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Abstract

In this paper, we study the displacement rank of the Drazin inverse. Both Sylvester
displacement and the generalized displacement are discussed. We present upper bounds
for the ranks of the displacements of the Drazin inverse. The general results are applied
to the group inverse of a structured matrix such as close-to-Toeplitz, generalized Cauchy,
Toeplitz-plus-Hankel, and Bezoutians.
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1 Introduction

Displacement gives a quantitative way of identifying the structure of a matrix. Consider an
n-by-n Toeplitz matrix

to t-1 -+ topn
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in which all the elements on the same diagonal are equal. A displacement is defined as the
difference T — ZTZ", where

0 0
1 0

Z = N (1.1)
0 10

is the shift-down matrix and Z" is the complex conjugate and transpose of Z. Define a

displacement operator Vz:
VT =T - ZTZ".

It is easy to check that the rank of the displacement V7T is at most two, independent of
the order n and low compared with n. There are several versions of displacement structures.
Given matrices U and V', Sylvester UV -displacement is AU —V A and Stein UV -displacement
is A — VAU. If the rank of a displacement is low comparing with the order of the matrix,
then the matrix is called structured with respect to the displacement [4, 6, 7, 8, 12]. Thus, a
Toeplitz matrix T is structured with respect to the displacement V zT'. Low displacement rank
can be exploited to construct fast algorithms for triangular factorization, inversion, among
others [6].

This paper discusses the displacement rank of the Drazin inverse. For an n-by-n matrix
A, the index of A is the smallest nonnegative integer k such that rank(A*T!) = rank(A*).
The Drazin inverse [1, 3], denoted by AP, of A is the unique matrix satisfying

APAAP = AP, A4AP = AP A,  AFTIAD — 4%
where k is the index of A. When the index of A is one, AP is called the group inverse of A and
is denoted by A“. The Drazin inverse plays an important role in numerical analysis [2, 9, 10].

The index of a matrix is characterized as the order of the largest Jordan block with zero
eigenvalues. From Jordan canonical form theory [2], for any complex n-by-n matrix A of index
k and rank(A*) = r, there exits a n-by-n nonsingular matrix R such that

A:R[‘g ](\)[]R_l, (1.2)

where S is an r-by-r nonsingular matrix and N is nilpotent, N* = 0. Note that if index(A) = 1,
then N is a zero matrix. Now we can write the Drazin inverse of A in the form:

St 0
D _ —1
A" =R [ 0 0] R™. (1.3)
Denote
Q=AAP and P=1- 44", (1.4)

then @ and P are oblique projections onto Range(A*) and Null(A¥) respectively. It is easy
to check that
Range(Q) = Range(AP) = Range(A4*) = Range(Q"), (1.5)



and
Null(AP) = Null(4¥) = Range(P) = Null(Q). (1.6)

This paper is organized as follows. We show an upper bound for the Sylvester displacement
rank of the Drazin inverse in Section 2. Then, in Section 3, we give an estimate for the
generalized displacement rank of the Drazin inverse. In Section 4, we present a case study
of several versions of displacement rank of the group inverse of a structured matrix such as
close-to-Toeplitz, generalized Cauchy, Toeplitz-plus-Hankel, and Bezoutian.

2 Sylvester displacement rank

In this section, we study Sylvester displacement rank of the Drazin inverse. We first establish
a relation between the Sylvester displacements of a matrix A and its Drazin inverse AP. Then
we show that the Sylvester displacement rank of AP is bounded above by the sum of the
Sylvester displacement ranks of A and A*.

Define the Sylvester displacement operator Ay y:
AyyvA =AU -V A.

When A is nonsingular, the Sylvester displacement ranks of A and its inverse A~ ! are related
by
rank(AypA~") = rank(Ayy A),

since AU — VA= A(UA™! — A"'V)A. This says that if A is a structured matrix, then 41
is also structured with respect to Sylvester displacement.

