
A High Performance C Package for

Tridiagonalization of Complex Symmetric

Matrices

Guohong Liu and Sanzheng Qiao

Department of Computing and Software
McMaster University

Hamilton, Ontario L8S 4L7, Canada
qiao@mcmaster.ca

Abstract

Block algorithms have better performance than scalar and sin-

gle vector algorithms due to their exploitation of memory hierarchy.

This paper presents a high performance C implementation of a block

Lanczos tridiagonalization algorithm for complex symmetric matrices.

The design principles of the implementation and techniques used in

the implementation are described. Our experiments show that this

implementation has high performance.

Keywords: Complex symmetric matrix, block Lanczos algorithm, singular
value decomposition (SVD), Takagi factorization, C language, LAPACK.

1 Introduction

This paper presents a high performance C package for tridiagonalization of
complex symmetric matrices using block Lanczos method. We first briefly
describe the block Lanczos algorithm for tridiagonalization of complex sym-
metric matrix presented in [5].

For any complex symmetric matrix A of order n, there exist a unitary
Q ∈ Cn×n and an order n nonnegative diagonal Σ = diag(σ1, ..., σn), σ1 ≥

1

σ2 ≥ · · · ≥ σn ≥ 0, such that

A = QΣQT or QHAQ̄ = Σ.

This symmetric form of singular value decomposition (SVD) is called Takagi
factorization [3, 6].

The computation of the Takagi factorization consists of two stages: tridi-
agonalization and diagonalization [2]. A complex symmetric matrix is first
reduced to complex symmetric and tridiagonal form. The second stage, di-
agonalization of the complex symmetric tridiagonal matrix computed in the
first stage, can be implemented by the implicit QR method [2, 4], or the more
efficient divide-and-conquer method [8].

Block algorithms in which blocks of vectors instead of single vectors are
operated upon are rich in matrix-matrix (level 3 BLAS) operations. Perfor-
mance is thus improved by exploiting memory hierarchies.

The block Lanczos tridiagonalization algorithm [5] consists of two stages:
block tridiagonalization and tridiagonalization. A complex symmetric matrix
is first reduced to complex symmetric and block tridiagonal form. Assume
n = k × b, then there exists the decomposition

QHAQ̄ = J =

M1 BT

1
. . . 0

B1 M2

. . .
...

. . .
. . .

. . .
...

. . .
. . . BT

k−1

0 . . . Bk−1 Mk

,

where
Q = [Q1, Q2, ..., Qk] , Qi ∈ Cn×b,

is orthonormal, Mi ∈ Cb×b are symmetric, and Bi ∈ Cb×b upper triangular.
The second stage reduces the block tridiagonal complex symmetric matrix

J resulted from the first stage to complex symmetric tridiagonal. Specifically,
we find a unitary P = [p1,p2, ...,pn], pi ∈ Cn×1, such that

PHJP̄ = T =

α1 β1 . . . 0

β1 α2

. . .
...

. . .
. . .

. . .
...

. . .
. . . βn−1

0 . . . βn−1 αn

.

2

In this paper, we present a high performance C package for the block
Lanczos tridiagonalization of complex symmetric matrices. Our goals are
outlined in Section 2 and the general design philosophy is given in Section 3
followed by a description of the design of each module and the techniques
used to achieve our goals in Section 4. In particular, the techniques used to
achieve high performance is presented in Section 5. Finally, Section 6 shows
our experiment results to demonstrate the high performance.

2 Overview

Our primary goals for this package are: high performance, user friendly in-
terface, highly modularized, and portable.

The performance of this package relies heavily upon the performance of
the implementation of the block Lanczos tridiagonalization algorithm. The
algorithm frequently calls basic matrix and vector computations, such as
matrix-matrix multiplication and division, transpose or complex conjugate
of a complex matrix, and QR factorization. Thus these routines are crucial
for the performance of the package. Instead of reinventing wheels, whenever
possible, we use the subroutines for these matrix and vector computations
provided by the widely used LAPACK (Linear Algebra PACKage) [1], a For-
tran library of routines for solving problems in numerical linear algebra. It
is efficient on a wide range of high-performance computers if the hardware
vendor has implemented an efficient set of BLAS (Basic Linear Algebra Sub-
routines).

