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1. Introduction

We consider the continuous-time algebraic Riccati equation
(CARE)

CTC + ATX + XA− XBR−1BTX = 0 (1)

and the following discrete-time algebraic Riccati equation (DARE)

Y − ATYA+ ATYB(R+ BTYB)−1BTYA− CTC = 0, (2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, R ∈ Rm×m with R being
symmetric and positive definite, and X, Y ∈ Rn×n are unknown
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matrices. Let G = BR−1BT and Q = CTC , then G and Q are
symmetric and positive semidefinite and the CARE (1)and DARE
(2) can be respectively rewritten as

Q + ATX + XA− XGX = 0 (3)

and

Y − ATY (I + GY )−1A− Q = 0. (4)

We first introduce the following stability definitions,whichplay
an important role in the study of algebraic Riccati equations. An
n × n matrix M is said to be c-stable if all of its eigenvalues lie in
the open left-half complex plane, and M is said to be d-stable if
its spectral radius satisfies ρ(M) < 1. Then to ensure the existence
and uniqueness of the solutions, we assume that (A,G) in the CARE
(3) is a c-stabilizable pair, that is, there is a matrix K ∈ Rn×n
such that the matrix A − GK is c-stable, and that (A,Q ) is a c-
detectable pair, that is, (AT,Q T) is c-stabilizable. It is known (Byers,
1985; Laub, 1979) that under these conditions there exists a unique
symmetric positive semidefinite solution X to the CARE (3) and the
matrix A− GX is c-stable. Moreover, we also assume that (A, B) in
the DARE (2) is a d-stabilizable pair, that is, if ωTB = 0 and ωTA =
λωT hold for some constant λ, then |λ| < 1 or ω = 0, and that
(A, C) is a d-detectable pair, that is, (AT, CT) is d-stabilizable. It is
known (Anderson & Moore, 1979; Gudmundsson, Kenney, & Laub,
1992; Konstantinov, Petkov, & Christov, 1993) that under these
conditions there exists a unique symmetric positive semidefinite
solution Y to the DARE (4), and the matrix (I + GY )−1A is d-stable.
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The CARE (3) and theDARE (4) arise in linear control and system
theory. For the theory, applications, and numerical solutions of the
CARE (3) and the DARE (4), see, for example, Anderson and Moore
(1979), Lancaster and Rodman (1991), Lancaster and Rodman
(1995), Patel, Laub, and VanDooren (1994), Sage andWhite (1977),
Datta (2003), Ghavimi and Laub (1995) and Guo and Laub (1999).
Perturbation analysis (Stewart & Sun, 1990) is the study of the

sensitivity of the solution to the perturbations in the data of a
problem. A condition number (Higham, 2002) is a measurement
of the sensitivity. In the area of the perturbation analysis of the
CARE (3) and the DARE (4), Konstantinov, Mehrmann, Gu, and
Petkov (2003), Lin and Xu (2006), Sun (1997, 1998a,b,c), Byers
(1985), and Kenney and Hewer (1990) obtained the first-order
perturbation bounds for the solution to the CARE (3), Kenney, Laub,
and Wette (1990) derived residual error bounds associated with
the Newton refinement of approximate solutions to the CARE (3),
Gudmundsson et al. (1992) derived a condition number of the
DARE (4) and a bound on the relative error of a computed solution,
Konstantinov et al. (1993) obtained perturbation bounds that can
determine the conditioning of theDARE (4), and Sun (2002) applied
the theory of linear operators and derived explicit expressions of
the normwise condition numbers of the CARE (3) and the DARE
(4). In this paper, by using the Kronecker product Graham (1981),
we give a simple presentation of the perturbation analysis and
condition numbers for the CARE (3) and the DARE (4). We first
present a normwise analysis, then a componentwise analysis. Two
kinds of condition numbers, called mixed and componentwise
defined in Gohberg and Koltracht (1993), are considered. To the
best of our knowledge, this is the first study on the componentwise
condition numbers for the symmetric algebraic Riccati equations.
We adopt the following notations: ‖X‖2 denotes the spectral

norm of amatrix, given by the square root of the largest eigenvalue
of XTX; ‖X‖F is the Frobenius norm given by ‖X‖F =

√∑
i,j |Xij|2;

