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Abstract

We present an algorithm that can find all the eigenvalues of an n x n complex Hankel
matrix in O(n?logn) operations. Our scheme consists of an O(n?logn) Lanczos-type
tridiagonalization procedure and an O(n) QR-type diagonalization method.
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1 INTRODUCTION

The eigenvalue decomposition of a structured matrix has important applications in signal

processing. Common occurring structures include an n x n Hankel matrix:

hq hy ... hp_ hy,
ho hs ... hy, Pyt
hn—l hn s h2n—3 h2n—2
hn hn—l—l s h2n—2 h2n—1
or an n X n Toeplitz matrix:
t,  tn1 ... ty 1
T N S
T — . . . .
lon—2 ton-3 .o ln  ln1
lon—1 ton—2 oo tap1 Uty

(2)
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There is extensive literature on inverting such matrices or solving such linear systems.
However, efficient eigenvalue algorithms for structured matrices are still under development.
Cybenko and Van Loan [3] proposed an algorithm for computing the minimum eigenvalue
of a symmetric positive definite Toeplitz matrix. Their algorithm is based on the Levinson-
Durbin Algorithm and Newton’s method; it requires up to O(n?) floating-point operations
per Newton iteration and heuristically O(logn) iterations. Building on their work [3],
Trench [8] presented an algorithm for Hermitian Toeplitz matrices. His algorithm requires
O(n?) operations per eigenvalue-eigenvector pair. In this paper, we study the eigenvalue
problem of a Hankel matrix. Taking advantage of two properties, namely that a complex
Hankel matrix is symmetric and that a permuted Hankel matrix can be embedded in a
circulant matrix, we develop an O(n?logn) algorithm that can find all the eigenvalues of an
nxn Hankel matrix. We should point out that our new method is a theoretical contribution;
considerable work is required to develop a practical software. An error analysis of this
algorithm can be found in [6].

Our paper is organized as follows. How to exploit complex-symmetry is presented in
Section 2, and how to construct complex-orthogonal transformations in Section 3. An
O(nlogn) scheme for multiplying a Hankel matrix and a vector is described in Section 4,
and an O(n?logn) Lanczos tridiagonalization process in Section 5. A QR procedure to
diagonalize a complex-symmetric tridiagonal matrix is given in Section 6, followed by an
overall computational procedure and two numerical examples in Section 7.

2 COMPLEX SYMMETRY

Our idea is to take advantage of the symmetry of a Hankel matrix. In general, an eigenvalue
decomposition of H (assuming that it is nondefective) is given by

H=XDX! (3)

where D is diagonal and X is nonsingular. Note that the following Hankel matrix is defec-

tive: 5
{
i=(2 1),

We will pick the matrix X to be complex-orthogonal; that is,
Xxt=r (4)

So, H = XDXT. We apply a special Lanczos tridiagonalization to the Hankel matrix
(assuming that the Lanczos process does not prematurely terminate):

H=QJQ", (5)

where ) is complex-orthogonal and J is complex-symmetric tridiagonal. Then we diago-
nalize J:

J=wDwW?',



where W is complex-orthogonal and D is diagonal. Thus, we get (3) with
X =QW.

The dominant cost of the Lanczos method is matrix-vector multiplication which in general
takes O(n?) operations. We propose a fast O(nlogn) Hankel matrix-vector multiplication
algorithm. Thus we can tridiagonalize a Hankel matrix in O(n?logn) operations. The
resulting tridiagonal matrix is complex-symmetric. In order to maintain its symmetric and
tridiagonal structure, we use the complex-orthogonal transformations in the QR iteration.

3 COMPLEX-ORTHOGONAL TRANSFORMATIONS

A basic operation in solving eigenvalue problems is the introduction of zeros into 2 x 1
vectors using 2 x 2 transformations. From its definition in (4), we derive the general form
of a 2 x 2 complex-orthogonal matrix as

G:(C s) or (c s)7
-5 ¢ 5 —c

where ¢? + s? = 1. Here, we choose the nonsymmetric version:

G:(_CS i) (6)

In the real case, the transformation G of (6) reduces to a Givens rotation. Given a complex

2-element vector
x= (" (7)
=l )

where 3 + 22 # 0, the following algorithm computes the nonsymmetric transformation G

of (6) so that
o= (Ve ). ®)

0
For more details, see Luk and Qiao [5] and Vandevoorde [10].

Algorithm 1 (Complex-Orthogonal Transformation)  Given a complex vector x of
(7), this algorithm computes the parameters ¢ and s for the complex-orthogonal transforma-

tion G of (6), so that (8) holds.

ift (Ja1| > |wal)
t=uay/x;c=1//14+t3s=t-¢;
else
r=ux1/r5=1/V/1+73c=T" s
end if.

