

A Parallel LLL Algorithm

Yixian Luo and Sanzheng Qiao

Technical Report No. CAS-10-03-SQ

Department of Computing and Software, McMaster University

Hamilton, Ontario, L8S 4K1, Canada.

A Parallel LLL Algorithm

Yixian Luo1 and Sanzheng Qiao2
1,2Department of Computing and Software, McMaster University

Hamilton, Ontario, L8S 4K1, Canada.
1luoy26@mcmaster.ca

2qiao@mcmaster.ca

Abstract

The LLL algorithm is a well-know and widely used lattice basis reduction algorithm.
In many applications, its speed is of essential. However, it is very difficult to parallelize
the original LLL algorithm. We present a multi-threading LLL algorithm based on a
recent improved version: an LLL algorithm with delayed size reduction.

1 Introduction
The LLL algorithm, introduced by Lenstra, Lenstra, and L.Lovasz [3] in 1982, is used to reduce
a lattice basis. It has received a lot of attention as an effective numerical tool for preconditioning
an integer least squares problem. In 2008, Franklin T. Luk and Daniel M. Tracy [5] presented a
matrix version of the LLL algorithm. Here we will first present the original LLL algorithm and the
LLL algorithm with delayed size-reduction, then propose a parallel LLL algorithm and implement
it by using Pthread library.

1.1 Bases for Lattices
Let n be a positive integer, a lattice is a subset of the n-dimensional real vector space <n, which
can be defined as

L = {Bz}

where z are all integer n-vectors and B is an m− by − n (m ≥ n) matrix with real entries and of
full column rank, called lattice generator matrix.

Let B = [b1, b2, ..., bn]; b1, b2, ..., bn are linearly independent columns and span L, they form a
basis for L.

For example, the matrix B below generates the lattice points in Figure 1.

B =
[
b1 b2

]
=

[
2 3
1 0

]
(1)

1.2 Reduced Bases
A lattice may have more than one basis. For example, the matrix C below also generates the
lattice in Figure 1. Figure 2 depicts the columns of B and C, and the same lattice as in Figure 1.

C =
[
C1 C2

]
=

[
1 1
2 −1

]
(2)

Since a lattice L may have lots of bases, some of the bases are better than others. In some
situations, those whose lengths are short are the ones we desire. These short bases are called
reduced.

1

Figure 1: The lattice points generated by the column vectors b1 and b2 of B.

Figure 2: The lattice and the columns of B and C.

2

1.3 The Gram-Schmidt Process
The Gram-Schmidt Process is a method for constructing an orthogonal(or orthonormal) basis
for any subspace of <n, given a set of linearly independent vectors. It iteratively constructs
the components of subsequent vectors orthogonal to all of the vectors that have already been
constructed [1].

Since basis vectors are linearly independent, we can find an orthogonal basis for a lattice using
the Gram-Schmidt Process. Now we present this process, let [b1,b2, ... ,bn] be a basis for a lattice
L and define the following:

b∗1 = b1,
b∗2 = b2 − bT2 b

∗
1

(b∗1)
T b∗1

b∗1,

b∗3 = b3 − bT3 b
∗
2

(b∗2)
T b∗2

b∗2 −
bT3 b
∗
1

(b∗1)
T b∗1

b∗1,
...
b∗n = bn −

bTn b
∗
n−1

(b∗n−1)
T b∗n−1

b∗2 − · · · −
bTn b
∗
1

(b∗1)
T b∗1

b∗1,
then [b∗1,b∗2, ... ,b∗n] forms an orthogonal basis for L.

1.4 Unimodular Matrix
Two different bases for a lattice can be related by an integer matrix whose inverse is also an integer
matrix. For example, the matrix B in (1) and the matrix C in (2) are related by

C = BM , where M =

[
2 −1
−1 1

]
.

Note that det(M) = 1, then we have the following definition.

Definition 1 (Unimodular) A nonsingular integer matrix M is called unimodular if det(M) =
±1 [2].

2 The LLL Algorithm
In the LLL algorithm, firstly, given a lattice generator m-by-n(m ≥ n) matrix B, it can be
decomposed according to the Gram-Schmidt process as

B =
[
b1 b2 ... bn−1 bn

]

=
[
b∗1 b∗2 ... b∗n−1 b∗n

]


1 u1,2 ... u1,n−1 u1,n
0 1 ... u2,n−1 u2,n
...

...
. . .

...
...

0 0 ... 1 un−1,n
0 0 ... 0 1



=
[

b∗1
‖b∗1‖2

...
b∗n
‖b∗n‖2

]

‖b∗1‖2

. . .

‖b∗n‖2




1 ... u1,n

...
. . .

...

0 ... 1


that is,

B = QD1/2U (3)

3

where Q has orthonormal columns, D = diag(di) with di = ‖b∗i ‖
2
2. U = [ui,j] is upper triangular

with a unit diagonal.
In terms of the decomposition (3), we have the following definitions [3]:

Definition 2 (size-reduced) A basis B = [b1,b2, ... ,bn] for a lattice is called size-reduced if U
in the decomposition (3) satisfies:

|ui,j | ≤
1

2
, for 1 ≤ i < j ≤ n (4)

Definition 3 (LLL-reduced) A basis B = [b1,b2, ... ,bn] for a lattice is called LLL-reduced if
U and D in the decomposition (3) satisfy the two conditions:

|ui,j | ≤
1

2
, for 1 ≤ i < j ≤ n (sized− reduced) (5)

and

di + u2i−1,idi−1 ≥ ωdi−1, for 2 ≤ i ≤ n (6)

where 1
4 < ω < 1.

The LLL algorithm iterates a sequence of steps to get a resulting basis satisfying the above two
conditions.

If |ui,j | > 1
2 for some j > i, a procedure called Reduce(i, j) [4] is applied to ensure condition

(5).

