A Robust and Efficient Algorithm for Evaluating
Erlang B Formula

Sanzheng Qiao*
Department of Computing and Software
McMaster University
Hamilton, Ontario L8S 417 Canada

Liyuan Qiao
Customer Relationship Solutions, IBM Canada Ltd.,
3600 Steeles Ave. East, Markham, Ontario, Canada

October 17, 1998

1 Introduction

Call center and telephone system designers use the Erlang B traffic model to determine the
number of central office (CO) trunks (lines) required based on estimated call traffic. The
number of lines required is a function of busy hour traffic and the grade of service.

In this paper, we first introduce the formula involved in the Erlang B traffic model.
We then analyze the formula for numerical evaluation. Finally, we present a robust and
efficient algorithm for calculating the Erlang B formula. An on-line calculator is available
on http://www.cas.mcmaster.ca/ qiao/.

2 Erlang’s Formula

Let A be the arrival rate. That is the mean number of arrivals per unit time, for example,
the average number of calls per hour. Then A~! is the average time interval between two
consecutive arrivals. Let u be the service rate. That is the mean number of services per
unit time. Then p~! is the average service time. For example, if the average call duration
is six minutes (0.1 hour), then p = 10.

*This work was partly supported by the Natural Sciences and Engineering Research Council of Canada
under grant OGP0046301

a o ag dp d3 3y dg

Figure 1: Arrivals and departures of four customers.

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0 50 100 150 200 250 300 350
X

Figure 2: Exponential distribution.

Figure 1 depicts a discrete case. Four customers 1, 2, 3, 4 arrive at a1, a9, a3, and a4
respectively and depart at di, ds, ds, and d4 respectively. The intervals, I; = a;y1 — a4,
between two consecutive arrivals are called interarrivals. The arrival rate defined above is
A = 1/E[I;], where E[I;] is the expectation of the interarrivals I;. The intervals, S; = d;—ajy,
Sy = do — di, S3 = d3 — da, and S4 = dy — a4 are called service times. The service rate
defined above is u = 1/E[S;].

Usually, we assume that the service time is a random variable and its distribution is
exponential with parameter u. Specifically,

Pr(Si<z)=1—e",
Figure 2 shows a typical curve of the probability that a service time is less than z.

Also, we usually assume that the interarrival is a random variable and its distribution
is exponential with parameter \: Pr(J; < z) = 1 —e~**. Under this assumption, the arrival
process is Poisson. That is the probability that the number of arrivals up to time ¢, denoted
by A(t), is n is given by

e (A"
Pr(A(t) =n)=e P

In the example of Figure 1, A(a1) = 0, A(a2) = 1, A(d1) = 2, etc. Figure 3 shows the

L L L L L L ! L
0 20 40 60 80 100 120 140 160 180 200
100%t

Figure 3: Poisson distribution where A = 10 and n = 5.

Poisson distribution when A = 10 and n = 5.

Furthermore, we suppose that the number of services, or the number of lines, is ¢ and
the capacity of the system, or the number of customers can be in the queue, is also ¢. In
summary, we have a system in which

e Arrival process is Poisson distribution with parameter A;
e Service-time process is exponential with parameter y;
e Number of services (lines) is ¢;

e Capacity is also c.

This kind of system, using Kendall’s notation [2], is denoted by M/M/c¢/¢, Denoting the
ratio of the arrival rate and service rate p = A\/u, Erlang’s formula

pe/ct
Pe = S~e 57
pry g

gives the probability that a new customer is turned away or the probability that all lines
are busy in an M/M/c/c system. Surprisingly, the above Erlang’s formula is also valid for
general service-time process [2].

For example, suppose we expect 2,000 calls/hour, the arrival rate A = 2,000. If the
average call duration is six minutes, or 0.1 hour, then the service rate y = 10. Thus
p = 2000/10 = 200. This ratio is also called BHT (busy hour traffic), since it is the product
of the number of calls per hour and the average duration of each call. If the system capacity

¢ = 245, then Erlang’s formula gives p, = 2.27 x 10~*. That is the probability that a new
call arrives, finds all lines busy, and is turned away is once every p;! = 4,400 calls. Since
the arrival rate is 2,000, that means the probability of getting a busy signal is once every
two hours and 12 minutes. This probability is also called service grade.