Now, we consider the displacement of the Drazin inverse. First, we establish a relation
between the displacements of A and AP.
Proposition 1 Let A € C™*™ be of index k, then
AyyAP = APV P — PUAP — AP (Ayy A) AP (2.1)
where P is defined in (1.4).

Proof. 1t follows from the following identity:
AP(AU —VA)AP = (I - P)UAP — APV(I - P)
since P =1 — APA. O

Now, we consider the ranks of the matrices on the right side of the equation (2.1). From
(1.5), we have

rank(PU AP) = dim(PURange(AP)) = dim(PURange(Q)) = rank(PUQ).



Similarly, from (1.6), we have Range(Q") = Range((AP)") and
rank(APV P) = dim((V P)"Range((AP)")) = rank((VP)"Q") = rank(QV P).
It then follows from (2.1) that
rank(APV — UAP) < rank(AU — V A) + rank(QV P) + rank(PUQ). (2.2)
However, QV P and PUQ are dependent on AP. We claim that
rank(QV P) + rank(PUQ) < rank(U A*¥ — A*V). (2.3)

Thus we have the following theorem of Sylvester displacement rank of the Drazin inverse.

Theorem 1 For any A € C™*" of index k,
rank(Ay,y AP) < rank(Ap v A) + rank(Ay, i AF).

This theorem shows that the Sylvester VU-displacement rank of AP is bounded above by
the sum of the Sylvester UV -displacement rank of A and the Sylvester VU-displacement of
AF where k is the index of A. So, if both A and A* are structured with respect to Sylvester
displacement, then AP is also structured.

Now we prove (2.3). Following the dimensions in the Jordan canonical form (1.2), we
partition
U Ui

R 'UR=
lU21 Uaa

] and R‘WR:[V“ VR].

Vor Vao
Using the canonical form (1.2), we get
R YUAF - A*V)R = R 'WRR 'A*R—- R 'A4*RR VR
_ | U Une Sko| | S*o0 Vin Vig
| Un Uz 0 0 0 0 Vor Voo
U S* — SV -5V,
Uz S* 0 '

Since —S*Vi5 and Uy S* are submatrices of the last matrix in the above equation and S is
nonsingular, we have

rank(UA* — A¥V) > rank(S*Vi5) + rank(Usz S*) = rank(Via) + rank(Us;).

On the other hand, rank(Vi2) = rank(QV P) and rank(Us;) = rank(PUQ), since, from the
canonical forms (1.2) and (1.3),

I 0

00

_ D _
Q= AA —R[ 01

]R_l and P:I—Q:R[O O]R_l.

This proves (2.3).



3 Generalized displacement

Heinig and Hellinger [4] unified and generalized Sylvester and Stein displacements. The gen-
eralized displacement operator A,y is defined by

Aa(V,U)A = agoA + ap1 AU + a1V A + a11 V AU,

where a;; (3,5 = 0,1) are the elements of the 2-by-2 nonsingular matrix a. In particular, when

-1 0-
a = ,

0 -1
the generalized displacement operator Ay, is Stein UV -displacement operator; when

0 1]
a = ,

-1 0

the generalized displacement operator A, y;rr) reduces to Sylvester UV -displacement operator.

In this section, we generalize the result on Sylvester displacement rank to the generalized
displacement rank of the Drazin inverse. Specifically, analogous to Theorem 1, we show that
the generalized displacement rank of the Drazin inverse AP is bounded above by the sum of
the generalized displacement ranks of A and A*, where k is the index of A.

Theorem 2 For any A € C™ " of index k and nonsingular a,z € C?*2,
rank(Aa(U,V)AD) < rank(A vy nA) + rank(Am(U,V)Ak), (3.1)
where aT is the transpose of a.

The following lemma [4] establishes a relation between the generalized displacement and
Sylvester displacement.