This algorithm will be used in the complex-orthogonal diagonalization in Section 6.



4 FAST HANKEL MATRIX-VECTOR PRODUCT

In this section, we describe an O(nlogn) algorithm for multiplying an n x n Hankel matrix
into an n-element vector. We begin with some additional notations. Let

h=(hi hy hs ... houoy)'
and

t=(t1 ty tz ... tzn—l)T

denote two (2n — 1)-element vectors specifying the n x n Hankel matrix 4 (h) and the n xn
Toeplitz matrix T'(t) of equations (1) and (2), respectively.

First, we permute a Hankel matrix into a Toeplitz matrix. Let Il represent an n X n
permutation matrix that reverses all columns of H in postmultiplication:

00 ... 01
00 ... 10
m=1]: : N E
0 1 0 0
10 0 0
that is,
H(h) Il =T(h). (9)

The simplicity of equation (9) explains why we start with Hyy (respectively T4,) when we
define the vector h (respectively t).

Next, we embed the Toeplitz matrix 7'(h) in a larger circulant matrix. Consider a
(2n — 1) x (2n — 1) circulant matrix:

C1 Copn—1 C2p—2 ... C3 C2
C9 (4] Con—1 N ] C3
C3 C9 (4] ... Cy C4q
C= ) : : ) ) ) =C(c),

Con—2 Copn-3 Cop—g ... C1 Cop—]

Coan—-1 Coan-2 C2p-3 ... C3 1
where
_ T
C = (Cl cyp €3 ... CQn—l)

Note that ¢ represents the first column of C'. Consider a special choice of this vector:

¢="(hy hpg1 hngz o hapr b1 hy ... hy_q)T. (10)



Then

hn hn—l hn—? s hl h2n—1 h2n—2 s hn—l—l
T T R TS P U
hpss  Ppir he o .. hs hy  hi ... huys
C(E) — h2n—1 h2n—2 h2n—3 ce hn hn—l hn—? s hl ’
hl h2n—1 h2n—2 s hn—l—l hn hn—l s h2
h2 hl h2n—1 . hn_|_2 hn_|_1 n . h3
hn—l hn—? hn—3 s h2n—1 h2n—2 h2n—3 s hn

where the leading n x n principal submatrix is 7'(h). This technique of embedding a
Toeplitz matrix in a larger circulant matrix to achieve fast computation is widely used in
preconditioning methods [1, 7].

Given an m-element vector:

T
w=(w wy ws ... w,) , (11)
we want to compute the matrix-vector product
p=Hw. (12)

We see that
p = H(h)w =T(h)(llw).

Let w denote a special (2n — 1)-element vector:
W= (w, wp_y ... wy 0 ... 0), (13)

which can be obtained from the n-vector Ilw by appending it with n — 1 zeros. So p is
given by the first n elements of the product y, defined by

y=C(e)w.

This circulant matrix-vector multiplication can be efficiently computed via the Fast Fourier
Transform [9] (FFT); namely,

C (@)W = ifft(fFt(€). « fft(W))

where fft(v) denotes a one-dimensional FFT of a vector v, ifft(v) a one-dimensional inverse
FFT of v, and “.#” a componentwise multiplication of two vectors.



Algorithm 2 (Fast Hankel Matrix-Vector Product) Given a vector w in (11) and a
Hankel matriz H in (1), this algorithm computes the product vector p of (12) by using the
Fast Fourier Transform.

1. Define a (2n — 1)-element vector € as in equation (10):

¢=(hn hpyr hnga ..o hap_y hy hy ... hp_y)'.

2. Define a (2n — 1)-element vector w as in equation (13):

w=(w, wp—1 ... wy 0 ... O)T.

3. Compute a (2n — 1)-element vector y by

y = ifft (fF6(€). * ft(W)).

4. Lety =(y1 Y2 .- VYon-2 Yan—1 )T. Then the desired n-element product p of
(12) is given by

T

P=(y1 Y2 -+ Yn-1 Yn) -

How much work does this algorithm require? In general, a complex matrix-vector mul-
tiplication involves 8n? real floating-point operations (flops) and an FFT of a vector of size
n costs Snlog(n) flops. In Algorithm 2, each of the two FFT requires 5(2n — 1) log(2n — 1)
flops, the pointwise multiplication 6(2n — 1) flops, and the inverse FFT 5(2n—1) log(2n—1)
flops. The total cost of ifft(fft(ec). +fft(w)) equals 30n log(n)+O(n) flops. Thus, Algorithm 2
becomes superior to general matrix-vector multiplication when n > 16.

