
Radius Selection Algorithms for Sphere Decoding ∗

Fei Zhao
Department of Computing & Software,

McMaster University,
1280 Main St. West

Hamilton, Ontario, L8S 4L7, Canada.
zhaof3@mcmaster.ca

Sanzheng Qiao
Department of Computing & Software,

McMaster University,
1280 Main St. West

Hamilton, Ontario, L8S 4L7, Canada.
qiao@mcmaster.ca

ABSTRACT
The integer least squares problem arises from many applications
such as communications, cryptography, and GPS. In this paper, we
consider the sphere decoding method in communication applica-
tions. One of key issues in sphere decoding is the selection of an
initial radius of the search hypersphere. We first present a deter-
ministic radius selection algorithm using the Babai estimate. How-
ever, due to the rounding errors in floating-point computation, this
method may produce a too small radius and cause sphere decod-
ing to fail to find a solution. In this paper, we perform an error
analysis and propose a modified radius selection algorithm by tak-
ing computational error into account. Our numerical experiments
show that this modified method achieves high success rate without
compromising performance.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Integer Least Squares—error analy-
sis and correction; D.2.8 [Software Engineering]: Metrics—per-
formance measures

General Terms
Improvement

Keywords
Integer least squares, sphere decoding, closest lattice point, Babai
estimate radius, numerical error.

1. INTRODUCTION
Sphere decoding is widely used in communication applications

[1]. It is a method for solving the integer least squares problem:

min
s∈Zm

‖Hs− y‖22, (1)

where y ∈ Rn and H ∈ Rn×m. That is to find an integer vector
s minimizing ‖Hs − y‖22. Note that while s is an integer vector,

∗This work is partially supported by NSERC of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-09 2009, May 19-21, Montreal [QC, CANADA]
Editor: B. C. DESAI, Copyright c©2009 ACM 978-1-60558-401-0/09/05
$5.00.

both the matrix H and vector y are real. The general problem of
integer least squares has many applications, such as, in addition to
communications, cryptography [2] and GPS [3], among others.

The integer least squares problem (1) can be interpreted by a geo-
metric lattice. All integer vectors s form a rectangularm-dimensional
lattice. Figure 1 shows a rectangular 2-dimensional lattice.

Figure 1: A 2-dimensional rectangular lattice.

The matrix H in (1), called lattice generating matrix, transforms
m-dimensional integer vectors s into n-dimensional real vectors
Hs forming a skewed lattice. Figure 2 depicts a skewed lattice,
represented by solid dots, transformed by a 3-by-2 lattice generat-
ing matrix. The vector y in (1) is an n-dimensional real vector. In
Figure 2, for example, the hollow point represents a 3-dimensional
real vector. Thus, in that figure, the integer least squares problem
is to find a solid point that is closest, in the Euclidean distance, to
the hollow point.

It is shown in [4] that the complexity of solving a general integer
least squares problem is NP-hard. A proof can be found in [5].

Sphere decoding is a particular method for solving the integer
least squares problem in communication applications. As the stan-
dard way of solving least squares problems [6], assuming the ma-
trix H in (1) is of full column rank, H is first reduced into an up-
per triangular matrix using orthogonal transformations, such as the
Householder transformation, to obtain the QR decomposition:

H = Q

[
R
0

]
,

where Q ∈ Rn×n is orthogonal and R ∈ Rm×m is upper trian-

Figure 2: Geometric interpretation of the integer least squares
problem

gular. Partitioning Q = [Q1 Q2], where Q1 is n ×m and Q2 is
n× (n−m), we get

‖Hs− y‖22

=

∥∥∥∥Q [R0
]
s− y

∥∥∥∥2

2

=

∥∥∥∥[R0
]
s−QT y

∥∥∥∥2

2

=

∥∥∥∥[R0
]
s−

[
QT

1

QT
2

]
y

∥∥∥∥2

2

= ‖Rs−QT
1 y‖22 + ‖QT

2 y‖22. (2)

Note that the second term is independent of s. Denoting ŷ as QT
1 y,

the integer least squares problem (1) is then reduced to the follow-
ing triangular integer least squares problem:

min
s∈Zm

‖Rs− ŷ‖22. (3)