Since LAPACK is widely used in scientific computing community, to pro-
vide a friendly user interface, we follow LAPACK naming conventions and
interface style in designing our function names and interfaces. The users
who are familiar with LAPACK will find that the use of our package for
tridiagonalizing a complex symmetric matrix is almost identical to a LA-
PACK function for bidiagonalizing a general complex matrix. Our package,
however, has better performance than its counterpart LAPACK function.
Moreover, because of the similar interfaces, the application of the functions
in our package can be smoothly mixed with the applications of LAPACK
routines. The functions in this package can be called by a C++ program.

3

3 General Design

This package is divided into three layers:

• User interface
The user simply invokes the only one C function defined in this layer
to perform tridiagonalization of a complex symmetric matrix. User
interface encapsulates the details of the block Lanczos algorithm im-
plementation, and separates the application of the package from the
algorithm implemented in the package.

• Block Lanczos algorithm
This layer implements the block Lanczos tridiagonalization algorithm
for complex symmetric matrices. It contains the block Lanczos algo-
rithm modules.

• Support routines
This layer supports the layer of block Lanczos algorithm by providing
the lower level computing like QR factorization, and matrix-matrix,
matrix-vector and vector-vector operations. This layer includes the
wrapper of LAPACK and BLAS, LAPACK and BLAS modules, and
modules for some low level computing routines unavailable in LAPACK
or BLAS.

Following software design principles [7], we design the modules so that
there is a weak coupling between modules and a strong cohesion within a
module. Each module depends on as few other modules as possible. Conse-
quently, changes of one module are transparent to other modules provided
its interface with others is unchanged. For example, when we fine tuned the
implementation of LAPACK and BLAS wrapper to improve the performance
of the package, we did not have to touch other modules like block Lanczos al-
gorithm modules. Moreover, the module structure helps the user understand
the sizable block Lanczos algorithm implementation.

4 Design of Modules

In this section, we describe the details of the design of the modules and
the techniques used to achieve our goals in this package described in the

4

previous section. The hierarchy of the modules in this C package along with
its application is shown in Figure 1.

Block Lanczos algorithm
modules

LAPACK and BLAS
wrapper

LAPACK and BLAS

modules

User’s application

Block Lanczos algorithm
user interface

Low level computing
module

Figure 1: hierarchy of modules

4.1 User Interface

Normally the user of this package is most interested in only how to invoke
the routine to perform tridiagonalization of a complex symmetric matrix.
The block Lanczos algorithm user interface is what the user sees and uses.
Using this package, the user needs to include only one header file containing
the prototype of the user interface, zcstrd, and then link the block Lanczos
tridiagonalization C package. The user interface module hides the secret of
the implementation of the algorithm.

5

For example, suppose we perform the tridiagonalization of a complex sym-
metric matrix of order 1024 specified by the memory pointer doublecomplex
*Mat. The block size is set to 4. The starting matrix of orthonormal columns
is specified by the pointer doublecomplex *StartingMat. After the exe-
cution of the block Lanczos algorithm, the diagonal and off-diagonal ele-
ments of the tridiagonal matrix are stored in memory doublecomplex *a

and doublereal *b respectively. The matrices, which are obtained in block
tridiaognalization stage and tridiagonalization stage of the block Lanczos al-
gorithm, are specified by doublecomplex *Q and doublecomplex *P respec-
tively. It is the user’s responsibility to allocate the spaces for doublecomplex
*a, doublereal *b, doublecomplex *Q and doublecomplex *P before call-
ing the function. The following is a sample code:

#include "zcstrd.h"

void func ()

{

/* Declarations of variables. */

int n;

int bs;

doublecomplex *Q = NULL;

doublecomplex *P = NULL;

doublecomplex *a = NULL;

doublereal *b = NULL;

int info;

/* Set the input arguments. */

n = 1024;

bs = 4;

/* Allocate memories for *a, *b, *Q and *P. */

... ...