‖X‖max is themaxnormgivenby‖X‖max = maxi,j |Xij|;‖X‖∞ is the
infinity norm given by ‖X‖∞ = maxi

∑
j |Xij|; X

T is the transpose
of X; |X | is the matrix whose elements are |Xij|; diag(a) is the
diagonal matrix whose diagonal is given by a vector a; ‖a‖2 is the
Euclideannormof a vector, given by‖a‖2 =

√∑
i |ai|2;‖a‖∞ is the

infinity norm of a vector, given by ‖a‖∞ = maxi |ai|; In is the n×n
identity matrix; Eij is the (i, j)th elementary matrix whose only
nonzero (i, j)-entry equals 1;Π is an n2 × n2 permutation matrix
given by Π =

∑
i,j Eij ⊗ Eji. For matrices X = [x1, x2, . . . , xn] =

[Xij] and Y , X ⊗ Y = [XijY ] is the Kronecker product of X and
Y , and the linear operator vec : Rm×n → Rmn is defined by
vec(X) =

[
xT1, x

T
2, . . . , x

T
n

]T for all X ∈ Rm×n. Note that vec is a
homomorphism between Rm×n and Rmn. For any X , ‖ vec(X)‖∞ =
‖X‖max and ‖ vec(X)‖2 = ‖X‖F . See Graham (1981) for the
properties of the Kronecker product and the vec operation. In
particular, for an n× nmatrix A, vec(AT) = Π vec(A).
The rest of the paper is organized as follows. Section 2 is devoted

to the perturbation analysis and explicit expressions of three kinds
of normwise condition numbers for both the CARE (3) and the
DARE (4). Section 3 presents themixed and componentwise condi-
tion numbers. Our preliminary numerical experiments are demon-
strated in Section 4. Finally, we make our conclusions in Section 5.

2. Normwise condition numbers

In this section, using the Kronecker product, we first present
a perturbation analysis of the CARE (3) and derive its normwise
condition numbers. Then, in a similar way, we give a perturbation
analysis of the DARE (4) and obtain its normwise condition
numbers.
For the CARE (3), we define the mapping

ϕ : (A,Q ,G) 7→ vec(X),
where X is the unique symmetric and positive semidefinite
solution to the CARE (3). Suppose we introduce perturbations∆A,
∆Q , and∆G to the data A,Q , and G respectively and the solution to
the perturbed problem is X +∆X , then the perturbed CARE (3) is
(X +∆X)(G+∆G)(X +∆X)− (X +∆X)(A+∆A)

− (A+∆A)T(X +∆X)− (Q +∆Q ) = 0. (5)
Dropping the second and higher-order terms in (5) yields
(AT − XG)∆X +∆X(A− GX)
≈ X∆GX − X∆A−∆ATX −∆Q ,

where the CARE Eq. (3) is used. Applying the operator vec to both
sides of the above relation, using the identity

vec(UVW ) = (W T ⊗ U)vec(V ), (6)
which can be verified directly, and defining

Z = In ⊗ (AT − XG)+ (A− GX)T ⊗ In, (7)
we obtain
Zvec(∆X) ≈ (X ⊗ X)vec(∆G)− (In ⊗ X)vec(∆A)
− (X ⊗ In)vec(∆AT)− vec(∆Q )
= [−(In ⊗ X)− (X ⊗ In)Π − In2 X ⊗ X]

× vec([∆A ∆Q ∆G]). (8)
Denoting S2 = [−(In ⊗ X)− (X ⊗ In)Π − In2 X ⊗ X],we get

Zvec(∆X) ≈ S2vec([∆A ∆Q ∆G]). (9)
The above relation gives a first-order perturbation ∆X in the
solution corresponding to the perturbations ∆A, ∆Q , and ∆G.
Based on this perturbation analysis of the mapping ϕ, we now
investigate three kinds of normwise condition numbers defined by

