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Abstract

We present componentwise condition numbers for the problems of Moore-Penrose
generalized matrix inversion and linear least squares. Also, the condition numbers for
these condition numbers are given.
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1 Introduction

Condition number is a measurement of the sensitivity of a problem to the perturbation in its
inputs. In general, consider a function f(x). Suppose that the input z is perturbed by Az.
The condition number « for the problem f(z) quantifies the magnification of the relative
errors caused by the perturbation. Specifically, k satisfies

f(z+ Ax) — flo)] _ |As]
|f ()] ||
Assuming |Az| < e|z|, we can define the condition number
N v R (]

0% | Ag|<e 3| e|f(z)|
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In the problem of inverting a nonsingular matrix A, the condition number
-1
r(4) = [[Al[|A]]

represents the ratio between the relative errors in A and its inverse:

(4 +A4)" - A _ sA) A4
A= ~ 1 s(A)|AAl/IAL 1AL
assuming the perturbation AA is small relative to A [4]. In this paper, || - || denotes the

2-norm. The condition number for solving a nonsingular system of linear equations Ax = b
is also k(A4) = ||A|| |A7}|| in that

1A+ A4~ (b + AB) — A=Y A4 | 8B
TA-T5] S(M(HMI+HW)+O(%

for AA and Ab such that ||[AA| < el|4]|, ||Ab]| < e]b||, and A + AA is nonsingular [4].

In the general case when A can be rectangular or rank-deficient, the Moore-Penrose
generalized inver Af of A is introduced. It can be defined as the unique matrix satisfying
the follow four matrix equations for X [2]:

AXA=A, XAX =X, (AX)T=4X, (XA4)T=XA.

The condition number for the generalized matrix inversion is given by || 4| ||Af|| [6]. For the

problem of linear least squares
min ||b — Az||, (1.1)
T

the minimal norm solution is Afh and the condition number is approximately |A|| ||Af]|
when the residual 7 = b — Az is small and || A||?||AT||> otherwise [6]. The condition numbers
for weighted Moore-Penrose inverse and weighted least squares are discussed in [8, 9]. The
condition numbers for structured least squares are given in [10].

The above condition numbers are called normwise condition numbers, because they are
in the forms of matrix norms. The normwise analysis has two major drawbacks: It is norm
dependent; it gives no information about the sensitivity of individual components [7]. Rohn
[7] presented componentwise condition numbers for matrix inversion and nonsingular system
of linear equations. Let A = [A;;]. Denoting |A| = [|4;;|], we say |A| < |B| when |4;;| < |Bjj|
for all 7 and j. The componentwise condition number for matrix inversion is defined by

{ |(A+ AA)_1 —
e|A~ 15

A
W,mms4m}

for nonsingular A + AA. Rohn proposed

(IA~|A]|A"))s5
|A~13;

Cz'j(A) = (1.2)



For the nonsingular system Ax = b of linear equations, Rohn defined

¢i(A,b) = lim sup

(A + AA)~1(b+ Ab) — A~1b);
e—0+

AA| < el4], |Ab] <
e 184 < 4, |ab] < o},

for nonsingular A + A A, and proposed

(1A |A[1A™ D] + A7 b))

Cz(Aab) = |A,1b|
i

(1.3)

In this paper, we present a componentwise condition number for the Moore-Penrose gener-
alized inversion and a componentwise condition number for the minimal norm linear least
squares in Sections 2 and 3 respectively. These condition numbers are generalizations of
those in [7] in that our condition numbers become (1.2) and (1.3) in the nonsingular cases.
Then in Section 4, we show condition numbers, called level-2 condition numbers, for our
componentwise condition numbers.

2 Generalized Inversion

The following theorem shows a componentwise condition number for the generalized matrix
inversion.