3 Evaluating Erlang’s Formula

The straightforward evaluation of Erlang’s formula

_ e
Yo p'/d!

causes two problems: unnecessary overflow and inefficiency. In the IEEE floating point
standard [3], the largest number can be presented in double precision is about 103%%. The
factorial ¢! grows very fast as ¢ increases. In particular, 170! is about 7.26 x 103% and 171!
overflows to +o0o. Also, p¢ grows very fast as ¢ increases. For example, if p = 100, then
p¢ overflows to +o00 when ¢ > 154. As we know, co/oo results NaN (Not a Number). To
circumvent these problems, we reformulate Erlang’s formula as following:

Pc

1
Dec = - .
ST) ()

This avoids unnecessary overflow. However, the ith product term of the summation in the
above formula requires 4 divisions and i — 1 multiplications. This yields about ¢2/2 divisions
and multiplications. Applying Horner’s rule [1], we rewrite the summation

c ¢ c—1 c c—1 1 c 2 1
-+ = R =" {1+ 21+ = o)
p P p p P p P P P

Implementing the above reformulated summation requires only about ¢ divisions, mul-
tiplications, and additions. To conclude this section, we present the following robust and
efficient algorithm for evaluating Erlang’s formula.

Algorithm 1 (Erlang) Given p and c, this algorithm evaluates Erlang’s formula.

/* Assert that both p and c are nonnegative and c is an integer. */
if p =0, return p. = 0.0;
s = 0.0;
fori=1:c¢c
s=(1.0+3s) *(i/p);
end
Return p. = 1.0/(1.0 + s).

4 Finding the Number of Lines

In applications, we are often given the ratio p, i.e., BHT, and a desired grade of service,
which is the probability p that all lines are busy, and we want to find the minimum number
of lines (c) to satisfy p. In other words, find the smallest ¢ such that p. < p. In this section,
we describe an algorithm for finding the number of lines using the algorithm for evaluating
Erlang’s formula presented in the previous section.

The basic idea of our algorithm is as follows. We first show that for a fixed p, the
probability p. is monotonically decreasing and approaches to zero as ¢ increases. Then we
propose to use bisection method to find the smallest integer ¢ such that p. is less than or
equal to the desired probability. We discuss two issues in the bisection method: the initial
interval and the termination criteria.

For any fixed p, the probability p. is a monotonically decreasing function of ¢ as shown
below.

P pe/c!
ct+1 14 pi/il
pe/c!
L yretl pifil
pe/c!
3ot /(i + 1)
p°/c!
i—o((c+1)/(i +1))(p* /i)
pofet
iz P /4!

De+1 =

Pe
(1)

It is obvious that p. = 1 when ¢ = 0 and 0 when ¢ = +o0c. Thus given any p (0 <p < 1),
there is a smallest integer c¢ such that p. < p and the solution is unique. Figure 4 shows
some curves of p. for various values of p.

Because of the above properties of p. as a function of ¢, we propose to use bisection
method [1] to find the number of lines. For the bisection method, we must address two
issues: initial interval and stopping criteria.

For a given p, we first locate an initial interval [I, r] such that p; > p and p, < p where
[and r are integers. We start with [= 0 and r = [p] (the smallest integer greater than
or equal to p). If p, > p, then the solution lies between r and +o0o. We have found that

10°

-1
10°F E
10°h 4
10 4

107k E

10 ' E

107° L L L L L
0 10 20 30 40 50 60

C

Figure 4: Probability p versus the number of lines ¢ for various values of p. The top curve
p = 30, middle p = 20, and bottom p = 10.

usually when r = [p] + 32, p, is sufficiently small. So, we shift the interval by setting [= r
and r = r + 32. This procedure is repeated until we find / and r such that p; > p and
pr < p. After the initial interval is found, we apply the bisection method until the length
of the interval reduces to 1. The loop invariance in the bisection method is p; > p, p, < p,
and (r —[) > 1. Thus we return r as the number of lines when the loop terminates.

Algorithm 2 (FindLine) Given a probability p and the ratio p, this algorithm computes
the smallest integer ¢ such that p. < p. This algorithm uses function Erlang presented in
the previous section.

/* Assert that p is between 0 and 1. */
/* Assert that p is greater than a small positive tolerance. */
/* Start with interval: */
L=0;r=[pl;
/* Evaluate at the right endpoint. */
fR = Erlang(p,r);
/* Find an initial interval to include c. */
while fR > p

l=r;r=r+32

fR = Erlang(p,r);
end
/* Find ¢ using bisection method. */
while (r —1) > 1

mid = [(l +1)/2];

fMid = Erlang(p, mid);

if fMid>p
| = mid;
else
r = mid,
end
end
Return r.

After an initial interval is found, this algorithm takes at most five iterations to find the
solution. Each iteration invokes only one function evaluation.

References

[1] Forsythe, G.E., M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical
Computations, Prentice-Hall, 1977.

[2] Gross, D. and C.M. Harris, Fundamentals of Queueing Theory, John Wiley & Sons,
1974.

[3] IEEE, “IEEE Standard for Binary Floating-Point Arithmetic,” SIGPLAN Notices 22:2,
9-25, 1985.