κi(ϕ) = lim
ε→0
sup
∆i≤ε

‖∆X‖F
ε‖X‖F

, i = 1, 2, 3, (10)

where

∆1 =

∥∥∥∥[‖∆A‖Fδ1
,
‖∆Q‖F
δ2

,
‖∆G‖F
δ3

]∥∥∥∥
2
,

∆2 = max
{
‖∆A‖F
δ1

,
‖∆Q‖F
δ2

,
‖∆G‖F
δ3

}
,

∆3 =
‖ [‖∆A ‖F , ‖∆Q ‖F , ‖∆G ‖F ] ‖2
‖ [‖A ‖F , ‖Q ‖F , ‖G ‖F ] ‖2

,

(11)

here, the nonzero parameters δi, i = 1, 2, 3, provide three ways
in which the perturbations approach zero. In general, they are
often chosen to be functions of ‖A‖F , ‖Q‖F and ‖G‖F , respectively.
Among all these options, themost intriguing one is that δ1 = ‖A‖F ,
δ2 = ‖Q‖F and δ3 = ‖G‖F .
Before deriving the explicit expressions and an upper bound

for the three kinds of normwise condition numbers for the CARE
(3), we state a lemma which will be very useful throughout our
discussion; see Horn and Johnson (1985) for a proof.

Lemma 1 (Horn & Johnson, 1985). Let A ∈ Rm×m, B ∈ Rn×n, and
λ1, λ2, . . . , λm and µ1, µ2, . . . , µn be the eigenvalues of A and B,
respectively. Then the eigenvalues of A⊗ In+ Im⊗B can be expressed
by λi + µj (i = 1, 2, . . . ,m; j = 1, 2, . . . , n).

In our case, since X and G are symmetric, (A− GX)T = AT− XG.
It then follows from Lemma 1 that the matrix Z defined in (7) is
nonsingular, since A− GX is c-stable.
The following theorem gives explicit expressions of κ1(ϕ) and

κ3(ϕ) and an upper bound for κ2(ϕ).

Theorem 2. Using the notations given above, the explicit expressions
and an upper bound for the three kinds of normwise numbers of the
CARE (3) are
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κ1(ϕ) ≈
‖Z−1S1‖2
‖X‖F

, (12)

κ2(ϕ) . min
{√
3 κ1(ϕ), βc/‖X‖F

}
, (13)

κ3(ϕ) ≈
‖Z−1S2‖2

√
‖A‖2F + ‖Q‖

2
F + ‖G‖

2
F

‖X‖F
, (14)

where S1 = S2 diag([δ1, δ2, δ3]T) and

βc = δ1‖Z−1[In ⊗ X + (X ⊗ In)Π]‖2
+ δ2‖Z−1‖2 + δ3‖Z−1(X ⊗ X)‖2.

Proof. Introducing nonzero parameters δ1, δ2, and δ3 into (9), we
get Zvec(∆X) ≈ S1r1, where r1 = vec([∆A/δ1 ∆Q/δ2 ∆G/δ3]).
Since Z is nonsingular, we see that

vec(∆X) ≈ Z−1S1r1. (15)

By taking the norms of both sides of (15), we obtain

‖∆X‖F = ‖ vec(∆X)‖2

≈ ‖Z−1S1r1‖2 ≤ ‖Z−1S1‖2‖r1‖2. (16)

Noting definition (10), when i = 1, of the condition number κ1(ϕ),
we obtain ‖r1‖2 = ∆1 ≤ ε. Hence (12) holds.
In particular, setting δ1 = δ2 = δ3 = 1 in (15), we obtain

vec(∆X) ≈ Z−1S2r2, (17)

where r2 = vec([∆A ∆Q ∆G]). Thus we have ‖∆X‖F =
‖ vec(∆X)‖2 . ‖Z−1S2‖2‖r2‖2. Similarly, we obtain (14) by using
‖r2‖2 = ∆3||[‖A‖F , ‖Q‖F , ‖G‖F ]||2 ≤ ε||[‖A‖F , ‖Q‖F , ‖G‖F ]||2.
Let ε = ∆2, then it follows from (16) that

‖∆X‖F . ‖Z−1S1‖2

√
‖∆A‖2F
δ21
+
‖∆Q‖2F
δ22

+
‖∆G‖2F
δ23

≤
√
3ε‖X‖Fκ1(ϕ). (18)

On the other hand, we rewrite (15) as

vec(∆X) ≈ −δ1Z−1[(In ⊗ X)+ (X ⊗ In)Π]
vec(∆A)
δ1

− δ2Z−1
vec(∆Q )
δ2

+ δ3Z−1(X ⊗ X)
vec(∆G)
δ3

,

from which it is easy to see that

‖∆X‖F . εβc . (19)