Sphere decoding solves the triangular integer least squares prob-
lem (3) arising from communication applications. It searches a so-
lution in a predetermined hypersphere centered at ŷ. We describe
the sphere decoding algorithm in Section 2. One of key issues in
sphere decoding is the selection of a search radius. In Section 3,
we present a radius selection algorithm. In theory, this algorithm
ensures success, however, in practice due to rounding errors, this
algorithm sometimes fails. We perform an error analysis in Sec-
tion 4 and propose a modified radius selection algorithm in Sec-
tion 5. Our numerical experiments demonstrated in Section 6 show
that our modified radius selection algorithm has perfect success rate
without degrading performance. Finally, Section 7 concludes our
paper.

2. SPHERE DECODING
Sphere decoding, introduced originally by Finke and Pohst in [7]

in 1985, enumerates all lattice points in a hypersphere centered at
a given vector. It searches a lattice point in a hypersphere of radius
d and centered at ŷ in (3) that is closest, in Euclidean distance, to
the center. Therefore, by restricting the search area, it can reduce
the computational complexity of solving (3). Figure 3 illustrates a
hypersphere centered at a vector represented by the hollow point.

Figure 3: Geometric interpretation of a hypersphere in a lattice
space.

The complexity of sphere decoding depends on the following
two issues:

• The radius d of the hypersphere.
If d is too large, the hypersphere contains too many lattice
points, then the search complexity may be exponential to d;
if d is too small, on the other hand, the hypersphere may
contain no lattice points. There are no general guidelines for
selecting an appropriate d. It is application dependent.

• Search for all the lattice points inside the hypersphere.
This requires the test of the Euclidean distance between each
lattice point and the given central point to determine whether
it is smaller than the radius d of the hypersphere.

2.1 Tree representation of sphere decoding
The process of sphere decoding can be informally explained as

follows. It works in an order from the mth dimension down to the
first dimension and in entrywise for lattice points. We know that
an m-dimensional lattice point is determined by an m-dimensional
integer vector. Suppose that we have determined the entries, from
the mth down to the kth, of all lattice points in the hypersphere.
Then, for each kth entry of a lattice point, we find all the possible
(k−1)th entries so that the new lattice points lie in the hypersphere.
Figure 4 shows the process of sphere decoding represented by a tree
of depth m + 1, where m = 3. Starting at the root, we first find
the mth entries of all possible lattice points in the sphere, using the
radius d. In Figure 4, there are three possible integer values of the
mth entry. Then for each possible value of the mth entry, we find
all possible values of the (m − 1)th entry. Note that some of the
nodes at level k = 2 may not lead to any possible nodes at the lower
level. Thus, each node in the tree is assigned an integer and each
path from the root to a leaf node at the lowest level gives a lattice
point, anm-dimensional integer vector, in the sphere. In the figure,
there are eleven lattice points in the sphere. From the viewpoint of
this tree representation, the complexity of sphere decoding depends
on the size(density) of the tree, that is, the number of nodes of the
tree visited by sphere decoding. The details of the sphere decoding
algorithm is given in the next subsection.

2.2 Sphere decoding algorithm
The sphere of radius d and centered at y in (1) can be defined as

S = {s | ‖Hs− y‖ ≤ d},

Figure 4: Tree representation of sphere decoding, where m =
3.

whose condition, from (2), is equivalent to

‖Rs− ŷ‖22 ≤ d̂2, (4)

where

d̂2 , d2 − ‖QT
2 y‖22.

Since R is upper triangular, we can rewrite the condition (4) in
entrywise as

d̂2 ≥
m∑

i=1

(
m∑

j=i

ri,jsj − ŷi

)2

,

where ri,j , j ≥ i, denotes the (i, j)th entry of R. The above in-
equality can then be expanded to

d̂2 ≥ (ŷm − rm,msm)2

+ (ŷm−1 − rm−1,msm − rm−1,m−1sm−1)
2 (5)

+ · · · .