Theorem 2.1 Let the componentwise condition number for the Moore-Penrose generalized
matriz inversion be defined by

|(A—|—AA)Jr _AT‘ij }
L |AA| < €lA] Y, 2.1
{0 aa < day 21
for R(AA) C R(A) and R(AAY) C R(A"Y), then

(AT 1A] A1)
cij(A) <
ZJ( ) —= |AT|Z_7

and this bound is achievable.
Proof. It is shown in [1] that if R(AA) C R(A), R(AAT) C R(AT), and ||A| |AA| < 1,

then
(A4 AA)T = (T4 ATAA) AT

It then follows from |AA| < €|A| and the expansion of (I + ATAA)~! that
(A+ AA)T — AT = —ATAAA + O(P)E, (2.2)
where F is the matrix of which all entries equal one. Thus, componentwisely, we have

(A4 AA)T — At = |ATAAAY; 4+ O(e?).
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Since
|ATAAAT|;; < (JAT||AA]|AT)); < e(|AT]|A]]AT))j,

from the definition (2.1), we have the inequality

(|AT|A]AT])
¥ < .
Cij (A) > |AT|Z]

This bound can be achieved for any matrix A such that A = |A| and AT = |Af|. Indeed, let
AAg = —€A, then A Ay satisfies

|AAg| = €|4|, R(AAy) = R(A), and R(AA;) = R(A").

Now, using (2.1), (A + AAg)f = (1 — ¢)~' At implies that

: (A +AA)T - Al
.. — <
e(A) = lim sup{ T a4 <
T _ ATl
> lim (A +Ado)! — Ally
T e=0+ 6|AT|ij
: e ATl
= lim — W
6—1)1614' (1 — 6)6|AT|ZJ
= 1.
On the other hand, since A = |A| and A" = |Af|,
(A4 1)y _ jAtaat]y
| ATl | ATli;
This completes the proof. O

For example, the matrix E, of which all entries equal one, satisfies |E| = E and |Ef| =
n~2E = E', where n is the order of E.
Since

AT = [ATAAT] < |AT||A]1AT),
we have (|AT||A||AT|)i;/|AT];; > 1. Thus, from Theorem 2.1, we propose

(14T |A]1AT]);;

cij(A) = A7), (2.3)

as the componentwise condition number for the generalized matrix inversion and define

c(A) = n;gx(cij(A)). (2.4)

The condition number (2.3) is a generalization of (1.2), since AT = A~! when A is
nonsingular.



3 Linear Least Squares

Analogous to the componentwise condition number for the generalized matrix inversion pre-
sented in the previous section, we have the following result for the componentwise condition
number for the minimal norm linear least squares problem.

Theorem 3.1 Let the componentwise condition number for the least squares problem (1.1)
be defined by

[(A+ AA)T(b+ Ab) — ATb);
€| ATb|;

¢i(A4,b) = lim sup{ ,  |AA] <€A, |Ab < e|b|}, (3.1)

e—04
for R(AA) C R(A) and R(AAT) C R(AT), then

(JAT||A]|ATb| + |AT|[B]);
|ATb|;

& (A7 b) <

and this bound is achievable.

Proof. Applying (2.2), we get
(A+AA)T(b+ Ab) — ATb = ATAb — ATAAATD + O(%)e,

where e is the vector of which all the components equal one. Then, in componentwise form,

we have
(A + AA)T(b+ Ab) — ATb|; = |ATAb — ATAAATD|; + O(€).

Since
|ATAb — ATAAATD|; < (JATAB| 4+ [ATAAATD]); < e(|AT||A| |ATD| + |AT| [B])s,
from the definition (3.1), we have

(IAT[ A ATb] + AT} [B]);

i(A,b) <
cl(?)— |ATb|Z

Again, the above bound is achievable for any A and b such that A = |A|, AT = |Af|, and
b= |b|. In fact, setting
Ady=—eA and Aby = eb,

we get

|AAg| = €|A|, R(AAy) = R(A), R(AA}) = R(A"), and |Aby| = €[]



Then, from (3.1), (A + AAp)t = (1 —¢) "t A" and b+ Aby = (1 + €)b imply that

: [(A+ AA)T(b+ Ab) — AtD|;
; = < <
C’L(A’ b) eg%l_}_ Sup{ 6|A«tb|z ? |AA‘ — 6|14|7 |Ab| — G‘b‘
t _ Aty
e—0+ 6|ATb‘Z’
= lim 2
e~0+1—€
= 2.