Finally, by (18) and (19), we get (13). �

Analogous to the analysis of the CARE (3), for the DARE (4), we
define the mapping

ψ : (A,Q ,G) 7→ vec(Y ),

where Y is the unique symmetric and positive semidefinite
solution to the DARE (4). By introducing similar perturbations, the
perturbed DARE (4) is

(Y +∆Y )− (Q +∆Q )− (A+∆A)T(Y +∆Y )

×[In + (G+∆G)(Y +∆Y )]−1(A+∆A) = 0. (20)

Dropping the second and higher-order terms in (20) and denoting
W = (In + GY )−1, we get

∆Y − AT∆YWA+ ATYWG∆YWA
≈ ATYW∆A+∆ATYWA− ATYW∆GYWA+∆Q ,
where the DARE (4) is used. Similarly to (8), we have
Lvec(∆Y ) ≈ [In ⊗ (ATYW )+ ((ATW TY )⊗ In)Π]vec(∆A)
− [(ATW TY )⊗ (ATYW )]vec(∆G)+ vec(∆Q ),

where L = In2 + (A
TW T) ⊗ (ATYWG − AT). Noticing that Y (In +

GY )−1 = (In + YG)−1Y , we get
ATYWG− AT = ATY (In + GY )−1G− AT

= AT(In + YG)−1[YG− (In + YG)]
= −ATW T.

Therefore, we obtain a simpler definition

L = In2 − (A
TW T)⊗ (ATW T). (21)

Finally, similar to (9), we have
L vec(∆Y ) ≈ P2vec([∆A ∆Q ∆G]), (22)
where P2 = [In ⊗ (ATYW )+ ((ATW TY )⊗ In)Π, In2 ,−(A

TW TY )⊗
(ATYW )].
The above relation (22) gives a first-order perturbation ∆Y in

the solution corresponding to the perturbations ∆A, ∆Q , and ∆G.
Based on this perturbation analysis of the mapping ψ , we now
investigate three kinds of normwise condition numbers defined by

κi(ψ) = lim
ε→0
sup
∆i≤ε

‖∆Y‖F
ε‖Y‖F

, i = 1, 2, 3, (23)

where∆i, i = 1, 2, 3, are defined in (11).
Parallel to Lemma 1, the following lemma is useful throughout

our discussion, see Horn and Johnson (1985) for a proof.

Lemma 3. Let A ∈ Rm×m, B ∈ Rn×n, λ1, λ2, . . . , λm and
µ1, µ2, . . . , µn be eigenvalues of A and B, respectively. Then the
eigenvalues of A⊗ B can be expressed by λiµj (i = 1, 2, . . . ,m; j =
1, 2, . . . , n).

Since Y and G are symmetric, (ATW T)T = [AT(In + GY )−T ]T =
(In + GY )−1A. It then follows from Lemma 3 that L defined in (21)
is nonsingular, since (In + GY )−1A is d-stable.
Similarly to the proof of Theorem 2, we can obtain explicit

expressions of κ1(ψ) and κ3(ψ) and an upper bound for κ2(ψ)
given in the following theorem.

Theorem 4. Using the notations given above, the explicit expressions
and an upper bound for the three kinds of normwise numbers of the
DARE (4) are

κ1(ψ) ≈
‖L−1P1‖2
‖Y‖F

, (24)

κ2(ψ) . min
{√
3κ1(ψ), βd/‖Y‖F

}
, (25)

κ3(ψ) ≈
‖L−1P2‖2

√
‖A‖2F + ‖Q‖

2
F + ‖G‖

2
F

‖Y‖F
, (26)

where P1 = [δ1(In ⊗ (ATYW ) + [(ATW TY ) ⊗ In]Π),
δ2In2 ,−δ3((A

TW TY )⊗ (ATYW ))], and

βd = δ1‖L−1(In ⊗ (ATYW )+ [(ATW TY )⊗ In]Π)‖2
+ δ2‖L−1‖2 + δ3‖L−1((ATW TY )⊗ (ATYW ))‖2.