Reduce(i,j) Define an elementary unimodular transformation Mij ∈Mn×n by Mij = In−γeieTj
where γ = dui,jc is the closest integer to ui,j and ei is the ith unit vector.

Mij is an integer unimodular transformation, which is used to make sure that ui,j is sufficiently
small.

Apply Mij to U , B and M :
U ← UMij, B ← BMij and M ←MMij

Note that BMij = QD1/2UMij . Let C = BMij , since Mij is an unimodular matrix, C is a
new basis in which |ui,j | ≤ 1

2 .
Moreover, in the iteration of the algorithm, if the condition (6) does not hold for some 2 ≤ i ≤ n,

another procedure called SwapRestore(i) [4] is applied to enforce this condition.

SwapRestore(i) Let µ = ui−1,i, compute d̂i−1 = di + µ2di−1, di ← di−1di
d̂i−1

, ξ = µdi−1

d̂i−1
, di−1 =

d̂i−1, ui−1,i = ξ, then define a transformation in the (i− 1, i) plane where 2 ≤ i ≤ n:

Xi = [
µ 1− µξ
1 −ξ]

Swap the columns i and i− 1 of U , B and M , then apply X−1i to U :

U ←


Ii−2

ξ 1− ξµ
1 −µ

In−i

U

4

After swap, b∗i−1 is replaced by b∗i + ui−1,ib
∗
i−1 , so the new D̂[i − 1] = d̂i−1 =

∥∥∥b̂∗i−1∥∥∥2
2
<

ω
∥∥b∗i−1∥∥22 = ωdi−1 = ωD[i − 1] = ω(d̂i + û2i−1,id̂i−1) = ω

∥∥∥b̂∗i + û2i−1,ib̂
∗
i−1

∥∥∥2
2
, that is ωd̂i−1 <

1
ω (d̂i−1) < d̂i + û2i−1,id̂i−1

1 which satisfies the condition (6).
When we have these two procedures, we can see the LLL algorithm [4] as:

LLL Algorithm Given a lattice generator m− by − n (m ≥ n) matrix B, compute D and U in
the decomposition (3) of B using the Gram-Schmidt method;

1. set M ← I

2. k ← 2;

3. while k ≤ n

4. if |uk−1,k| > 1/2

5. Reduce(k − 1, k);

6. endif

7. if dk < (ω − u2k−1,k)dk−1

8. SwapRestore(k);

9. k ← max(k − 1, 2);

10. else

11. for i = k − 2 down to 1

12. if |ui,k| > 1/2

13. Reduce(i, k);

14. endif

15. endfor

16. k ← k + 1;

17. endif

18. endwhile

3 The LLL Algorithm with Delayed Size-Reduction
Wen Zhang [6] presented a modified LLL algorithm, which can save significant amounts of unnec-
essary operations when compared with the original LLL algorithm.

Let’s see an example first. Given ω = 3
4 and a lattice basis matrix

B =

 1 −1 3
1 0 5
1 2 6

 (7)

We present the process of the LLL algorithm here but just give the values of D and U of every
step according to the decomposition (3) .

1We use “∧” above symbols to represent the new values of the relative variables after swap.

5

 1 −1 3
1 0 5
1 2 6


Gram− Schmidt−−−−−−−−−−−−−→ (S1)

DU =

 3
14
3

9
14

 1 1
3

14
3

0 1 13
14

0 0 1


k = 2 do nothing
−−−−−−−−−−−−−→

(S2)

k = 3 Reduce(2, 3)
−−−−−−−−−−−−−−→

(S3)

DU =

 3
14
3

9
14

 1 1
3

14
3

0 1 − 1
14

0 0 1


SwapRestore(3)
−−−−−−−−−−−−→

(S4)

DU =

 3
14
3

9
14

 1 13
3

1
3

0 1 − 1
2

0 0 1


k = 2 Reduce(1, 2)
−−−−−−−−−−−−−−→

(S5)

DU =

 3
2
3

9
2

 1 1
3

1
3

0 1 − 1
2

0 0 1


SwapRestore(2)
−−−−−−−−−−−−→

(S6)

DU =

 1
2

9
2

 1 1 0
0 1 1

2
0 0 1


k = 2 Reduce(1, 2)
−−−−−−−−−−−−−−→

(S7)

DU =

 1
2

9
2

 1 0 0
0 1 1

2
0 0 1


k = 3 do nothing
−−−−−−−−−−−−−→

(S8)

End

Note that after the step (S4), the algorithm found that |u1,2| = 13
3 > 1

2 , so we had the step (S5)
to reduce u1,2. Then the step (S6) was applied because d2 < (3

4 − u
2
1,2)d1. After the step (S6),

we found that |u1,2| = 1, which is bigger than 1
2 , so Reduce(1, 2) was applied again. However, if

we did not reduce u1,2 in the step (S5), instead swapped d2 and d1 first, we would just need the
step Reduce(1, 2) once. This means that size reduction can be delayed until the condition (6) is
satisfied first. This method is called the LLL algorithm with delayed size-reduction [6].

Before presenting the new algorithm, we introduce the procedure ReduceSwapRestore(i, γ), in
which γ = duk−1,kc is an integer that is closest to uk−1,k.

6

ReduceSwapRestore(i,γ) Let µ = ui−1,i, compute d̂i−1 = di + (µ − γ)2di−1, di ← di−1di
d̂i−1

,

ξ = (µ−γ)di−1

d̂i−1
, di−1 = d̂i−1, ui−1,i = ξ, then define a transformation in the (i− 1, i)-plane, where

2 ≤ i ≤ n:
X
′

i =

[
µ− γ 1− µξ + γξ

1 −ξ

]
=

[
1 −γ
0 1

] [
µ 1− µξ
1 −ξ

]
Let P =

[
1 −γ
0 1

] [
0 1
1 0

]
, combination of reduction and permutation Πi = diag([Ii−2 P In−i]),

apply Πi to U , B and M :
U ← UΠi, B ← BΠi, M ←MΠi.
Then apply X

′−1
i to U :

U ←


Ii−2

ξ 1− ξµ+ γξ
1 γ − µ

In−i

U
Now, we present the LLL algorithm with delayed size-reduction.