Lemma 1 Given n-by-n matrices U, V, and 2-by-2 nonsingular matriz a, there exist 2-by-
2 matrices b = [b;j] and ¢ = [ci;] (i,§ = 0,1) such that bool + b1V and cool + co1U are
nonsingular and

a="b"de, where d= [ _(1) (1)]
For any n-by-n matriz A, the generalized displacement
AgvinA = (bool + b1 V) (A, @), 1,v)A) (cood + corU),
where fs(W) is a matriz function defined by
fs(W) = (s00 + s01W) " (s10T + s11W) = (s10] + s11W ) (500 + 501 W)~ (3.2)

for a matriz W and a 2-by-2 nonsingular matriz s = [s;;] (i,j = 0,1) such that sool + sop1 W
18 nonsingular.



In particular, since we are interested in displacement ranks, Lemma 1 gives a useful relation
between the generalized displacement rank and Sylvester displacement rank:

rank(Aa(V’U)A) = rank(Afc(U),fb(V)A) . (33)

Now, we prove Theorem 2. From Lemma 1, there exist 2-by-2 matrices b, ¢, y, and z such
that

a=b%de and z=yldz, where d = l _(1) (1) ] ,

and from (3.3),
rank(Aa(U’V)AD) = rank(Afc(V),fb(U)AD)a (34)
rank(AaT(V,U)A) = rank(Afb(U),fc(V)A), (35)

and
rank(Ax(U,V)Ak) = rank(Afz(V)’fy(U)Ak).

Applying (2.2) to (3.4), we further transform Sylvester displacement rank of AP to that of A:
I‘ank(Afc(V),fb(U)AD) < rank(Afb(U),fc(V)A) + rank(ch(V)P) + rank(be(U)Q). (3.6)

Thus, substituting rank(Aa(va)AD) and rank(A,r () A4) in (3.1) with (3.6) and (3.5) respec-
tively, it then remains to show that

rank(Q fo(V)P) + rank(P f,(U)Q) < rank(Afz(V)yfy(U)Ak).
From (2.3), we have

rank (A vy 1 17 A*) > rank(Qf.(V)P) + rank(P f, (U)Q).

The following proposition shows that rank(Q fs(V)P) = rank(QV P) and rank(P f(U)Q) =
rank(PUQ). It then follows that rank(Qf.(V)P) = rank(QVP) = rank(Qf.(V)P) and

rank(Pfy(U)Q) = rank(PUQ) = rank(Pf,(U)Q), which completes the proof of Theorem
2.

In particular, if we choose a = z in (3.1), then
I'aIlk(Aa(va)AD) S I‘a.Ilk(AaT(VyU)A) + rank(Aa(U,V)Ak).
This means that if both A and A* are structured with respect to some displacement, then AP
is also structured.
Proposition 2 Given W, let k be the indezx of A and s = [s;;] (1,5 = 0,1) nonsingular such
that sool + sg1 W is nonsingular, then
rank(QW P) = rank(Qfs(W)P) and rank(PWQ) = rank(Pf;(W)Q),
where fo(W) is defined by (3.2).



Proof. Since, from (1.6), Range(P) = Null(A4*), we consider QW |Nun(ak) as an operator
restricted on Null(A*). Then the null space of this operator is

N = Null(A*) N Null(A*W),

since Null(Q) = Null(A*), which implies that Null(QW) = Null(A*W). It then follows that
the rank of the operator QW|Nu11( Ar) equals the dimension of the quotient space

Q = Null(4¥) o V.

In other words,
rank(QW P) = dim(Q).

Following the above argument, if we define the subspaces

N = Null(4AF) N Null(4* f,(W)) and Q = Null(4¥)o N,

then rank(Qfs(W)P) = dim(Q). From the definitions of the quotient spaces Q and 9,

if we can show that dim(N) = dim(N), then we have dim(Q) = dim(Q), which implies
rank(QW P) = rank(Q fs(W)P).