The condition numbers given by Theorem 2 involve extensive
computation of Kronecker products, which are impractical to
compute. However, Theorem 2 indicates that when Z is ill-
conditioned, ‖Z−1S1‖2 and ‖Z−1S2‖2 can be considerably large,
consequently, the CARE (3) is ill-conditioned. Thus, a large
condition number of Z , which can be easily estimated by using,
for example, LAPACK (Anderson et al., 1999), is an indication of
an ill-conditioned CARE (3). Similarly, from Theorem 4, an ill-
conditioned L indicates that the DARE (4) is ill-conditioned.
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3. Mixed and componentwise condition numbers

Componentwise analysis (Higham, 1994; Rohn, 1989; Skeel,
1979) is more informative than its normwise counterpart when
the data are badly scaled or sparse. To define mixed and compo-
nentwise condition numbers, we introduce the following distance
function. For any a, b ∈ Rn, we define a./b = [c1, c2, . . . , cn]T with

ci =

{ai/bi, if bi 6= 0,
0, if ai = bi = 0,
∞, otherwise.

Then we define the distance

d(a, b) = ‖(a− b)./b‖∞ = maxi
{|ai − bi|/|bi|}.

Note that d(a, b) = min{γ ≥ 0 | |ai−bi| ≤ γ |bi|, i = 1, 2, . . . , n}
if d(a, b) <∞. In the rest of this paper we assume d(a, b) <∞ for
any pair (a, b). We can extend the function d to matrices A and B
in an obvious manner: d(A, B) = d(vec(A), vec(B)). For ε > 0,
we denote B0(a, ε) = {x | d(x, a) ≤ ε}. For a vector-valued
function F : Rp → Rq, we denote Dom(F) as the domain of
the function F . The two kinds of condition numbers introduced by
Gohberg and Koltracht (1993) are considered here. The first kind,
called the mixed condition number, measures the output errors in
norms while the input perturbations are componentwise. The sec-
ond kind, called the componentwise condition number, measures
both the output and the input perturbations componentwise. They
are defined as follows.

Definition 5. Let F : Rp → Rq be a continuous mapping defined
on an open set Dom(F) ⊂ Rp such that 0 6∈ Dom(F) and F(a) 6= 0
for a given a ∈ Rp.
(1) The mixed condition number of F at a is defined by

m(F , a) = lim
ε→0

sup
x∈B0(a,ε)
x6=a

‖F(x)− F(a)‖∞
‖F(a)‖∞

1
d(x, a)

.

(2) Suppose F(a) =
[
f1(a), f2(a), . . . , fq(a)

]T such that fj(a) 6= 0
for j = 1, 2, . . . , q. The componentwise condition number of F
at a is defined by

c(F , a) = lim
ε→0

sup
x∈B0(a,ε)
x6=a

d(F(x), F(a))
d(x, a)

.

The explicit expressions of the mixed and componentwise
condition numbers of F at a are given by the following lemma; see
Gohberg and Koltracht (1993) or Cucker, Diao, and Wei (2007) for
a proof.

Lemma 6. Suppose F is Fréchet differentiable at a. We have:
(1) if F(a) 6= 0, then

m(F , a) =
‖F ′(a) diag(a)‖∞
‖F(a)‖∞

=
‖|F ′(a)||a|‖∞
‖F(a)‖∞

;

(2) if F(a) = [f1(a), . . . , fq(a)]T such that fj(a) 6= 0 for j =
1, 2, . . . , q, then

c(F , a) =
∥∥diag(F(a))−1F ′(a) diag(a)∥∥

∞

= ‖(|F ′(a)||a|)./|F(a)|‖∞.

Note that the second equality for m(F , a) in the above lemma,
i.e., ‖F ′(a) diag(a)‖∞ = ‖|F ′(a)||a| ‖∞, can be derived by

‖F ′(a) diag(a)‖∞ = ‖||F ′(a)|diag(a)|e‖∞
= ‖|F ′(a)||a|‖∞,

where e ∈ Rn is a vector whose elements are all equal to one.
Similarly,we canderive the second equality for c(F , a) in Lemma6.
In the following two theorems, we present the mixed and
componentwise condition numbers of the CARE (3) and the
DARE (4).