LLL Algorithm with delayed size-reduction Given a generator m-by-n (m ≥ n) matrix B,
compute D and U in the decomposition (3) of B using the Gram-Schmidt method;

1. set M ← I

2. k ← 2;

3. while k ≤ n

4. γ = duk−1,kc;

5. if dk < (ω − (uk−1,k − γ)2)dk−1

6. ReduceSwapRestore(k,γ);

7. k ← max(k − 1, 2);

8. else

9. k ← k + 1;

10. endif

11. endwhile

12. for k ← 2 : n

13. for i = k − 1 down to 1

14. if |ui,k| > 1/2

15. Reduce(i, k);

16. endif

17. endfor

18. endfor

7

Now let’s see the process of the LLL algorithm with delayed size-reduction applied to the same
matrix B in (7): 1 −1 3

1 0 5
1 2 6


Gram− Schmidt−−−−−−−−−−−−−→ (P1)

−−−−Begin−While− Loop−−−−

DU =

 3
14
3

9
14

 1 1
3

14
3

0 1 13
14

0 0 1


k = 2 do nothing
−−−−−−−−−−−−−→

(P2)

k = 3 ReduceSwapRestore(3, 1)
−−−−−−−−−−−−−−−−−−−−−−−−−→

(P3)

DU =

 3
2
3

9
2

 1 13
3

1
3

0 1 − 1
2

0 0 1


k = 2 ReduceSwapRestore(2, 4)
−−−−−−−−−−−−−−−−−−−−−−−−−→

(P4)

DU =

 1
2

9
2

 1 1 0
0 1 1

2
0 0 1


k = 2 do nothing
−−−−−−−−−−−−−→

(P5)

k = 3 do nothing
−−−−−−−−−−−−−→

(P6)

−−−− End−While− Loop−−−−

−−−−Begin− For − Loop−−−−

Reduce(1, 2) (P7)

DU =

 1
2

9
2

 1 0 0
0 1 1

2
0 0 1


−−−− End− For − Loop−−−−

End

As we expected, in this process, the procedure Reduce(1, 2) was applied only once.

4 The LLL Algorithm with Delayed Size-Reduction and Odd-
Even Ordering

In order to parallelize the LLL algorithm with delayed size-reduction, let’s reorder the sequence of
the executions of the two procedures: ReduceSwapRestore(i, γ) in the while loop and Reduce(i, k)
in the for loop.

8

In the while loop, we first execute ReduceSwapRestore(i, γ) for all dk such that k is even and
dk < (ω − (uk−1,k − γ)2)dk−1, then execute ReduceSwapRestore(i, γ) for dk such that k is odd
and dk < (ω − (uk−1,k − γ)2)dk−1. If there is no any dk such that dk < (ω − (uk−1,k − γ)2)dk−1,
this subprocess will end, otherwise, we execute this subprocess again.

When the while loop finishes we enter into the for loop. We will reduce ui,j if |ui,j | > 1/2 as in
the LLL algorithm with delayed size-reduction but in a different order: first check the superdiagonal
from u1,2 to un−1,n, then check the subsequent diagonal from u1,3 to un−2,n. Repeat this process
until the final diagonal which has only one element u1,n. For every diagonal, first check the even
elements and reduce ui,j where |ui,j | > 1/2 , then check the odd elements and reduce ui,j where
|ui,j | > 1/2. For example, given a matrix

U =

1 u1,2 u1,3 u1,4 u1,5 u1,6 u1,7 u1,8
0 1 u2,3 u2,4 u2,5 u2,6 u2,7 u2,8
0 0 1 u3,4 u3,5 u3,6 u3,7 u3,8
0 0 0 1 u4,5 u4,6 u4,7 u4,8
0 0 0 0 1 u5,6 u5,7 u5,8
0 0 0 0 0 1 u6,7 u6,8
0 0 0 0 0 0 1 u7,8
0 0 0 0 0 0 0 1

,

we begin at the diagonal from u1,2 to u7,8, firstly, we check u2,3, u4,5 and u6,7. If any of them is
bigger than 1/2, the procedure Reduce(i, j) will be applied. Then, we will check u1,2, u3,4, u5,6
and u7,8. Also, if there is any element bigger than 1/2, the procedure Reduce(i, j) will be applied.
After finishing checking the diagonal from u1,2 to u7,8, we will go to the next diagonal from u1,3
to u6,8 and apply the same rule again.

Now we can present the new algorithm, called the LLL algorithm with delayed size-reduction
and odd-even ordering.

LLL algorithm with delayed size-reduction and odd-even ordering Given a generator
m-by-n(m ≥ n) matrix B, compute D and U in the decomposition (3) of B using the Gram-Schmidt
method;

1. set M ← I

2. f ← false

3. while f 6= true

4. f ← true;

5. for k ← 2 : +2 : n

6. γ = duk−1,kc;

7. if dk < (ω − (uk−1,k − γ)2)dk−1

8. f ← false

9. ReduceSwapRestore(k,γ);

10. endif

11. endfor

12. for k ← 3 : +2 : n

13. γ = duk−1,jkc;

14. if dk < (ω − (uk−1,k − γ)2)dk−1

9

15. f ← false

16. ReduceSwapRestore(k,γ);

17. endif

18. endfor

19. endwhile

20. for k ← 2 : n

21. for i← 1 : +2 : n and j ← k : +2 : n

22. if |ui,j | > 1/2

23. Reduce(i, j);

24. endif

25. endfor

26. for i← 2 : +2 : n and j ← k + 1 : +2 : n

27. if |ui,j | > 1/2

28. Reduce(i, j);

29. endif

30. endfor

31. endfor

Where to parallelize? For the parallel implementation of the above algorithm, let’s first divide
this algorithm into two parts: Swap part (from line 3 to line 19) and Reduce part (from line 20 to
the end), disregarding the first line and the second line because it is not necessary to parallelize
these two simple initialization statements. For simplicity, we will use “Swap part” and “Reduce
part” to denote the corresponding part in later sections.