Indeed, for any x € N, which means A¥x = A¥Wx = 0, there is z = (sgo + s, W)x € N,
since Az = A¥(sgol + s01W)x = 0 and A*f(W)z = A¥(s19I + s11W)x = 0. Conversely,
for any z € N, which means Az = Ak f (W)z = 0, we define x = (sgo + so1W)'z. Then
A¥f(W)z = 0 implies that A*(s;ol + s11W)x = 0 and A¥z = 0 implies that A¥(sgol +
501W)x = 0. Thus A¥x = 0 and A*Wx = 0, i.e., x € NV, since the matrix s is nonsingular.

Similarly, we can prove that rank(PW Q) = rank(P fs(W)Q) by noting that rank(PW Q) =
rank(QUWHPY) and rank(P f;(W)Q) = rank(Q"(f;(W))"!PH) and considering the subspaces
Null((A%)H), Null((AF)FWH), and Null((AF)H(f,(W))H). O

Example 3.1 Let U be the shift-down matrix Z in (1.1), V the shift-up matrix Z1,

|1 0
a=z=|, ||

and A a singular Toeplitz matrix of index two:

0 01 00 0 0]
1001000
0100100
A=|10100 10
1101001
0110100
(001101 0]




We get

10 1 1 0 -1 0
10 -3 -1 1 3 -1

. 10 -1 0 0 1 0
AD_§11 1 -1 0 -1 1
10 5 1 -1 -3 1

00 0 1 0 0 0

-1 0 -1 1 1 1 -1

and
rank(A,ry,in4) =2, rank(Aa(U,V)AZ) =4, rank(Aa(U,V)AD) = 6.

This example shows that the upper bound given by Theorem 2 is sharp.

4 Case study

In this section we present a case study of Theorem 2. We consider the case when the index
of A is one and study the displacement rank of the group inverse of close-to-Toeplitz matrix,
generalized Cauchy matrix, Toeplitz-plus-Hankel matrix, and Bezoutian. In this case, (3.1)
becomes

rank(Aa(U,V)AG) < rank(Agr oy A) + rank(Ag @,y Al

4.1 Close-to-Toeplitz matrix

Let U be the shift-down matrix Z in (1.1), V the shift-up matrix Z%, and

1 o0
T o0 -1 ]

then we have
Agu)AS = AC — ZASZYN Ay A=A—Z"AZ, and A,pyy)A=A—-ZAZN.
A matrix is said to be close-to-Toeplitz if the displacement ranks
ry =rank(4 — Z%AZ) and r_ =rank(4 — ZAZY)

are low. Thus, we have
rank(A¢ — ZASZM) <r, 41| (4.1)

which means that the group inverse of a close-to-Toeplitz matrix is structured. In particular,
for a Toeplitz matrix, r. and r_ are at most two, we have the following theorem of the
displacement rank of the group inverse of a Toeplitz matrix.



Theorem 3 For a Toeplitz matriz A of index one,

rank(A¢ — ZA%ZM) < 4.

For a general matrix, we have |ry —r_| < 2 [5, 6]. The following theorem follows from
(4.1).
Theorem 4 Let A € C™*" be of index one, then
rank(A¢ — ZA%ZM) < 2 rank(A — Z1A4Z) + 2.
The above theorem shows that the group inverse of a close-to-Toeplitz matrix is also close-

to-Toeplitz. So the group inverse can be computed by fast algorithms such as Newton method
presented in [7, 8].

Also, from (4.1), we get the following decomposition of the group inverse.

Theorem 5 The group inverse AS of A € C™™ can be decomposed as
A% =" L(ci)R(ri), (4.2)
i=1

where 7 = r4 + r_, L(c;) and R(r;) are respectively lower and upper triangular Toeplitz
matrices of order n and ¢; and r; are the first column and the first row of L(c;) and R(r;)
respectively.

This theorem shows that for a close-to-Toeplitz matrix, the group inverse solution A%b
[9] can be computed in O(n log(n)) operations if the FFT is used in Toeplitz matrix-vector
multiplications.