Theorem 7. For the mixed and componentwise condition numbers of
the CARE (3), we have

m(ϕ) ≈ ‖w‖∞/‖X‖max and c(ϕ) ≈ ‖w./|vec(X)| ‖∞ ,

where

w = |Z−1S2||vec([A : Q : G])|
= |Z−1(In ⊗ X)+ Z−1(X ⊗ In)Π |vec(|A|)
+ |Z−1|vec(|Q |)+ |Z−1(X ⊗ X)|vec(|G|).

Furthermore, we have simpler upper bounds

mU(ϕ) := ‖X‖−1max(‖Z
−1
‖∞‖ |X ||A| + |A|T|X |

+ |Q | + |X‖G‖X | ‖max) & m(ϕ),

and

cU(ϕ) := ‖diag−1(vec(X))Z−1‖∞‖ |X ||A|
+ |A|T|X | + |Q | + |X‖G‖X | ‖max & c(ϕ).

Proof. It follows from (17) that ϕ′(A,Q ,G) ≈ Z−1S2. From
the definition of v and (1) of Lemma 6, we obtain m(ϕ) ≈
‖|Z−1S2||v|‖∞/‖vec(X)‖∞ = ‖w‖∞/‖X‖max. An upper bound
for ‖w‖∞ can be derived from ‖w‖∞ ≤ ‖|Z−1||S2||v|‖∞ ≤
‖Z−1‖∞‖|S2||v|‖∞ = ‖Z−1‖∞‖|X ||A| + |A|T|X | + |Q | +
|X ||G||X |‖max, which leads to the upper boundmU(ϕ).
For the componentwise condition number c(ϕ), it follows

from (2) of Lemma 6 that c(ϕ) ≈
∥∥|Z−1S2||v|./|vec(X)|∥∥∞ =

‖w./|vec(X)|‖∞. Therefore, we easily obtain c(ϕ) . ‖diag
−1

(vec(X))Z−1‖∞‖|X ||A| + |A|T|X | + |Q | + |X ||G||X |‖max. �

Similarly to the proof of Theorem 7, we have the mixed and
componentwise condition numbers for the DARE (4) given by the
following theorem.

Theorem 8. For the mixed and componentwise condition numbers of
the DARE (4), we have

m(ψ) ≈ ‖η‖∞/‖Y‖max and c(ψ) ≈ ‖η./|vec(Y )| ‖∞,

where

η = |L−1P2||vec([A Q G])| = |L−1(In ⊗ (ATYW )
+ [(ATW TY )⊗ In]Π)|vec(|A|)+ |L−1|vec(|Q |)
+ |L−1((ATW TY )⊗ (ATYW ))|vec(|G|).

Furthermore, we have simpler upper bounds

mU(ψ) := ‖Y‖−1max(‖L
−1
‖∞‖ |ATYW ||A| + |A|T|YWA|

+ |Q | + |ATYW‖G‖YWA| ‖max) & m(ψ)

and

cU(ψ) := ‖diag−1(vec(Y ))L−1‖∞‖ |ATYW ||A| + |A|T|YWA|
+ |Q | + |ATYW‖G‖YWA| ‖max & c(ψ).

Theorems 7 and 8 show that an ill-conditioned Z indicates large
condition numbers m(ϕ) and c(ϕ), whereas an ill-conditioned L
indicates large condition numbersm(ψ) and c(ψ).

4. Numerical examples

In this section, we adopt the examples in Sun (2002) to
illustrate the effectiveness of our results. All the experiments were
performed using MATLAB 7.0.



L. Zhou et al. / Automatica 45 (2009) 1005–1011 1009
Table 1
Comparison of the relative error ‖X̃ − X‖F/‖X‖F with our estimates and the values of cond(Z)∆1 for j = 12.

m ‖∆X‖F/‖X‖F κ1(ϕ)∆1 κU2 (ϕ)∆2 κM2 (ϕ)∆2 κ3(ϕ)∆3 cond(Z)∆1

1 1.3841× 10−9 2.7146× 10−9 3.3438× 10−9 1.9723× 10−9 3.4994× 10−8 2.4× 10−10

3 1.6262× 10−9 2.2211× 10−7 3.8468× 10−7 2.2365× 10−7 4.0731× 10−8 1.7× 10−7

5 1.8334× 10−9 2.4952× 10−5 4.3218× 10−5 2.4955× 10−5 4.5762× 10−8 4.3× 10−6
Table 2
Comparison of componentwise perturbation analysis and the values of cond(Z)ε0 for j = 12.

