, if A is partially size reduced with respect to (i, i + 1)
for all i: 1 ≤ i < n, then A is size reduced.

Given a basis matrix A and an indix pair (i, j) (i < j),
Procedure PSIZEREDUCE(R, i, j) updates R and computes a
unimodular matrix Zij , so that AZij is partially size reduced
with respect to (i, j).

Procedure PSizeReduce(R, i, j)
Input : R and indices i, j
Output: Updated R and a unimodular matrix Zij , s. t.

AZij is partially size reduced w.r.t. (i, j)
1 Zij = In ;
2 for k ← i downto 1 do
3 if |rkj | > 1

2 |rkk| then

4 q = b rkj

rkk
e ;

5 Set Z = In except zkj = −q ;
6 R← RZ, Zij ← ZijZ ;

3.2. Updating R

To integrate size reduction into the Jacobi method, it is neces-
sary to update R matrix in the QR decomposition ofA. There

are two operations in the EJacobi method can destroy the up-
per triangular structure of R: permutation of two columns
and the application of the unimodular matrix Z produced
by Procedure LagrangeIT. Suppose i < j, both operations
create nonzero entries rki, k = i + 1, ..., j. Procedure
RESTORER(R, i, j) restores the upper triangular structure
of R by eliminating those nonzero entries using the plane
reflection [21].

Procedure RestoreR(R, i, j)
Input : R and indices i, j (i < j)
Output: Updated R

1 for k = j downto i+ 1 do
2 Find a plane reflection P of order 2 to triangulize[

rk−1,i rk−1,j
rk,i rk,j

]
;

3 Set U = In except ui,i = uj,j = 0, uk−1,i =
p1,1, uk−1,j = p1,2, uk,i = p2,1, uk,j = p2,2 ;

4 R← UR ;

5 for k = i+ 1 to j − 1 do
6 Find a plane reflection P of order 2 to triangulize[

rk,k rk,k+1

rk+1,k rk+1,k+1

]
;

7 Set U = In except
ui,i = uj,j = 0, uk,k = p1,1, uk,k+1 =
p1,2, uk+1,k = p2,1, uk+1,k+1 = p2,2 ;

8 R← UR ;

In RESTORER(R, i, j), the first part, lines 1 to 4, elimi-
nates the entries rk,i, k = i + 1, ..., j, which creates nonzero
entries rk+1,k, k = i + 1, ..., j − 1 in the subdiagonal. The
second part, lines 5 to 8, eliminates those nonzero entries on
the subdiagonal.

3.3. An Enhanced Jacobi Method

Now we present our EJacobi method. Combining the size re-
duction condition (3.1) with the conditions in Definition 2.1,
we have the following conditions for our EJacodi method:

||ai||2 ≤ ||aj ||2 (for all 1 ≤ i < j ≤ n), (3.3a)

|aTi aj | ≤
1

2
||aj ||22 (for all 1 ≤ i < j ≤ n), (3.3b)

|ri,j | ≤
1

2
|ri,i| (for all 1 ≤ i < j ≤ n), (3.3c)

where if (3.3b) and (3.3c) cannot be both satisfied, the condi-
tion (3.3c) is chosen. We call a basis matrix A E-reduced if it
satisfies the above conditions.

Algorithm 3 computes an E-reduced basis. To avoid pos-
sible infinite loop caused by possible conflict between the
conditions (3.3b) and (3.3c), we impose an upper bound m



for the while loop.

Algorithm 3: EJacobi method
Input : A basis matrix A = [a1,a2, . . . ,an] and an

upper bound m
Output: A unimodular matrix Z, s.t. AZ is E-reduced

1 G = ATA, Z = In ;
2 Get R from QR decomposition of A ;
3 while AZ is not E-reduced and the number iterations

is ≤ m do
4 for i = 1 to n− 1 do
5 for j = i+ 1 to n do
6 if |gij | > 1

2gjj then
7 Set Zij = LAGRANGEIT(G, i, j) ;
8 G← ZTijGZij ;
9 R← RZij , Z← ZZij ;

10 R = RestoreR(R, i, j) ;

11 if A is not partially size reduced w.r.t. (i, j)
then

12 [R, Zij ] = PSIZEREDUCE(R, i, j) ;
13 G← ZTijGZij , Z← ZZij ;

14 if gii > gjj then
15 Swap the ith and jth columns of G ;
16 Swap the ith and jth rows of G ;
17 Swap the ith and jth columns of R ;
18 Swap the ith and jth columns of Z ;
19 R = RestoreR(R, i, j) ;

4. EXPERIMENTAL RESULTS

In this section, we compare our EJacobi method with the
polynomial time LLL algorithm [11, 22], which is widely
used in many lattice reduction aided decoding applications
because of its extraordinary efficiency and high quality out-
put in practice. It has been shown that the LLL-reduction-
aided decoding can achieve the full diversity of a MIMO fad-
ing channels [23, 24]. We adopt the vector-operated version
[25] to achieve higher efficiency, and set the parameter ω (0 <
ω < 1) to 0.99 to get higher quality outputs.

The efficiency of the algorithms is measured by CPU
Time. The quality of produced results is compared by two
measurements, the Condition Number and the Orthogonality
Defect δ(A), defined by

δn(A) =
Πj ||aj ||2√
det(ATA)

,

also called Hadamard Ratio [6]. From the Hadamard’s In-
equality, δ(A) ≥ 1, where the equality holds if and only if
the columns aj are orthogonal to each other. The closer δ(A)
is to 1; the shorter the geometric mean of the lengths of the

columns is; the more orthogonal the columns in A are, and
hence the better the basis matrix A is.

The EJacobi method and the LLL algorithm are imple-
mented in 64-bit version MATLAB 2012a running on a Dell
computer with a 3.30GHz i3 Dual processor and 16GB mem-
ory. We compare the basis matrices of dimension up to 20.
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(b) Orthogonality Defects
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(c) Running Times

Fig. 1. Average condition numbers, orthogonality defects
and CPU times (in seconds) between the LLL algorithm and
the EJacobi method for random basis matrices of dimensions
from 2 to 20.

For each dimension, we generated 1000 matrices with
uniformly distributed random entries. The results shown in
Fig. 1 are averages of 1000 matrices of same dimensions. Our
experiments have shown that Algorithm 3 converges in five
iterations of the while loop for dimensions under 20. Thus
in our experiments, the maximum number m of iterations of
the while loop is set to five. Fig. 1 (a) and (b) show that
our EJacobi method produces basis matrices with smaller
condition numbers and smaller orthogonality defects than the
LLL algorithm. Fig. 1 (c) shows that our EJacobi method is
about twices as fast as the LLL algorithm.

5. CONCLUSION

In this paper, we present a novel EJacobi method for lattice re-
duction aided decoding in MOMO systems. Our experimen-
tal results show that the algorithm is practically much faster,
and produces better results, measured by both orthogonality
defect and condition number, than the widely used LLL algo-
rithm.
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