5 LANCZOS TRIDIAGONALIZATION

In this section, we derive a tridiagonalization method for H based on a Lanczos iterative
process. Our goal is to find a complex-orthogonal matrix () so that equation (5) holds.
Note that

HQ = Q.J. (14)
Let
Q:(Oh 92 93 ... Qn)
and
ap By 0
Br ax By
J = By . (15)
ﬁn—l
0 ﬁn—l (879



Consider the kth column of both sides of (14). We have

Haqp = fr-19k-1 + @9k + BeQr+1, (16)
where
Boqo =0 and fS,q,r1 =0.

Since ) is complex-orthogonal, i.e., qZ»qu = 0;;5, we get
o = ngqk.
Equation (16) implies that

Brdr+1 = Har — axqr — Br—19k—1-

Setting
ry = Hqr — apqr — Br—19k—-1,

we get
B = \/I“ETk and  qpy1 = (1/0k)rs,

for k < n. We have thus derived a generic Lanczos tridiagonalization method. Note that
we have used only the property that the matrix H is complex-symmetric.

Algorithm 3 (Lanczos Tridiagonalization) Given an n X n complex-symmetric matriz
H, this algorithm computes a complez-orthogonal matriz Q such that H = QJQT, where J
is a complex-symmetric tridiagonal matriz as shown in (15).

Initialize q; such that q{ q; = 1;
Set ro = qu; fo =15 qo = 0; k = 0;

while (8 # 0)
Qi1 = (1/8k)res
k=k+1;
ap = qf Hay;
v, = Hqp — arqr — Bp—19k—1;

B = \/rlrk;

end

If all B # 0, then Algorithm 3 runs until £ = n. The dominant cost is the Hankel matrix-
vector product Hqg. Using Algorithm 2 to perform this task, we obtain an O(n?logn)
tridiagonalization algorithm. Consider a Krylov matrix K, defined by

K=K(H,q,n)=(q Hq H?q ... H 'q).



We get a complex-orthogonal decomposition [2] of K:
K =QR, (17)

where R = (e; Jeg J%e, ... Jle ). Checking the diagonal elements of the upper
triangular matrix R, we find that they are nonzero if and only if gy # 0, for k =1,2,... n.
Cullum and Willoughby [2] show that the decomposition (17), if it exists, is essentially
unique in the sense that if

H= QIRI and H = QQRQ
are two different complex-orthogonal decompositions of H, then
Q2 =015 and Ry = SRy,

where S is a signature matrix, i.e., S = diag(£1). Note that some nonsingular complex-
symmetric matrix does not have a complex-orthogonal decomposition (17); an example is

the following matrix:
1
(). "

If Algorithm 3 stops at & < n, then we are stuck in an invariant subspace. It is possible
that 8y = 0 even when ry # 0 for some k£ < n. However, we rarely get an exact zero 8 in
practice. But a small §; relative to ||rg|| could create difficulties. See Luk and Qiao [6] for
details.

Theorem 1 If there exists a complex-orthogonal decomposition (17) of the Krylov matriz
K(H,qi,n) and if R is nonsingular, then Algorithm 3 runs until k = n.

6 COMPLEX-ORTHOGONAL DIAGONALIZATION

In this section, we describe a QR-type algorithm for diagonalizing a complex-symmetric
tridiagonal matrix. Basically, we use the implicit QR method with the Wilkinson shift [4]
and replace all unitary transformations by complex-orthogonal transformations. However,
it should be pointed out that this QR-type algorithm offers less guarantee for convergence
than the standard QR method. See Cullum and Willoughby [2] and Vandevoorde [10] for
theoretical results on convergence. Also, Cullum and Willoughby [2] present extensive nu-
merical experiments. Basically, if a complex-symmetric tridiagonal matrix .J is nonsingular,
irreducible and nondefective, and if it has no eigenvalues equal in magnitude, then the
following algorithm with all shifts equal to zero will converge. For example, the 2-by-2
complex-symmetric matrix in (18) is nonsingular, irreducible, and nondefective, but it has
two eigenvalues, 1 + ¢, that are equal in magnitude. The following algorithm fails because
this matrix cannot be triangularized by a complex-orthogonal matrix. If the matrix @) is



not desired, this algorithm requires O(n) flops. For simplicity, we denote by L the trailing
(last) 2 x 2 principal submatrix of J:

_ Jn—l,n—l Jn—l,n
L_< Jn,n—l Jn,n )

Algorithm 4 (Complex-Symmetric QR Step)  Given an n x n complex-symmetric
tridiagonal matriz J, this algorithm overwrites J with QTJQ where Q is a product of
complez-orthogonal matrices so that QT (J — ul) is upper triangular and p is the eigenvalue
of L that is closer to J,,.