The Swap part consists of a while routine with two for routines within it. As designed, the two
for routines should be executed in sequential order. However, for each for routine, its iterations
can run in parallel because they update entries that are independent of each other and therefore do
not conflict. For example, assuming we have a basis B that is big enough. In the first for routine,
when k = 2, it checks whether d2 is smaller than (ω − (u1,2 − γ)2)d1 where γ = du1,2c, and swaps
d1 and d2 if so. But when k = 4, the routine checks whether d4 is smaller than (ω− (u3,4− γ)2)d3
where γ = du3,4c and swaps d3 and d4 if so. Therefore, the variables used when k = 2 do not
conflict with the variables used when k = 4. Since the values of k are all even in the first for
routine, it can be concluded that these iterations can run in parallel.

The same conclusion can be applied to the second for routine where all the values of k are
odd. Now we write the parallel pseudocode of the Swap part as

while true

parallelize the first for routine
parallelize the second for routine

10

The Reduce part consists of an outer for routine with two inner for routines. As in the Swap
part, the two inner for routines should also be executed in sequential order. However, this part
cannot be parallelized, let’s see what would happen.

When the value of the outer for routine’s k equals 2 , the first inner for routine will check
all values of ui,i+1 where i is odd and i ≤ n − 1. For example, when i = 1, the routine checks
if |u1,2| is bigger than 1/2. If so, Reduce(1, 2) will be called. As showed in section 2, in order to
reduce u1,2, the procedure Reduce(i, j) uses the values of the first column in matrix U to update
the values of the second column. Then when i = 3, if Reduce(3, 4) is called, to reduce u3,4, the
procedure Reduce(i, j) will use the values of the 3th column in U to update the values of the 4th
column. So the variables used when i = 1 do not disturb the variables used when i = 3, or when i
equals any other odd number. This allows checking or reducing the elements in U in parallel when
k = 2. The same analysis can be applied to the second inner for routine.

However, when k equals 3, some problems emerge. Take the first inner for routine as an
example, when i = 1, the routine checks |u1,3| and calls Reduce(1, 3) if |u1,3| is bigger than 1/2.
To reduce u1,3, the procedure Reduce(i, j) uses the values of the first column of U to update the
values of the 3th column. But when i = 3, if Reduce(3, 5) is called, the procedure Reduce(i, j)
will use the values of the 3th column in U to update the values of the 5th column. If this for
routine is being parallelized, Reduce(3, 5) and Reduce(1, 3) may be executed in parallel, which will
generate wrong results because Reduce(1, 3) is updating the 3th column while Reduce(3, 5) is using
the values of the 3th column whose values may have been updated or not.

To solve this problem, we need to change our algorithm when k equals 3. We can use three
inner for routines, the i indices of which begin from 1, 2, 3 to n − 2, n − 1, n respectively, and
change the increment of the indices i to be 3. This will make it possible for our algorithm to be
parallelized when k equals 3, eliminating the problem described above. But this does not guarantee
to solve the similar problem when k equals other value. For example, assuming the matrix U is
big enough, when k equals 6, Reduce(6, 11) and Reduce(1, 6) will generate the same problem, so
we need to change our algorithm again, which makes the process of parallelizing too complex.

Therefore, in order to parallelize the LLL algorithm, we should offer a new structure.

5 A Parallel LLL Algorithm
Since the Swap part can be parallelized very well, we only need to consider the Reduce part.

From section 4, we can conclude that, for any two elements ui,j and up,q in U , the reason why
the executions of reducing them may conflict with each other is that p may equal j or q may equals
i, which will cause a problem that the column used to update the new column may be the column
being updated.

We notice that, in figure 3, for any two different elements ui,j and up,q in U on the same
anti-diagonal line, firstly, i+ j and p+ q always equal a constant m, so i− p = q− j; second, they
are not on the same column or row, so i 6= p and j 6= q; third, they are above the diagonal line,
so i < j and p < q . Therefore, i 6= j 6= p 6= q , and the problem we mentioned before will never
happen if we simultaneously reduce the elements on the same anti-diagonal line. That is, for every
anti-diagonal line in U , reducing one element does not conflict with reducing any other element on
the same line. We call that these elements are independent for reducing. For example, if u1,4 and
u2,3 are needed to be reduced, it is no matter which one is reduced first because they are on the
same anti-diagonal line. Now we can parallelize the elements on the same anti-diagonal line. The
sequential version of this algorithm is as follows.

A Parallel LLL Algorithm Given a generator m-by-n(m ≥ n) matrix B, compute D and U
in the decomposition (3) of B using the Gram-Schmidt method;

1. set M ← I

2. k ← 2;

11

Figure 3: Reordering the procedure Reduce(i, j). For legibility, we use ⊗ to represent ui,j in the
relative position.