Example 4.1.1 Let n = 6 and

0 1 0 0 0 17
001000
100100
A= 010010}
101001
|01 01 0 0|
f

a singular Toeplitz matrix (rank(A) = 5) of index one. The group inverse of A is
1

-3 5 2 1 -5]
3 -1 -1 2 -1 1
o l|-2 6 -2 0 2 2

8| -1 3 3 -2 -1 5
-1 3 3 6 -1 -3
3 -1 -1 -2 3 1




and rank(A% — ZASZ%) = 4. So, the the upper bound given by Theorem 3 is tight.

We computed the vectors ¢; and r; in the decomposition (4.2) in Matlab:

C 0.9967 T —0.0611 1" [ —0.0004 ] T _0.4655 7
—0.1251 0.4721 —0.6652 0.5100
o | 04d6T | 105978 | 103630 | | 0.0236 |
0.7616 |’ —0.2518 | 0.3034 | 0.6255 |
—0.0151 ~0.1890 0.6058 0.3586
0.6450 | | 0.5629 | | —0.7250 | | —0.0530 |
T 0.1465 C 04502 7 [ 0.0271 —0.0737 1"
0.1683 0.6206 0.2458 0.1784
oy | “OUSS3 | | 00634 | | 01896 | | 07335
0.1535 |’ —0.0141 | ° 0.0865 |’ 0.0485
0.3368 —0.3561 —0.0609 —0.4075
0.1469 | | 0.5302 | | 0.1453 | | 0.5063 |

and measured the error

4
146 — 3" L(ei) R(r:)||2 = 1.203 x 1071
=1

4.2 Generalized Cauchy matrix

In this section, we study the displacement rank of the group inverse of a generalized Cauchy
matrix. A matrix A is called a generalized Cauchy matrix if for some vectors ¢ = [¢;] and
d = [d;],

r = rank(A diag(d) — diag(c)A) (4.3)

is small compared with the order of A. In case ¢; # dj, for all 7 and j, a generalized Cauchy
matrix has the following form:

fHg.

where f;,g; € C".

When r = 1 and f; = g; = 1, A is the classical Cauchy matrix. Another important case is
the class of Loewner matrices:

whose displacement rank r = 2.

10



Substituting U and V' in Theorem 1 with diag(d) and diag(c) respectively, we have

rank (A diag(c) — diag(d) A%)
< rank(Adiag(d) — diag(c) A) + rank(A diag(c) — diag(d) A).

Under the assumption that

C; — dj =Cj — di, for ’i,j = 1, .y, (45)

we have
rank(A diag(c) — diag(d) A) = rank(A diag(d) — diag(c) A).

Thus, we have the following estimate for the displacement rank of the group inverse of a
generalized Cauchy matrix.

Theorem 6 For the generalized Cauchy matriz A in (4.4), if the index of A is one and the
assumption (4.5) holds then
rank (A diag(c) — diag(d) A%) < 2rank(A diag(d) — diag(c) A).

It follows from the above theorem that the group inverse of the generalized Cauchy matrix
of displacement rank r is also a generalized Cauchy matrix and its displacement rank is 2r.

Theorem 7 Suppose that the assumption (4.5) holds. The group inverse AG of the generalized
Cauchy matriz in (4.4) has the form:

AG:[x?yj

Gi—c| for i,5=1,..n, (4.6)

where X;,y; € C? and r is the displacement rank of A defined in (4.3).

Since the multiplication of a generalized Cauchy matrix of order n by a vector can be
carried out in O(n log(n)) operations, the above theorem shows that the group inverse solution
ASb [9] for a generalized Cauchy system can be computed in O(n log(n)) by using (4.6).