Initialize @ = I;
Find the eigenvalue p of L that is closer to J,,;
Set w1y = Jig — p; v = Jou;
fork=1:n-1
Find a complex-orthogonal matrix GE (applying Algorithm 1)
to annihilate z5 using 2y;
J = GEJGk;
Q = QGy;
ifk<n-1
1 = Jk-|-1,k§ Lo = Jk+2,k§
end if

end for.

7 OVERALL ALGORITHM

We combine our algorithms into an O(n?logn) eigenvalue procedure for an n x n Hankel
matrix, and conclude the paper with a numerical example.

Algorithm 5 (Fast Hankel Eigenvalue Algorithm) Given an nxn Hankel matriz H,
this algorithm computes all its eigenvalues.

1. Tridiagonalize H via Algorithm 3 (applying Algorithm 2 to find Hankel matrix-vector
products). Let J denote the resultant complex-symmetric tridiagonal matrix.

2. Repeat until convergence

(a) Set small subdiagonal elements in J to zero and partition J:

p n—p—q ¢
p K 0 0
J=n—-p—-¢q]| 0 J 0 |,
q 0 0 D



where p is minimized and ¢ is maximized so that D is diagonal and J remains
unreduced.

(b) If ¢ < n—1,apply Algorithm 4 to J.

Example 1. Apply Algorithm 3 to the Hankel matrix:

0.9004 0.783: —0.538+0.5242  0.214 — 0.087: —0.028 — 0.963:
—0.538 4 0.524:  0.214 — 0.087¢ —0.028 — 0.963¢ —0.1114 0.4762
0.214 — 0.087: —0.028 - 0.963: —0.111+0.476:  0.231 — 0.648:
—0.028 — 0.963: —0.111+0.476¢  0.231 — 0.648:  0.584 — 0.189:

H =

We get a tridiagonal matrix:

0.267 — 0.5842 0.208 — 05782 0 0

J= 0.208 — 0.5787 1.16241.398: 1.349 — 1.0292 0
0 1.349 — 1.029¢ —0.564 — 1.278; 0.312 — 0.952¢
0 0 0.312 —0.9527  0.723 4 1.447:

The following table shows the subdiagonal elements of J during the execution of Algorithm

5:

Iteration Ja1 J39 Ja3
1 0.465 — 0.098¢  —0.761 + 0.428: —0.040 — 0.6301
2 —0.6494 0.1157  0.191+0.3197  —0.046 + 0.024¢
3 1.291 — 0.121¢  0.099 — 0.0637 O(107%)
4 9.637 — 8.712¢  0.016 — 0.0044 O(1071%)
5 0.506 — 1.417:  —0.014 + 0.006¢ converged
6 —0.454 + 0.0897 O(1078)
7 0.356 — 0.1022 converged
8 converged

The criterion for convergence is
[Tivril < V2(T0il + [Jigrie1 | em
where ¢y is the machine precision. The computed eigenvalues are
H(X) ={0.9198 — 1.1431¢, 0.099893 — 0.74375¢, —0.24002 + 1.4976¢, 0.80755 + 1.3762¢}.

Assuming that eigenvalues computed by the MATLAB function EI1G() are fully accurate, we
find that our errors are about 10714,

10



| n | Algorithm 5 | MATLAB EIG Error

4 9,214 3,791 | 6.5 x 10714
8 47,888 38,181 | 1.8 x 10~ 1
16 183,574 301,442 | 4.9 x 10714
32 763,808 2,443,679 | 2.3 x 1077
64 3,247,686 | 19,292,025 | 1.2 x 107!

Table 1: Operation counts and computational errors.

Example 2. To illustrate the O(n?logn) behavior of our fast algorithm (versus the O(n?)
requirement of the traditional approach), we chose n X n random complex Hankel matrices
for n = 4,8,16,32,64. We generated these matrices by picking random vectors as their
first columns and last rows. For accuracy and work comparison, we chose the MATLAB
EIG function. We obtained the (real) floating-point operation counts using the MATLAB
function FLOPS, and we assumed that the eigenvalues (call them \;) computed via EIG are
fully accurate. Since the eigenvalues were complex, we ordered A; in non-increasing order
of magnitude, i.e.,

A1) > Ao > - > A,

We referred to the eigenvalues computed by Algorithm 5 as A;, and ordered them in the
same non-increasing fashion. We determined the errors of the computed eigenvalues via

i — A2
Error_¢ZZ 1 | .
21|A|

Table 1 shows the operation counts and errors. As n doubles, the flop count for Algorithm 5
roughly quadruples and that for EIG increases by a factor of eight, agreeing with the theo-
retical predictions. Even for n as small as 16, Algorithm 5 requires only 60% of the flops of
EIG. The accuracy of Algorithm 5 deteriorates rapidly as n increases, due probably to the
loss of complex-orthogonality of the Lanczos vectors generated by Algorithm 3.
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