The first term in the right side of (5) depends only on themth entry
sm of lattice point s, the second term depends on the entries sm

and sm−1, and so on.
We can see that a necessary condition for Rs lying in the hyper-

sphere of radius d̂ is d̂2 ≥ (ŷm − rm,msm)2, which is equivalent
to the following condition for entry sm:⌈

−d̂+ ŷm

rm,m

⌉
≤ sm ≤

⌊
d̂+ ŷm

rm,m

⌋
. (6)

Furthermore, for each integer sm satisfying (6), define

d̂2
m−1 , d̂2 − (ŷm − rm,msm)2

and

ŷ′m−1 , ŷm−1 − rm−1,msm,

then, if d̂2
m−1 ≥ (ŷ′m−1 − rm−1,m−1sm−1)

2, the condition for
sm−1 is⌈

−d̂m−1 + ŷ′m−1

rm−1,m−1

⌉
≤ sm−1 ≤

⌊
d̂m−1 + ŷ′m−1

rm−1,m−1

⌋
.

Following the above procedure, we can obtain the intervals for
sm−2, sm−3, and so on until we reach s1. Then we are able to
determine all the lattice points in the hypersphere of radius d̂.

The sphere decoding algorithm is presented in Table 1.
Remarks. In the implementation of the sphere decoding algo-

rithm, there are two issues need to be addressed:

Table 1: Algorithm 1 - Sphere Decoding Algorithm
In: R, upper triangular matrix

ŷ, center of the sphere
d̂, radius of the sphere

Out: s or null
1. dn← d̂;
2. UBn← b(dn + ŷn)/rn,nc, LBn← d(−dn + ŷn)/rn,ne;
3. minR← dn;
4. interSumn← ŷn;
5. if LBn > UBn

6. initial radius too small, return null;
7. else sn ← LBn; end
8. k ← n;
9. while sn ≤ UBn {top level not exhausted}
10. if sk > UBk {this level exhausted already}
11. k ← k + 1; sk ← sk + 1; {go back to upper level}
12. else {sk ≤ UBk }
13. if k > 1
14. k ← k − 1;
15. d2

k ← d2
k+1 − (interSumk+1 − rk+1,k+1 ∗ sk+1)

2;
16. interSumk = ŷk − rk,k+1:n ∗ sk+1:n;
17. UBk ← b(dk + interSumk)/rk,kc;
18. LBk ← d(−dk + interSumk)/rk,ke;
19. if LBk > UBk {empty interval}
20. k ← k + 1; sk ← sk + 1; {go back to upper level}
21. else sk ← LBk; end
22. else {k = 1}
23. while sk ≤ UBk {go through all sk at k = 1}
24. if minR > ‖Rs− ŷ‖2
25. found s;
26. minR← ‖Rs− ŷ‖2;
27. end
28. sk ← sk + 1;
29. end {inner while}
30. k ← k + 1; sk ← sk + 1; {go back to k = 2 level}
31. end {if k > 1 else}
32. end {if sk > UBk else}
33. end {outer while}
34. return s or return null;

• We start with k = m, decrease k until k = 1. It is pos-
sible that some intervals determined by inequalities like (6)
contain no integers. In that case, we cannot go down further.
Instead, we have to go back to the upper level and pick an-
other integer in the upper level’s interval, then compute its
lower level’s interval, and so on. This is why the generated
tree structure of sphere decoding is not a balanced tree, that
is, not all the branches have the same length. Some branches
may be shorter than the depth of the generated tree. It is also
possible that all the branches’ lengths of the generated tree
structure are less than m + 1. That means that the hyper-
sphere contains no lattice point. In this case, it is necessary
to increase the initial radius d̂ of the searching hypersphere.

• In the hypersphere centered at ŷ, there may be more than
one lattice point. Therefore, we have to search all the lat-
tice points in the hypersphere and compare their Euclidean
distances to ŷ and find the one closest to ŷ.

From the above remarks, we can see that the decoding process
sometimes increases the value of k and sometimes decreases the
value of k. In other words, it sometimes goes up a level and some-
times goes down a level, but in different branches each time. It goes
through the tree, except the root node, like a preorder traversal and
performs depth-first searching.

Table 2: Algorithm 2 - Radius selection algorithm using the
Babai estimate

Inputs: R, where R is upper triangular.
ŷ, where ŷ is the y reduced by the QR decomposition.