m ‖∆X‖max/‖X‖max mU (ϕ)ε0 ‖vec(∆X)/vec(X)‖∞ cU (ϕ)ε0 cond(Z)ε0

4 1.7712× 10−9 9.5617× 10−9 1.7712× 10−9 9.5617× 10−9 1.1× 10−10

6 1.8305× 10−9 5.9039× 10−8 1.8305× 10−9 5.9039× 10−8 7.7× 10−11

8 1.0091× 10−9 6.0318× 10−8 1.0091× 10−9 6.0318× 10−8 8.0× 10−12
Example 1. Consider the CARE (3) with

A = diag([−0.1,−0.02]T), Q = CTC, G = BR−1B,

where

B =
[
0.1 0
0.001 0.01

]
, R =

[
1+ 10−m 1
1 1

]
, C = [10, 100].

The pair (A,G) is c-stabilizable and the pair (A,Q ) is c-detectable.
The perturbations in the coefficient matrices were set to

∆Q = 10−j
[
5 −2
−2 4

]
, ∆A = 10−j

[
0.3 −0.2
0.1 0.1

]
,

and

∆G = 10−j
[
0.2 0.1
0.1 −0.3

]
.

Let Q̃ = Q + ∆Q , Ã = A + ∆A, G̃ = G + ∆G be
the coefficient matrices of the perturbed CARE (3). We used
the MATLAB function are to compute the unique symmetric
positive semidefinite solution X to the CARE (3) and the unique
symmetric positive semidefinite solution X̃ to the perturbed
equation (5). From Theorem 2, we can obtain the three kinds of
local normwise perturbation bounds: ‖∆X‖F/‖X‖F . κi(ϕ)∆i, for
i = 1, 2, 3. Table 1 compares the above approximate perturbation
bounds with the exact relative error ‖X̃ − X‖F/‖X‖F obtained
from MATLAB. Here we set δ1 = ‖A‖F , δ2 = ‖Q‖F , δ3 =
‖G‖F . It shows that our estimates are close to the exact relative
error ‖∆X‖F/‖X‖F , where we denote κU2 (ϕ) =

√
3κ1(ϕ) and

κM2 (ϕ) = βc/‖X‖F for simplicity. As pointed out earlier, the
condition number of Z in (7) is a good indication of κi(ϕ). The last
column in Table 1 lists the values of cond(Z)∆1 corresponding to
κ1(ϕ)∆1 in the third column. For κ2(ϕ) and κ3(ϕ), the results are
similar.
Let |∆A| ≤ ε|A|, |∆Q | ≤ ε|Q | and |∆G| ≤ ε|G|. We

obtain the local mixed and componentwise perturbation bounds:
‖∆X‖max/‖X‖max . εmU(ϕ) and ‖vec(∆X)./vec(X)‖∞ .
ε cU(ϕ). Let

ε0 = min{ε | |∆A| ≤ ε|A|, |∆Q | ≤ ε|Q |, |∆G| ≤ ε|G|}.

Table 2 shows that our estimates are tight. Also, the condition
number of Z is a good indication of the mixed and componentwise
condition numbers mU(ϕ) and cU(ϕ). The last column of Table 2
lists cond(Z)ε0 in comparison with mU(ϕ)ε0 and cU(ϕ)ε0 in the
table.

Example 2. Consider the DARE (4) with

Q = VQ0V , A = VA0V , G = VG0V ,
where

Q0 = diag([10m, 1, 10−m]T), A0 = diag([0, 10−m, 1]T),
G0 = diag([10−m, 10−m, 10−m]T),

and

V = I − 2vvT/3, v = [1, 1, 1]T.