3. while k ≤ n

4. γ = duk−1,kc;

5. if dk < (ω − (uk−1,k − γ)2)dk−1

6. ReduceSwapRestore(k,γ);

7. k ← max(k − 1, 2);

8. else

9. k ← k + 1;

10. endif

11. endwhile

12. for k ← 2n− 3 : 1

13. if k ≤ n− 1

14. h = 1;

15. else

16. h = k − n+ 2;

17. endif

18. for i← h : (k + 3)/2

19. j = k + 2− i;

20. if |ui,j | > 1/2

21. Reduce(i, j);

22. endif

23. endfor

24. endfor

12

As in figure 3, there are 2n−3 anti-diagonal lines, so we need 2n−3 iterations. We will execute
the algorithm from iteration 1 to iteration 2n− 3. In a serial implementation, we will begin with
the rightmost element on the current anti-diagonal line for every iteration. Let k be the loop
control variable, when k ≤ n− 1, all the rightmost elements ui,j in every iteration are on the last
column, so i = k− n+ 2. But when n− 1 < k ≤ 2n− 3, all the rightmost elements ui,j are on the
first row, so i = 1. For any ui,j in iteration k, if we know i, we can compute j because i+ j always
equals k + 2.

Note that this algorithm must be executed exactly as the order from iteration 1 to iteration
2n − 3 as we showed in figure 3. It may generate a wrong result if it is executed in the reverse
order or others.

However, this method generates a different reduction basis compared to the LLL Algorithm
with Delayed Size-Reduction because the total number of executing the procedure Reduce(i, j) in
this method may be more than or less than the latter, which depends on specific matrix.

How to parallelize? Now we can show the pseudocode of parallelizing the reduce part (line 12
to line 24) in this algorithm as

for k from 2n-3 to 1

compute the range of the elements in iteration k
simultaneously check these elements on the current anti-diagonal
line and reduce them if their abstract values are bigger than 1/2

6 Implementation of the Parallel LLL Algorithm with Phreads

6.1 Threads Versus Processes
Both threads and processes can provide parallel program execution, but there are some differences.
As in figure 4, processes contain information about program resources and program execution state,
including [9]:

• Process ID, process group ID, user ID, and group ID

• Environment

• Working directory

• Program instructions

• Registers

• Stack

• Heap

• File descriptors

• Signal actions

• Shared libraries

• Inter-process communication tools (such as message queues, pipes, semaphores, or shared
memory).

13

Figure 4: UNIX Process

Threads use and exist within these process resources, yet are able to be scheduled by the operating
system and run as independent entities largely because they duplicate only the bare essential
resources that enable them to exist as executable code. From the figure 5 , we can see this
independent flow of control is accomplished because a thread maintains its own [9]:

• Stack pointer

• Registers

• Scheduling properties (such as policy or priority)

• Set of pending and blocked signals

• Thread specific data.

It can be expensive to create a new process. First, the entire process should be copied. Second,
the context-switching mechanism will start if the process creation triggers process rescheduling
activity. Also, the operating system kernel may be called introducing the cost of interprocess
communication and synchronization of shared data.

However, creating a new thread takes less time and memory because there is no need to replicate
an entire process, and part of the work of creation can be done in user space rather than operating
system kernel. In addition, synchronization can stay within the user space by using a variable.

Therefore, when compared to the cost of creating and managing a process, a thread can be cre-
ated with much less operating system overhead. Managing threads requires fewer system resources
than managing processes.

6.2 Introduction of Pthreads
Pthreads is a standardized model for dividing a program into subtasks whose execution can be
interleaved or run in parallel. The “P” in Pthreads comes from POSIX (Portable Operating System
Interface), the family of IEEE operating system interface standards in which Pthreads is defined
(POSIX Section 1003.1c to be exact) [8]. Pthreads are defined as a set of C language programming
types and procedure calls, implemented with a pthread.h header/include file and a thread library.

The primary motivation for considering the use of Pthreads on an SMP architecture is to achieve
optimum performance. In particular, if an application is using MPI for on-node communications,

14

Figure 5: THREADS WITHIN A UNIX PROCESS

there is a potential that performance could be greatly improved by using Pthreads for on-node
data transfer instead. For example, MPI libraries usually implement on-node task communication
via shared memory, which involves at least one memory copy operation (process to process). For
Pthreads there is no intermediate memory copy required because threads share the same address
space within a single process. There is no data transfer, per se. It becomes more of a cache-to-CPU
or memory-to-CPU bandwidth (worst case) situation. These speeds are much higher [9].

The Pthreads library aims to be expressive as well as portable, and it provides a fairly com-
prehensive set of features to create, terminate, and synchronize threads and to prevent different
threads from trying to modify the same values at the same time: it includes mutexes, locks,
condition variables, and semaphores.

Pthreads realizes the shared-memory programming model via a collection of routines for creat-
ing, managing and coordinating a collection of threads. In such shared-memory model (Figure 6),
all threads have access to the same global resources, which should be synchronized by programmers.
Each thread also has its own local resources.

In order to take advantage of Pthreads, a program should be able to be organized into discrete,
independent tasks which can execute concurrently. There are some characteristics which can be
well suited for Pthreads:

• Subtasks: A task can be executed by multiple subtasks simultaneously. For example, Matrix
multiplication takes two two-dimensional input arrays of data and computes a third, which
has the characteristic of repeating multiplication operations over and over again on subsets of
these arrays. We can improve the performance by simultaneously executing these operations.

• Overlapping I/O: If some tasks represent a long I/O operation that may block for waiting
for an I/O system call to complete, allowing CPU-intensive tasks to continue independently
may have performance advantages.

• Asychronous events: If some tasks subject to asynchronous events are in some unknown state
of completion, it may be more efficient to allow other tasks to proceed.

• Real-time Scheduling : One task may have high priority than another, but if they should be
executed whenever possible, we may need some scheduling priorities and policies to run them
independently.

15

Figure 6: A shared-memory model

There are no set rules for threading a program, but there are some models that define how a
threaded application delegates its work to its threads and how these threads communicate with
each other [9]:

• Boss/Worker Model : The boss thread creates each worker thread, assigns it tasks, and, if
necessary, waits for it to finish. Figure 7 depicts the boss/worker model.

• Peer Model : In the peer model, depicted in Figure 8, all threads work concurrently on their
tasks without a specific leader. One thread create all the other peer threads when the program
starts. However, unlike the boss thread in the boss/worker model, this thread subsequently
acts as just another peer thread that processes requests, or suspends itself waiting for the
other peers to finish.