Output: the radius d̂ of search sphere
1. solve s ∈ Rm for Rs = ŷ;
2. round: ŝ = dsc ∈ Zm;
3. set d̂ = ‖Rŝ− ŷ‖2;

3. RADIUS SELECTION USING BABAI ES-
TIMATE

In [9], Qiao proposed a deterministic method for selecting an
initial hypersphere radius. This method is designed for commu-
nication applications. Since H represents a channel matrix for a
communication channel, it can be assumed that the norm of Hs is
not too large because of the power constraint of the channel. This
means that when the channel matrix H is applied to the source
signal vector s, it does not significantly magnify the length of the
source signal vector. In other words, ‖Hs‖2 and ‖s‖2 are of the
same magnitude order. Based on this assumption, an initial radius
can be determined by the following deterministic method.

Suppose that the QR decomposition is already applied to (1) and
it is reduced to (3). First, we find the real solution for the triangular
system Rs = ŷ, which is the real least squares solution for the
problem min ‖Hs − y‖22. Then we round the entries of s to their
nearest integers to obtain the lattice point:

ŝ = dsc ∈ Zm.

This ŝ is known as the Babai estimate [8]. A radius d̂ is then set to
the distance, in the Euclidean sense, between Rŝ and ŷ:

d̂ = ‖Rŝ− ŷ‖2. (7)

In communication applications, this procedure is often referred to
as Zero-Forcing (ZF) equalization.

It is clear that the hypersphere of radius d̂ and centered at ŷ con-
tains at least one lattice point, namely ŝ. Thus the sphere decoding
using this radius will find the integer least squares solution in this
sphere, possibly on its surface.

If the real least squares solution s happens to be an integer vector,
that is, ŝ = s, then the radius d̂ is zero, meaning that s is the
integer least squares solution. In communication application, this
situation means that both channel and signal are perfect, no channel
distortion on the transmitted signal and no additive noise to the
transmitted signal, which is only possible in theory.

The algorithm for selecting a search radius d̂ using the Babai
estimate is presented in Table 2.

The size of d̂ is also examined in [9]. Let f = ŝ − s, then from
(7), we have

d̂ = ‖Rŝ− ŷ‖2
= ‖R(s+ f)− ŷ‖2
= ‖Rf‖2.

Since f = ŝ− s = dsc− s, s ∈ Rm, we get ‖f‖2 ≤
√
m/2. Thus

d̂ = ‖Rf‖2

≤
√
m

2
‖R‖2

=

√
m

2
‖H‖2.

The radius computed by Algorithm 2 ensures that the search sphere
contains at least one lattice point, namely ŝ, therefore the integer
least squares solution lies in the search sphere if the radius is com-
puted exactly. In practice, however, in the presence of inexact arith-
metic due to rounding errors introduced by floating-point computa-
tion, the computed radius contains error. If the computed radius is
smaller than the exact radius and ŝ happens to be the integer least
squares solution, the computed search sphere will contain no lattice
point and sphere decoding fails. Consider the following example.

Example 1:
In (1), let

H =

 2 −1 −1
−1 0 −2
−1 −1 −1

 and y =

−1
1
0

 .
In MATLAB (double precision), after the QR decomposition,

R ≈

−2.4495 0.4082 −0.4082
0 1.3540 1.6002
0 0 1.8091

and

ŷ ≈

 1.2247
0.3693
−0.6030

 .
The computed real solution for the triangular system Rs = ŷ was

s ≈

−0.3333
0.6667
−0.3333

 .
Rounding the entries of s to their nearest integers, we got

ŝ =

0
1
0

 ,
which happened to be an integer least squares solution. The ex-
act search radius should be

√
2, however, the radius computed by

d̃ = ‖Rŝ − ŷ‖2 (where d̃ denotes the computed radius) using
double precision in MATLAB was slightly smaller than

√
2 due

to rounding errors. Specifically, d̃−
√

2 ≈ −2.22× 10−16. Using
this computed search radius, the sphere decoding failed to find a
lattice point in the computed sphere.

The above example shows that a practical radius selection algo-
rithm must take computational error into account.

4. AN ERROR ANALYSIS
In this section, we perform an error analysis on our determin-

istic radius selection algorithm and derive an error bound for the
computed radius.