On the other hand, since A = |A|, AT = |Af|, and b = |b],

(AT A]|ATD] + |AT][b]); _ |ATAATD+ Alb];
| Ab]; B | ATb]; B

This completes the proof. O
From Theorem 3.1, we propose

(1AT] || |ATe] + [AT] [b]):

i(A,b) = 2
Cz( ab) |ATb|, (3 )
as the componentwise condition number for the least squares and define
I3

The condition number (3.2) is a generalization of (1.3), since AT = A~! when A is
nonsingular.

4 Level-2 Condition Numbers

In the previous two sections, we proposed the componentwise condition numbers. How
sensitive are these condition numbers to the perturbations? Demmel [3] introduced the
concept of condition number of the condition number and showed that for certain problems
condition number of the condition number is the condition number up to a constant factor.
Higham [5] investigated the condition numbers, called level-2 condition numbers, for the
condition numbers for matrix inversion and nonsingular linear systems. In this section, we
present level-2 condition numbers for the generalized inversion and least squares. Our results
are generalizations of those in [5] in that they are the same as those in [5] for the nonsingular
cases.

Theorem 4.1 Let the level-2 condition number for the componentwise condition number

cij(A) for the Moore-Penrose generalized matriz inversion be defined by

cij(A+ AA) — cii(4)]
ecij(A)

c(A) = Jim sup {

a4 < da}, (41)
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for R(AA) C R(A) and R(AAT) C R(AT), then

(A) <1+3¢(A).

Proof. We first derive lower and upper bounds for |(A+AA)f|. From (2.2) and |AA| < €| A4,

we get
(A+AA)T| 47| < e

AT |A]|AT] + O(*) E

It then follows from the definition (2.3) of ¢;;(A) that
(1= ecij(A))| AT < |(A+AA) i < (1 +ecii(4))ATi;.
From (2.4), ¢(A) > ¢;j(A) > 1 for all ¢ and j, hence

(1 —ec(4)IAT]i; < [(A+AA) |y < (1 +ec(A))] 4T3,

for all 7 and j, which means

(1 —ec(A)IAT| < |(A+AA)T] < (1 +ec(4))|AT].

Then, using (4.4) and |A + AA| < (1 + €)|A|, we have the upper bound:

(I(A+ A4 A+ AA[[(A+ A4y
< (L+ec(A)*(1+ o) (AT A 1AT)i; + O()
= (L+e+2ec(A))((|AT]|A]1AT))i; + O(¢*)

Similarly, we can obtain the lower bound

(I(A+ A4 A+ AA[[(A+ A4 )i > (1 e~ 2ec(4)((|AT14]|AT))i; + O(?).

Now, using (4.3) and (4.5), we get

(14 +AA)T A+ AA[ (A + AA)T))y;

a8l = A+ Al
(1+  + 2e () (AT 4] [AT)g )
: e d)ai, o)

= (1+e+2ec(4

(A
)1+ ec(A))ei;(A) + O(?)
)

= (1+e+3ec(A))eii(4) + O(e?),

which implies that
Cij(A + AA) — Cij(A)
ecij(A)
Similarly, using (4.3) and (4.6), we get
Cij(A + AA) — Cij(A)
ecij(A)

<14 3c(A) + O(e).

> —1—3¢(A) + O(e).

(4.2)



This completes the proof. O

Analogous to the level-2 condition number for the componentwise condition number for
the Moore-Penrose generalized inverse, we can also get level-2 condition number for the
componentwise condition number for the least square problem as follows.