• Pipeline Model : The pipeline model assumes: a long stream of input, a series of suboperations
through which every unit of input must be processed and each processing stage can handle a
different unit of input at a time. As illustrated in Figure 9, a single thread receives input for
the entire program, always passing it to the thread that handles the first stage of processing.
Similarly a single thread at the end of the pipeline produces all final output for the program.
Each thread in between performs its own stage of processing on the input it received from
the thread that performed the previous stage, and passes its output to the thread performing
the next.

6.3 Designing the Parallel Implementation
Now let’s add threads to our algorithm. As we described in section 5, in the parallel algorithm,
there are two parts: Swap part and Reduce part, that need to be parallelized. For each part, there
are independent tasks within them that can run in parallel. Let’s first see the swap part.

16

Figure 7: The Boss/Worker Model

Figure 8: The Peer Model

Figure 9: The Pipeline Model

17

6.3.1 Implementation of the Swap Part

Section 5 gives the serial version of the parallel algorithm, where the Swap part can be programmed
as

int r, k;
bool finish = false;
while(!finish){

finish = true;
for(k=2;k<=n;k=k+2){

r = closedInt(U[k-1][k]);
if(D[k] < (w - (U[k-1][k] - r)*(U[k-1][k] - r)) * D[k-1]){

finish = false;
ReduceSwapRestore(k,B,U,M,D,m,n,r);

}

}
for(k=3;k<=n;k=k+2){

r = closedInt(U[k-1][k]);
if(D[k] < (w - (U[k-1][k] - r)*(U[k-1][k] - r)) * D[k-1]){

finish = false;
ReduceSwapRestore(k,B,U,M,D,m,n,r);

}

}

}

U and M are both two-dimensional double arrays which represent n × n matrices U and M in
the algorithm, respectively. B is a two-dimensional array representing the m × n matrix B. D
is an array used to store the values of D where D = diag(di). m is the number of the rows of
the computed basis, whereas n is the number of the columns. The function closedInt returns
an integer nearest the argument, which is a double value. Procedure ReduceSwapRestore(k,γ) is
realized by the function ReduceSwapRestore.

A parallel implementation by using peer model As we mentioned, for every iteration
in the while routine, we can parallelize the first for routine, then the second. We’ll use peer
model for each for routine, where we create a peer thread for each individual iteration. A main
thread will also exist - not so much as a peer thread but as a setup and cleanup thread. It
performs all of the setup tasks for the program, creates the peer threads, and waits for them to
complete. In the serial version of our algorithm, the for routine made a procedure call to check
the condition and invoke ReduceSwapRestore if the condition is satisfied. For using the create
function pthread_create in Pthreads library, here we need another function subSwap that wraps
the codes within the for routine in order for each worker thread to execute. However, there
is one complication - the ReduceSwapRestore routine, as used in the serial version, has many
arguments, but the pthread_create function lets threads start only in routines that are passed
a single argument, so we bundle everything the for routine wants to pass to its peer threads
into a single structure. We call this structure the work_swap_t, and it contains fields for all of
the arguments passed to the subSwap. Our for routine passes each peer thread a pointer to a
work_swap_t structure as the last argument in the pthread_create call.

...
struct work_swap_t {

18

int k;
int m;
int n;
basis *B;
double **U;
double **M;
double *D;
double w;

} ;

pthread_mutex_t swap_count_mutex = PTHREAD_MUTEX_INITALIZER;
static bool finish = false;

void *subSwap(void* w_swap) {

work_swap_t* work = (work_swap_t*)w_swap;
int r = closedInt((work->U)[work->k-1][work->k]);
if ((work->D)[work->k] < (work->w - ((work->U)[work->k-1][work->k] - r)
*((work->U)[work->k-1][work->k] - r)) * (work->D)[work->k-1]){

ReduceSwapRestore(work->k,work->B,work->U,work->M,work->D,
work->m,work->n,r);
pthread_mutex_lock(&swap_count_mutex);
finish = false;
pthread_mutex_unlock(&swap_count_mutex);

}

}
...
void parallelLLL(const int m, const int n, basis *B, double w) {

...
while(!finish){

finish = true;
for(k = 2;k <= n;k = k + 2){

w_swap = new work_swap_t;
w_swap->k = k;
w_swap->m = m;
w_swap->n = n;
w_swap->B = B;
w_swap->U = U;
w_swap->M = M;
w_swap->D = D;
w_swap->w = w;
pthread_create(&(swap_thread[k-2]),NULL,subSwap,(void*)w_swap);

}
for(k = 2;k <= n;k = k + 2){

pthread_join(swap_thread[k-2],NULL);

}
for(k = 3;k <= n;k = k + 2){

19

w_swap = new work_swap_t;
w_swap->k = k;
w_swap->m = m;
w_swap->n = n;
w_swap->B = B;
w_swap->U = U;
w_swap->M = M;
w_swap->D = D;
w_swap->w = w;
pthread_create(&(swap_thread[k-2]),NULL,subSwap,(void*)w_swap);

}
for(k = 3;k <= n;k = k + 2){

pthread_join(swap_thread[k-2],NULL);
}

}
...

}
...

parallelLLL is the main routine executing the parallel LLL algorithm, in which we omit other
codes except the necessary structures and variables for the Swap part. Using the work_swap_t
structure lets the parallelLLL routine bundle various pieces of information into a single pthread_create
argument, but the thread’s start routine subSwap must accept only a single argument whose type
is void*, so we should cast work_swap_t* to void* in the pthread_create statement, then cast
it back to work_swap_t* at the beginning of the subSwap routine. Since threads may write the
boolean variable finish at the same time, we use a lock swap_count_mutex to avoid race condi-
tions. For every while loop, we use pthread_join to join threads that have been created after
every parallel for routine.