Recall that we round the real least squares solution s to the inte-
ger vector ŝ and then compute the radius d̂ = ‖Rŝ − ŷ‖2. So, it
remains to find the computational error in computing ‖Rŝ − ŷ‖2.
We denote the computed radius as d̃ and find |d̂− d̃|. Let u = Rŝ

and ũ be the computedRŝ, which is a matrix-vector multiplication.
A forward error analysis of matrix multiplication [10] shows that

‖u− ũ‖2 ≤ γm

√
m ‖R‖2‖ŝ‖2, (8)

where

γm =
mµ

1−mµ
and µ is the unit of roundoff. Thus, using (8), the error in the
computed radius we are looking for is

|d̂− d̃| = | ‖Rŝ− ŷ‖2 − d̃|
= | ‖u− ũ+ ũ− ŷ‖2 − d̃|
≤ ‖u− ũ‖2 + | ‖ũ− ŷ‖2 − d̃|
≤ γm

√
m ‖R‖2‖ŝ‖2 + | ‖ũ− ŷ‖2 − d̃|. (9)

The term | ‖ũ − ŷ‖2 − d̃| is the computational error in computing
the vector difference ũ − ŷ and then the 2-norm of the computed
ũ − ŷ. A standard forward error analysis of vector addition and
inner product [10] gives

| ‖ũ− ŷ‖2 − d̃| ≤ γmd̃.

Thus, from (9), we have

|d̂− d̃| ≤ γm

√
m ‖R‖2‖ŝ‖2 + γmd̃. (10)

The above inequality gives an upper bound for the computational
error in the computed radius d̃, which can be used to get an upper
bound for the exact radius d̂.

5. MODIFIED RADIUS SELECTION ALGO-
RITHM

In this section, applying the error bound (10) for the computed
radius derived in the previous section, we present a modified radius
selection algorithm that takes the computational error into account.

The µ in γm is the unit of roundoff. For example, in single pre-
cision µ ≈ 10−7 and in double precision µ ≈ 10−16. We assume
that

mµ < 1/2,

since the typical values of m are much smaller than half of the
machine precision. We then have γm < 2mµ since 1−mµ > 1/2.
Also note that ‖R‖2 = ‖H‖2. It then follows from (10) that

d̂ ≤ d̃+ 2m(
√
m ‖H‖2‖ŝ‖2 + d̃)µ. (11)

The above inequality gives an upper bound for the exact radius d̂
in term of the computed radius d̃, the norm of the channel matrix
H , and the norm of the integer vector ŝ. Using this bound (11),
we present a modified radius selection algorithm listed in Table 3.
This algorithm incorporates the computational error into the com-
putation of the search radius.

Example 2:
Following the Example 1,

‖H‖2 ≈ 2.676 and ‖ŝ‖2 = 1.

The modified radius selection algorithm computed, in double pre-
cision (µ ≈ 10−16), a radius d̃ slightly larger than the exact radius
d̂ =

√
2. Specifically, d̃ −

√
2 ≈ 3.33 × 10−15. Consequently,

sphere decoding succeeded in finding the solution [0 1 0]T .

Table 3: Algorithm 3 - Modified radius selection algorithm

Inputs: R, where R is upper triangular.
‖H‖2, the 2-norm of the channel matrix H .
ŷ, where ŷ is the y reduced by the QR decomposition.

Output: the radius d̂ of search sphere
1. solve s ∈ Rm for Rs = ŷ;
2. round: ŝ = dsc ∈ Zm;
3. compute d̃ = ‖Rŝ− ŷ‖2;
4. set d̂ = d̃+ 2m(

√
m ‖H‖2‖ŝ‖2 + d̃)µ;

6. NUMERICAL EXPERIMENTS
In this section, we simulate a communication channel and tar-

get our experiments on this channel simulation. In communication
applications, the channel matrix H ∈ Rn×m usually has the fol-
lowing Toeplitz form:

H =

h1

h2 h1

...
. . .

. . .

hl

. . .
. . . h1

hl

. . . h2

. . .
...
hl

where hi, i = 1, · · · , l are the parameters of the channel and l is
the order of the channel, thus, n = m + l − 1. The transmit-
ted source signal is an integer vector. The noise vector v is ad-
ditive white Gaussian N (0, σ2) with mean zero and variance σ2,
and the noise vector is scaled based on the given signal-to-noise
ratio (SNR). Therefore, the actual received signal vector y given to
sphere decoding is computed by y = Hs+ v.