Correspondingly, in the original DARE (2), B = V , R = G−10 , and
C = V

√
Q0V . The perturbations in the coefficient matrices were

set as

∆Q = 10−jV

[10m −5 7
−5 1 3
7 3 10m

]
V ,

∆A = 10−jV

[ 3 −4 8
−6 2 −9
2 7 5

]
V ,

and

∆G = 10−jV

 10−m −10−m 2× 10−m

−10−m 5× 10−m −10−m

2× 10−m −10−m 3× 10−m

 V ,
where the parameter j controls the size of the perturbations. The
pair (A, B) is d-stabilizable and the pair (A, C) is d-detectable. The
unique symmetric positive semidefinite solution Y to the DARE (4)
is given by Y = VY0V , where Y0 = diag([y1, y2, y3]T)with

yi = (a2i + qigi − 1+ ((a
2
i + qigi − 1)

2
+ 4qigi)1/2)/(2gi),

and qi, ai and gi are the corresponding diagonal elements of
Q0,A0 and G0. Let Q̃ = Q + ∆Q , Ã = A + ∆A, G̃ = G +
∆G be the coefficient matrices of the perturbed DARE (4). We
used MATLAB function dare to compute the unique symmetric
positive semidefinite solution Ỹ to the perturbed equation (20).
From Theorem 4, we can obtain the three kinds of local normwise
perturbation bounds: ‖∆Y‖F/‖Y‖F . κi(ψ)∆i, for i = 1, 2, 3.
Table 3 compares the above approximate perturbation bounds

with the exact relative error‖Ỹ − Y‖F/‖Y‖F . Here we set δ1 =
‖A‖F , δ2 = ‖Q‖F , δ3 = ‖G‖F . It shows that our estimates are
close to the exact relative error ‖∆Y‖F/‖Y‖F , where we denote
κU2 (ψ) =

√
3κ1(ψ) and κM2 (ψ) = βd/‖Y‖F for simplicity. As

pointed out earlier, the condition number of L (21) is a good
indication of κi(ψ). The last column of Table 3 lists the values of
cond(L)∆1 corresponding to κ1(ψ)∆1 in the table. For κ2(ψ) and
κ3(ψ), the results are similar.
Let |∆A| ≤ ε|A|, |∆Q | ≤ ε|Q | and |∆G| ≤ ε|G|. We

obtain the local mixed and componentwise perturbation bounds:
‖∆Y‖max/‖Y‖max . εmU(ψ) and ‖vec(∆Y )./vec(Y )‖∞ .
ε cU(ψ). Let

ε0 = min{ε | |∆A| ≤ ε|A|, |∆Q | ≤ ε|Q |, |∆G| ≤ ε|G|}.
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Table 3
Comparison of the relative error ‖Ỹ − Y‖F/‖Y‖F with our estimates and the values of cond(L)∆1 form = 2.

j ‖∆Y‖F/‖Y‖F κ1(ψ)∆1 κU2 (ψ)∆2 κM2 (ψ)∆2 κ3(ψ)∆3 cond(L)∆1

9 5.5516× 10−8 8.8305× 10−7 1.4846× 10−6 8.7416× 10−7 1.7602× 10−7 8.8× 10−7

7 5.5503× 10−6 8.8305× 10−5 1.4846× 10−4 8.7416× 10−5 1.7602× 10−5 8.8× 10−5

5 5.4352× 10−4 8.8000× 10−3 1.4800× 10−2 8.7000× 10−3 1.8000× 10−3 8.8× 10−3
Table 4
Comparison of componentwise perturbation analysis and the values of cond(L)ε0 form = 5.

j ‖∆Y‖max/‖Y‖max mU (ψ)ε0 ‖vec(∆Y )./vec(Y )‖∞ cU (ψ)ε0 cond(L)ε0

9 2.3172× 10−5 3.0867× 10−5 9.2681× 10−5 1.2346× 10−4 2.5× 10−5

7 3.0703× 10−4 3.1000× 10−3 1.2000× 10−3 1.2300× 10−2 2.5× 10−3

5 3.2000× 10−3 3.0870× 10−1 1.2800× 10−2 1.2346× 100 2.5× 10−1
Table 4 shows that our estimates are tight. Also, the condition
number of L is a good indication of the mixed and componentwise
condition numbers mU(ψ) and cU(ψ). The last column of Table 4
lists the values of cond(L)ε0 in comparison with mU(ψ)ε0 in the
table. As we can see, cond(L) gives a good estimation for themixed
and componentwise condition numbers for the DARE.

5. Concluding remarks

In this paper, we presented a perturbation analysis of both
the continuous-time and the discrete-time symmetric algebraic
Riccati equations. From the analysis, we derived upper bounds for
the normwise, mixed and componentwise condition numbers. Our
preliminary experiments showed that the three kinds of condition
numbers provide tight linear asymptotic bounds.
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