Theorem 4.2 Let the level-2 condition number for the componentwise condition number
ci(A,b) for the minimal norm linear least square problems defined by

c£2](A, b) = lim sup

e—0+

lci(A+ AA,b+ Ab) — ¢i(A,b)|
AA| < €|Al], |Ab| <
{ e 18] < €[], [AH] < elo
for R(AA) C R(A) and R(AAT) C R(AT) then
(A, b) < 2¢(A,b) + o(A) + 1.

Proof. For the least square problem (1.1), the minimal norm solution is z = A'b, where Af
is the Moore-Penrose generalized inverse. Let £ + Az be the minimal norm solution of the
perturbed least squares problem miny (b + Ab) — (A + AA)y||2, then, from (2.2),

z+Az = (A+AA)(b+ Ab)
= (At — ATAAAT + O(2)E)(b + Ab)
ATb+ ATAb — ATAAATH + O(2)e.

When |AA| < €|A| and |Ab| < €|b|, we have the following upper and lower bounds for
|z + Azl:

| ATH] — €| AT|[b] — €| AT|| A||ATb] + O(¢?) < |& + Az| < |ATb| + | AT|[b] + €| AT|| Al ATH] + O(€?).
It then follows the definition (3.2) of ¢;(A4,b) that
[2]i(1 = €ci(4,0)) + O(”) < |a + Azli < [a]i(1 + eci(4, b)) + O(€”).
Since ¢(A,b) > ¢;(A,b), from (3.3), we obtain
|z];(1 — ec(A, b)) + O(€®) < |z + Ax|; < |z|;(1 + ec(A, b)) + O(e?),
for all ¢, which implies
lz|(1 — ec(A, b)) + O(?) < |z + Az| < |z|(1 + ec(4, b)) + O(€?). (4.7

Then, using (3.2), (4.4), (4.7), |AA| < €|A|, and |Ab| < €|b|, we get the following upper
bound for ¢;(A + AA,b+ Ab),

([(A+ AA)| |A + AA| |z + Azl); n (|[(A + AA) |b+ Ab|);

(A+ AA Ab) =
ci(A+A4, b+ AY) |z + Azl |z + Azl



(1 + ec(A)[AT)(1 + ¢)[A](1 + ec(4, D)) |])s
|z]; (1 — ec(A, b))
((1+ ec(A))|AT|(1 + €)[B])s
|z]; (1 — ec(A, b))
(1+ €+ ec(A) + ec(A, b)) (1 + ec(A, b)) (|AT| |A| |ATH|);
EdP
P N0 AT, o0

_ (1+ €+ ec(A) + 2ec(A, b)) (JAT| |A] |ATD]); +0(e)
|li
N (14 €+ ec(A) + ec(A, b)) (|AT| |b]);
|zl;

< (14 e+ ec(A) + 2ec(A, b))ci(A,b) + O(€2). (4.8)

IA

+0(€?)

Similarly, we can get the lower bound for ¢;(A + AA,b+ Ab)

(1~ ec(A) — e — 2ec(4, b)) (|AT] |A] |a]);

c(A+ A b+ Ab) >

k4
L e—ec(d) —|;|CKAa O)(AT] oD o)
> (1 —e—ec(A) —2ec(A,b))ci(A4,b) + O(e2). (4.9)

Hence, using (4.8) and (3.2), we obtain

ci(A+ AA b+ Ab) —¢i(A,b)
€C; (Aa b)

<1+4c(A) +2¢(4,b) + O(e).

Similarly, using (4.9) and (3.2), we also have

ci(A+AAb+ Ab) — ¢i(A,b)
eci(A,b)

> —1—c(A) — 2¢(A,b) + Ofe).

This completes the proof. O

Conclusion We have presented the componentwise condition numbers for the generalized
inversion and least squares. They include the componentwise condition numbers for matrix
inversion and nonsingular linear system proposed by Rohn [7] as special cases. Also, we have
generalized the level-2 condition numbers by Higham [5] to the generalized inversion and least
squares and showed that condition numbers of our componentwise condition numbers are
the componentwise condition numbers.
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