/* Perform trdiagonalization. */

zcstrd_ (&n, Mat, &bs, StartingMat, a, b, Q, P, &info);

}

To provide the user with a friendly interface, we design the function most
visible to the user following LAPACK style, since LAPACK is widely used in

6

scientific computing community. Specifically, the LAPACK routine zhetrd

reduces a complex Hermitian matrix to the real symmetric tridiagonal form
by a unitary similarity transformation. The following is its prototype:

int zhetrd_ (char *uplo,

integer *n, doublecomplex *a, integer *lda,

doublereal *d, doublereal *e,

doublecomplex *tau, doublecomplex *work,

integer *lwork, integer *info)

Following the naming convention of LAPACK and the above prototype, we
design our function, which reduces a complex symmetric matrix to the com-
plex symmetric tridiagonal form by unitary transformations,

int zcstrd_ (integer *n, doublecomplex *A,

integer *bs, doublecomplex *S,

doublecomplex *a, doublereal *b,

doublecomplex *Q, doublecomplex *P,

integer *info)

LAPACK users can easily understand the name and the arguments. The
first letter z indicates double complex. The next two letters cs indicate the
complex symmetric matrix. The last three letters trd indicate the tridi-
agonalization reduction of the matrix. We adopt the data types defined in
LAPACK, like integer, doublecomplex and doublereal, etc, for the arguments.
The idea of the design is to allow users to seamlessly invoke the block Lanczos
algorithm routine with other LAPACK routines.

The following are the descriptions of arguments of the user interface in
LAPACK style:

n (input) integer *

The order of the matrix A. n >= 0.

A (input) double complex array, dimension (n,n)

The complex symmetric matrix A.

bs (input) integer *

The order of one block. bs > 0.

S (input) double complex array, dimension (n,bs)

The starting block of orthonormal columns.

a (output) double complex array, dimension (n)

The diagonal elements of the tridiagonal matrix T.

7

b (output) double real array, dimension (n-1)

The subdiagonal elements of the tridiagonal matrix T.

Q (output) double complex array, dimension (n,n)

It is computed in block tridiagonalization stage.

P (output) double complex array, dimension (n,n)

It is computed in tridiagonalization stage.

info (output) integer *

= 0: successful exit

< 0: if info = -i,

the ith argument had an illegal value.

> 0: Exception is thrown.

The matrix A is not stored in the packed form supported by LAPACK
for the sake of performance. It would not be difficult to implement the
tridiagonalization of complex symmetric matrices using the packed form for
A. Also, note that this function returns two unitary matrices Q and P , not
the product of them.

4.2 Block Lanczos Algorithm Modules

Block Lanzcos algorithm modules implement the functions in the algorithm
itself. They do not directly invoke any LAPACK or BLAS routine. The
performance of these modules determine the performance of the whole pack-
age. These modules make frequent calls to LAPACK and BLAS wrapper
functions and low level routines. In the following two subsections, we discuss
LAPACK and BLAS wrapper modules and low level routine modules.

4.3 Lapack and BLAS Wrapper

LAPACK and BLAS wrapper modules implement such computations as QR
factorization, matrix-matrix operations and matrix-vector operations, which
block Lanzcos algorithm modules require, by calling LAPACK and BLAS
routines. Why is a wrapper inserted between the algorithm modules and
LAPACK and BLAS Modules? LAPACK and BLAS are designed for general
purpose. To simplify the interfaces, we customize some LAPACK and BLAS
routines and introduce the wrapper. We define some data structures for
matrices and vectors in the wrapper. The following is the data structure for
a general complex matrix,

8

typedef struct doubleComplexMat {

doublecomplex *mat;

int m;

int n;

} DoubleComplexMat;

This data structure wraps the LAPACK data type, doublecomplex, with the
dimensions of a matrix. It is used between modules to simplify the arguments
of the routines. The wrapper of level 3 BLAS function zgemm is a good
example. BLAS function zgemm implements matrix-matrix multiplication
αop(A)op(B) + βop(C), where op(X) = X, XT , XH . Its prototype is

int zgemm_(char *transa, char *transb,

integer *m, integer *n,

integer *k, doublecomplex *alpha,

doublecomplex *a, integer *lda,

doublecomplex *b, integer *ldb,

doublecomplex *beta, doublecomplex *c,

integer *ldc)

Computation R = ±op(A)op(B)+C is frequently performed in block Lanczos
algorithm. The wrapper function mmult sets α = 1 and β = 1 and calls BLAS
function zgemm to perform this computation. Thus, the parameters α and β
are invisible in algorithm modules. The prototype of mmult is

int mmult (char *signa, DoubleComplexMat *A, char *transa,

DoubleComplexMat *B, char *transb,

DoubleComplexMat *C, DoubleComplexMat *R)