We programed our algorithms in MATLAB. The entries of the
channel matrixH were random numbers uniformly distributed over
the interval [0, 1]. The entries of the source signal vector s were
randomly chosen from the set {±1,±3}. The entries of the addi-
tive white noise v were random values drawn from a normal dis-
tribution with mean zero and a deviation computed from the SNR.
For each randomly generated channel matirx H , one thousand ran-
dom source signal vectors s and one thousand random white noise
vectors v with SNR = 20dB were generated, then one thousand
received signal vectors y were computed. The order of channel was
set to 3 or 5 (l = 3 or l = 5), and the length of source signal was
set to 4 or 8 (m = 4 or m = 8).

Table 4 lists the average radius computed by the Algorithm 2 for
each communication channel and the number of failures out of the
one thousand cases. Table 5 shows the average radius computed by
the Algorithm 3. From the two tables, we can see that

• Using the modified radius selection algorithm, sphere decod-
ing achieved perfect success rate in our experiments.

• The radii computed by both radius selection algorithms were
almost the same. Thus we expected negligible performance
difference between the two radius selection algorithms, which
was confirmed by our running time measurements.

7. CONCLUSION

Table 4: Results from Algorithm 2
Size of signal (m), Average radius Failure rates
Order of channel (l) (d̂) (%)
m = 4, l = 3 0.744781 66.7
m = 4, l = 5 0.861159 65.2
m = 8, l = 3 1.44361 20.5
m = 8, l = 5 1.49963 32.6

Table 5: Results from Algorithm 3
Size of signal (m), Average radius Failure rates
Order of channel (l) (d̂) (%)
m = 4, l = 3 0.752058 0
m = 4, l = 5 0.820661 0
m = 8, l = 3 1.45038 0
m = 8, l = 5 1.54609 0

This paper discusses the issue of selecting a search radius in
sphere decoding in communication applications, more generally in
solving integer least squares problems. We first present a radius
selection algorithm using the Babai estimate and show that sphere
decoding may fail due to rounding errors. Then we perform an error
analysis of the algorithm and propose a modified radius selection
algorithm by taking computational error into account. Our exper-
iments show that the modified radius selection algorithm achieved
perfect success rate without noticeable performance degradation.

8. REFERENCES
[1] B. Hassibi and H. Vikalo, “On the Sphere Decoding

Algorithm I. Expected Complexity”, IEEE Transactions on
Signal Processing, vol. 53, no. 8, pp. 2806-2818, Aug. 2005.

[2] O. Goldreich, S. Goldwasser and S. Halevi, “Public-Key
Cryptosystems from Lattice Reduction Problems”,
Proceedings of the 17th Annual International Cryptology
Conference on Advances in Cryptology, pp. 112-131, Aug.
1997.

[3] A. Hassibi and S. Boyd, “Integer parameter estimation in
linear models with applications to GPS”, IEEE Transactions
on Signal Processing, vol. 46, no. 11, pp. 2938-2952, Nov.
1998

[4] P. van Emde Boas, “Another NP-complete partition problem
and the complexity of computing short vectors in lattices”,
Tech. Rept. 81-04, Department of Mathematics, University of
Amsterdam, 1981.

[5] D. Micciancio, “The hardness of the closest vector problem
with preprocessing”, IEEE Transactions on Information
Theory, vol. 47, no. 3, pp. 1212-1215, Mar. 2001.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd
Edition, Johns Hopkins University Press, Baltimore,
Maryland, 1996.

[7] U. Fincke and M. Pohst, “Improved methods for calculating
vectors of short length in a lattice, including a complexity
analysis”, Mathematics of Computation, vol. 44, no. 170, pp.
463-471, Apr. 1985.

[8] M. Grotschel, L. Lovasz and A. Schriver, Geometric
Algorithms and Combinatorial Optimization, 2nd Edition,
Springer-Verlag, New York, 1993.

[9] Sanzheng Qiao, “Integer least squares: Sphere decoding and
the LLL algorithm”, Proceedings of C3S2E-08, ACM
International Conference Proceedings Series, pp. 23-28,
May 2008.

[10] Nicholas J. Higham, Accuracy and Stability of Numerical
Algorithms, Second Edition, Society for Industrial and
Applied Mathematics, 2002.