Testing the peer-model implementation In order to test our implementation, we will com-
pare efficiencies between the serial version and the parallel version of the parallel algorithm, by
using two tested programs between which the only different part is that the Swap part in the
parallel version is parallelized by using Pthread library. We’ll use several test groups and just
record cost spent on this part. In every test group, we adopt the same randomized matrix, which
is generated by a specific method in the program, for the two programs,

The test platform is

• Module: Dell Inspiron 580s (i-3 4-core cpu)

• Operating System: Ubuntu 10.04

• Development Environment: g++

Let ω = 0.75. Table 1 shows the results. There are seven tested groups. The dimensions of the
randomized matrices are listed in the first row. “Swap Times” represents the number of times that
ReduceSwapRestore has been called. S denotes the serial version and PM denotes the parallel
version with peer model. “Time cost” represents the cost spent on the Swap part in each test
group. The unit of time is microsecond.

From table 1 we can see that the costs spent on the parallel implementation are 10-20 times
more than those spent on the serial version, except the (100,100) group, but even in this group the
former is still more than the latter. It is clearly that this is not a viable parallel implementation.
The reason is that, our machine can run at most four threads at the same time and we use too

20

Dimensions 10,10 20,20 50,50 100,100 200,200 300,300 400,400
Swap Times(S) 29 17 93 74 118 110 121
Swap Times(PM) 29 17 93 74 118 110 121

Time Cost(S) 115 72 995 23185 1869 2711 4163
Time Cost(PM) 1498 3408 12310 24177 28406 66299 78751

Table 1: Comparison of the swap time cost between the serial implementation and the parallel
implementation by using peer model.

many threads to execute each iteration in the for routine so that the most cost in the parallel
implementation is spent on creating and joining these threads. For example, in (100,100) group,
we need create 98 threads in each while iteration.

Therefore, considering the limitation of the platform and the overhead of creating and joining
procedures, we should redesign our implementation.

A better parallel implementation by using a thread pool The platform has a 4-core CPU,
since one core may be used for the operating system processes, the efficient number of work threads
at the same time may be 3 or 4. We’ll consider using a thread pool, where the boss thread creates
a fixed number of worker threads up front. Like their boss, these worker threads survive for the
duration of the program. The for routine will be separated to several parts, and each worker thread
takes one part. These threads are created only once at the beginning and reused then, whereas
in the previous implementation we keep joining and creating in order for synchronization among
threads. We’ll adopt condition variable combined with mutex to synchronize threads. Below is our
new implementation.

...
struct work_swap_t {

int offset;
int m;
int n;
basis *B;
double **U;
double **M;
double *D;
double w;

} ;

const int NUM_THREADS = 4;
static int joinCount = 1;
static bool finish = false;
static bool subfinish[NUM_THREADS];
pthread_mutex_t swap_count_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t swap_loop_end = PTHREAD_COND_INITIALIZER;

void *subSwap(void* w_swap) {

work_swap_t* work = (work_swap_t*)w_swap;
int r, k;

while(!finish) {

21

subfinish[work->offset] = true;
for(k = 2 + 2 * (work->offset);k <= work->n;k = k + 2 * (NUM_THREADS)){

r = closedInt((work->U)[k-1][k]);
if((work->D)[k] < (work->w - ((work->U)[k-1][k] - r)*
((work->U)[k-1][k] - r))*(work->D)[k-1]){
subfinish[work->offset] = false;
ReduceSwapRestore(k,work->B,work->U,work->M,work->D,
work->m,work->n,r);

}
}

pthread_mutex_lock(&swap_count_mutex);
if(joinCount < NUM_THREADS){

joinCount++;
pthread_cond_wait(&swap_loop_end, &swap_count_mutex);

} else {
joinCount = 1;
pthread_cond_broadcast(&swap_loop_end);

}
pthread_mutex_unlock(&swap_count_mutex);

for(k = 3 + 2 * (work->offset);k <= work->n;k = k + 2 * (NUM_THREADS)){
r = closedInt((work->U)[k-1][k]);
if((work->D)[k]<(work->w - ((work->U)[k-1][k] - r)
((work->U)[k-1][k] - r))(work->D)[k-1]){
subfinish[work->offset] = false;
ReduceSwapRestore(k,work->B,work->U,work->M,work->D,
work->m,work->n,r);

}
}

pthread_mutex_lock(&swap_count_mutex);
if(joinCount < NUM_THREADS){

joinCount++;
pthread_cond_wait(&swap_loop_end, &swap_count_mutex);

} else {
finish = true;
for(int i = 0;i < NUM_THREADS; i++){
if(subfinish[i] == false) {
finish = false;
break;

}
}
joinCount = 1;
pthread_cond_broadcast(&swap_loop_end);

}
pthread_mutex_unlock(&swap_count_mutex);

}

22

}
...
void parallelLLL(const int m, const int n, basis *A, double w){

...
pthread_t swap_thread[NUM_THREADS];
work_swap_t *w_swap[NUM_THREADS];
for(int i = 0;i < NUM_THREADS;i++) {

w_swap[i] = new work_swap_t
w_swap[i]->offset = i;
w_swap[i]->m = m;
w_swap[i]->n = n;
w_swap[i]->B = B;
w_swap[i]->U = U;
w_swap[i]->M = M;
w_swap[i]->D = D;
w_swap[i]->w = w;
pthread_create(&swap_thread[i], NULL, subSwap, (void*)w_swap[i]);

}
for(int i = 0;i < NUM_THREADS;i++){

pthread_join(swap_thread[i],NULL);

}
...

}
...