Input

signa "+", R = op(A)*op(B) + C

"-", R = -op(A)*op(B) + C

A Matrix. Size of A = m*k

transa "N", op(A) = A

"T", op(A) = A transpose

"H", op(A) = A Hermitian

B Matrix. Size of B = k*n

transb "N", op(B) = B

"T", op(B) = B transpose

9

"H", op(B) = B Hermitian

"C", op(B) = B complex conjugate

C Matrix. Size of C = m*n

if C = NULL, then R = +/- op(A)*op(B)

Output

R Matrix. Size of R = m*n

R = +/- op(A)*op(B) + C

Compared with the BLAS routine zgemm, which has 13 arguments, this wrap-
per function, which has only seven arguments, is simpler, thus more under-
standable. For example, the following is a segment of the Matlab code of the
block Lanczos algorithm, where A, Q, R, M are four matrices.

R = A*conj(Q);

M = Q’*R;

R = R - Q*M;

The corresponding C implementation is:

mmult("+", A, "N", Q, "C", NULL, R);

mmult("+", Q, "H", R, "N", NULL, M);

mmult("-", Q, "N", M, "N", R, R);

Of course, reducing the number of arguments not only makes the code more
understandable but also reduces the possibility of making errors in passing
arguments.

We adopt the bottom-up strategy in the development of the wrapper. We
thoroughly tested the correctness and accuracy of the wrapper.

4.4 Low Level Subroutine Module

Block Lanczos algorithm requires some low level subroutines unavailable in
LAPACK and BLAS. These subroutines are implemented in a separate mod-
ule, low level subroutine module. The low level subroutine module and the
LAPACK and BLAS wrapper are at the same layer in the layering structure.
The subroutines in this module include componentwise product of two com-
plex matrices, and multiplication and addition of complex numbers. These
subroutines are actually code segments extracted from LAPACK and BLAS.
These subroutines may be replaced by alternative implementations without
modifying other modules.

10

4.5 LAPACK and BLAS Modules

At the bottom of the hierarchy of the modules are the LAPACK and BLAS
modules. These modules may be replaced by other implementations. The
only module affected by such changes is the LAPACK and BLAS wrapper.

5 Performance

High performance is one of the primary goals of this package. To achieve this
goal, we

• streamline and customize some LAPACK and BLAS functions to fit
the block Lanczos method;

• avoid dynamic memory allocation;

• reduce function calls without sacrificing the readability of the code.

LAPACK and BLAS are designed for general use. As described in Sec-
tion 4.3, the wrapper function mmult simplifies the interface by reducing the
number of arguments. Still, some cases never occur in our program. For
example, op(A) is never Ā. Thus checking the value of transa for “C” is
unnecessary and wasting of time. This case is eliminated for efficiency. The
matrix division function mdiv is another example. It computes R = A/B.
Our initial implementation checked whether the quotient matrix to be stored
in matrix R or overwrites B, i.e. B = A/B. In our program, however, the
overwriting case never occurs. We examined every wrapper function and
eliminated unnecessary cases. The functions in the wrapper are frequently
called by the block algorithm. Their performance have significant impact on
the total performance.

Dynamic memory allocation costs run time. We avoid dynamic memory
allocation by allocating static work buffers. For example, when mmult is
called, the value of the parameter transb can be “C”, that is, B̄ is required
in the matrix multiplication. The LAPACK function zlacgv calculates the
complex conjugate of a matrix, however, the the input matrix is overwritten
by its conjugate. Thus it is necessary to save the input matrix in a work buffer
before calling zlacgv. There are other functions in the wrapper requiring
work buffers. As we know, the functions in the wrapper are frequently called.
To avoid frequent dynamic memory allocation, after careful inspection, we

11

figured out work buffers necessary for the functions in the wrapper, and
created a function wrapperInit, which allocates memory and assigns the
pointers to the work buffers to some global variables. So, the functions in
the wrapper can use the work buffers. During the initialization of the block
Lanczos algorithm, wrapperInit is called and work buffers are allocated to
be used by the functions in the wrapper. At the end of the block Lanczos
algorithm, a function freeWrapper is called to release the memory.

Function calls require significant overhead. We avoid functions which
are short and frequently called by using macros or simply inserting their
implementations inside the caller functions. For example, the matrix multi-
plication function mmult requires the calculation of the complex conjugate of
a matrix. The code for calculating complex conjugate is short. So, instead
of calling a complex conjugate function inside mmult, we inserted the code
for calculating conjugate in mmult. Since the code is short, the readability is
not sacrificed, whereas the performance can be improved.