Example 4.2.1 Let

0
c= 2 =, g2 = —C
0

then ¢ and d satisfy the assumption (4.5) and

-1 -1 -1
A=| -1 1/3 -1
-1 -1 -1

11



is singular and of index one. The group inverse

L[ -1 -6 -1
AG:E —6 12 —6
-1 -6 -1

It can be found that
rank(A%D(c) — D(d)A%) = rank(AD(c) — D(d)A) = rank(AD(d) — D(c)A) = 1.
It can be verified that vectors x; and y;

: ]_101
XX2X1=109 1 0

: ]_i 1 -6 1
» ivewsl=351 Jg 36 e

satisfy (4.6).

4.3 Toeplitz-plus-Hankel Matrix

A matrix is Toeplitz-plus-Hankel if it is the sum of a Toeplitz and a Hankel. This kind of
matrix has Sylvester WW-displacement rank at most 4, where W = Z + ZH. Applying
Theorem 1, we have the following theorem.

Theorem 8 If a Toeplitz-plus-Hankel matriz is of index one, then its group inverse has
Sylvester WW -displacement rank at most 8, where W = Z + ZH.

Example 4.3 Let the Toeplitz-plus-Hankel matrix

[eniien i en B an B e B an Bl en Bl en N «n  @n)

[ e e i e e
(el e e i e i e e
S O = e e
OO O = e e
S OO O
SO OO OO ==
SO DODO OO = ==
SO OO OO OO ==
S OO O OO0 O =

12



[ R = N T = = T =
I T T o T e Y S S G Gy S
e e S e S S e e
e T G o Y Sy ey
I T T o Y S S Gy S

= e e e e el e e

—_ = e e e e e e e

then we have rank(AW — W A) = 4. Its group inverse

We find that

The upper bound for the displacement rank given by Theorem 8 holds.

4.4 Bezoutian

—_
~
O N OO DODOoOOo O OO

1107 [0 0
11 1 0 0
11 1 0 0
11 1 0 0
11 1 0 0
111070 o
11 1 0 0 0
11 1 0 0 0
11 1 0 0 -1
111] o -1 -1
0 0 0 0 0 0
O 0 0 0 0 0
0O 0 0 0 0 0
o 0 0 0 0 1
0o 0 0 0 1 -1
0 0 0 1 -1 0
0 0 1 -1 0 0
0 1 -1 0 0 0
12 -1 0 0 0 0
O 0 0 0 0 0

rank (AW — W A®) = 6.

OO OO OO O == OOo

SO OO o oo oo

An n-by-n matrix A = [a;] (i, =0, ...,n—1) is called a (Hankel) r-Bezoutian if its generating

function

has the form:

n—1n—-1

AQp) =30 > ayh'y

i=0 j=0

AR = 37 3 a Wb,
k=1

where ay(A) and bg(p) are polynomials. In case of r = 2, by = a9, and by = —a1, A is a
(Hankel of real line) Bezoutian in the classical sense.

13



Let VA denote the matrix with the generating function (A — u)A(X, ), then A is called
an r-Bezoutian if rank(V A) < r. We introduce the (n + 1)-by-(n + 1) matrix

~ A 0
A‘[o J’

then o
VA=Z,1A-AZ) .

Hence, for an r-Bezoutian we have
rank(Zy, 41 A — AZ,I:I+1) <r.
Also, we have the estimate
rank(Zy A — AZp 1) < rank(VA) <r.
Applying Theorem 1, we obtain

rank(Z, 1 AS — ASZ!L ) <or.

AG:lAG(W.

We know that
0 0

We conclude this section by the following theorem.

Theorem 9 (Bezoutian) The group inverse of an r-Bezoutian is a 2r-Bezoutian.

5 Concluding remarks

In this paper, we study the displacement rank of the Drazin inverse. We show that Sylvester
displacement rank of the Drazin inverse of a matrix A is the sum of the Sylvester displacement
ranks of A and A*, where k is the index of A. We generalize the result to the generalized
displacement. Finally, we present a case study of the displacement rank of the group inverse.
It is natural to ask if we can extend our results to linear operators in Hilbert spaces [11]. This
will be the future research.
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