We compared the performance of the package before and after the adop-
tion of the above strategies. The following is the run time of tridiagonaliza-
tion of a random complex symmetric matrix of size 1024 before the adoption
of these strategies:

Block Lanczos tridiagonalization: 285.22 seconds

Next is the run time of the improved implementation for another random
complex symmetric matrix of size 1024:

Block Lanczos tridiagonalization: 231.87 seconds

6 Experiments

The package was developed in MS Visual C/C++ V6.0 environment. The
experiments were carried out on a PC with Intel 846M processor and 256M
memory running Windows 2000.

To test the accuracy, a random complex symmetric matrix generator is
included in the package. The generator produces complex symmetric matri-
ces with uniformly distributed random complex entries. The starting block S
of orthonormal columns is initialized from the QR factorization of a random
complex n-by-b matrix. The error in the orthogonality of Q was measured
by: ‖I −QHQ‖F/n2, and the error in the tridiagonalization T = QHAQ̄ was

12

measured by: ‖QHAQ̄ − T‖F/n2. Table 1 lists the results of our numerical
experiments on accuracy.

LAPACK does not support complex symmetric matrix data structure.
The SVD of a complex symmetric matrix has to be treated as the SVD of
a general complex matrix. Thus we compared our package for tridiagonal-
ization of complex symmetric matrices with the LAPACK routine zgebrd,
bidiagonalization of general complex matrices, since both are the first stage
in the computation of the SVD. Figure 2 shows the performance comparison
with LAPACK’s bidiagonalization routine, where the block size used in our
package is four.

matrix block error in error in
order size orthogonality factorization
512 4 4.750E − 013 1.612E − 011
1024 4 9.185E − 014 4.142E − 012
1024 8 7.473E − 014 3.334E − 012
1024 16 8.338E − 014 3.891E − 012
1280 4 7.774E − 014 2.737E − 012

Table 1: Accuracy of block Lanczos tridiagonalization implementation.

7 Conclusion

In this paper, we have presented a high performance C package for the tridi-
agonalization of a complex symmetric matrix using block Lanczos algorithm.
We have described our design ideas and techniques used in the package to
achieve our goals: high performance, well structured, user friendly interface,
and portable. Our experimental results show that our package performs bet-
ter than a comparable bidiagonalization routine in LAPACK.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D.
Sorensen. LAPACK Users’ Guide, Third edition. SIAM Publications,
Philadelphia, 1999.

13

256 512 1024 1280
0

20

40

60

80

100

120

matrix size

re
la

tiv
e

ex
ec

ut
io

n
tim

e

Bidiagonalization
Block Lanczos Alg

Figure 2: Comparison of the efficiency of block Lanczos tridiagonalization
implementation. The y axis shows the execution times normalized to the
execution time of LAPACK’s bidiagonalization of complex matrices

[2] A. Bunse-Gerstner and W.B. Gragg. Singular value decompositions of
complex symmetric matrices. Journal of Computational and Applied

Mathematics , 21 (1988) 41–54.

[3] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, 1985.

[4] F.T. Luk and S. Qiao. A fast singular value algorithm for Hankel matri-
ces. Fast Algorithms for Structured Matrices: Theory and Applications,

Contemporary Mathematics 323 , Editor V. Olshevsky, American Mathe-
matical Society. 2003. 169–177.

[5] Sanzheng Qiao, Guohong Liu, and Wei Xu. Block Lanczos Tridiagonal-
ization of Complex Symmetric Matrices. To appear in Advanced Signal

Processing Algorithms, Architectures, and Implementations XV, edited
by Franklin T. Luk. Proceedings of SPIE. Vol. 5910, 2005.

14

[6] T. Takagi. On an algebraic problem related to an analytic Theorem of
Carathédory and Fejér and on an allied theorem of Landau. Japan J.

Math. 1 (1924) 82–93.

[7] J.C. Van Vliet. Software Engineering: Principles and Practice, 2nd Edi-
tion. Wiley, 2000.

[8] Wei Xu and Sanzheng Qiao. A Divide-and-Conquer Method for the Tak-
agi Factorization. Technical Report No. CAS 05-01-SQ , Department of
Computing and Software, McMaster University. February 2005.

15