NUM_THREADS indicates the number of worker threads that we will use to run the Swap part in
parallel. The variable k in struct work_swap_t has been deleted but a new variable offset has
been added, which is used to compute the start position of variable k of the two for routines. Each
thread handles a different group of the values of k. For example, assume the value of n is 20, so
the values of k in the first for routine will be: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. And the second:
3, 5, 7, 9, 11, 13, 15, 17, 19. If NUM_THREADS equals 4, then we divide these values into 4 parts for
each for routine. The first for routine:

- 2, 10, 18
- 4, 12, 20
- 6, 14
- 8, 16

and the second:
- 3, 11, 19
- 5, 13
- 7, 15
- 9, 17
Now each thread handles one part. In order to synchronize running threads after they all

finish executing the first for routine, we use the condition variable swap_loop_end. We make the
global variable joinCount a shared resource that these threads increment and create the mutex
swap_count_mutex (in global scope) to protect it. We use this condition variable swap_loop_end
to represent an event - the joinCount variable’s reaching a defined threshold value, NUM_THREADS,
which indicates that all threads have finished their work, so it’s time to handle the second for
routine. If joinCount is smaller than NUM_THREADS, it means that there may be one or more
threads that still have not finished executing the first for routine, so the current thread will wait
other threads to finish their work by using pthread_cond_wait. If joinCount has reached its
threshold value NUM_THREADS, subSwap will call pthread_cond_broadcast to notify the threads

23

Dimensions 10,10 20,20 50,50 100,100 200,200 300,300 400,400 500,500
SwapTimes(S) 22 69 64 149 69 186 238 96
SwapTimes(TP) 22 69 64 149 69 186 238 96
Time Cost(S) 54 352 891 1216 1119 4491 7899 4222

Time Cost(TP , 2 threads) 218 582 407 1111 1006 3344 5552 7059
Time Cost(TP , 3 threads) 269 837 362 975 865 3426 5175 3021
Time Cost(TP , 4 threads) 254 1003 467 1064 1018 3576 4982 2642

Table 2: Comparison of the Swap costs between the serial implementation and the parallel imple-
mentation by using a thread pool.

that’s waiting for this particular event. Since we will recount joinCount, it should be set to 1
again. However, the synchronization part after the second for routine has some differences.

We use the variable finish to determine whether the while loop should be ended, and if
ReduceSwapRestore is called, the variable is set to false, which tells us that we should execute
the while loop again. Since there are several threads which may write value to this variable
simultaneously and cause race condition, we use a boolean array subfinish to store such value
for each thread. When a thread finishes executing the second for routine, and if it is the last
thread that checks the joinCount variable (if joinCount = NUM_THREADS), it will first check the
values in the array subfinish to determine the value of the global variable finish. If all values
in the array subfinish are true, which means that no ReduceSwapRestore has been called in the
current iteration of the while loop, finish will be set to be true and all threads will stop working.
Otherwise, all threads will enter the next iteration of the while loop. Here we can also use the lock
swap_count_mutex to protect the global variable finish when it is being changed without using
subfinish, but it will increment times of synchronization and may depress efficiency.

The parallelLLL routine creates threads at the beginning and retracts then at the end, so the
threads are created and destroyed only once, which reduces overheads used in Pthreads library.

Testing the thread-pool implementation As before, we will test this program on the same
platform and use the same rules and ω, but different matrices. TP denotes the thread-pool
implementation. Table 2 shows the results.

From table 2 we can see increasing efficiency when dimension is (50, 50) or larger. However,
it is not like what we expect, such as, obtaining a speed which is 3 times faster than the serial
implementation when using 3 threads. There are two primary reasons.

• Overhead : The algorithm has too many synchronization points. The while loop may it-
erate many times, and for each iteration, there are two synchronization points. Every
synchronization part has some logic codes to execute. When one thread obtain the lock
swap_count_mutex, other threads should wait, so the cost of all blocks amount to a huge
value, which the serial version does not have. In addition, these threads should intercommu-
nicate when the program enters the synchronization part in order for each thread to know
states of the others, this also add much overhead.

• Structure of Decomposition: We separate the values of k, as we mentioned before, but there
is a problem. For example, assuming n = 20 and we have four threads A, B, C, D, so the
values of k assigned to these threads for the first for routine may be (A: 2, 10, 18), (B: 4,
12, 20), (C: 6, 14), (D: 8, 16). In an iteration of the while loop, if only in positions 2, 10 and
18 ReduceSwapRestore is called, threads B, C and D will just have a little work to do, so
the program will not benefit from these parallel structure, and cost of thread A determines
the total cost. Although in the serial version the routine also call ReduceSwapRestore at
positions 2, 10 and 18, it may take too much time on synchronization in the parallel version,
which will cause that the parallel implementation spends more time than the serial one. We
can eliminate this asymmetry decomposition problem if we have enough cores, which means,
if we have enough threads that can run in parallel, each thread will just have at most one

24

value of k to handle. However, more threads add more overhead of intercommunication when
synchronizing.

Analysis of the thread-pool implementation We can analyze the thread-pool implementa-
tion from an average point of view. Let’s first define some variables:

• Niteration: the total number of for iterations in the Swap part. For example, if n = 20,
then in each iteration of the while loop, the first for routine iterates from 2 to 20, and the
second iterates from 3 to 19, so the number of for iterations in current while iteration is 19.
If there are N0 while iterations, then Niteration = 19N0.

• Nswap: the total number of the invoked times of the procedure ReduceSwapRestore.

• Nsyn: the total number of the synchronization points in the implementation. Note that in
the above program we have a synchronization point after each for routine.

• tswap: the average cost of executing the procedure ReduceSwapRestore, plus the statement
of assigning value to the variable subfinish.

subfinish[work->offset] = false;
ReduceSwapRestore(k,work->B,work->U,work->M,work->D,work->m,work->n,r);

• tcheck: the average time cost of executing each for iteration which contains the average time
of computing r, plus the average time used to check the condition of if statement, but
without the statements within it.

r = closedInt((work->U)[k-1][k]);
if((work->D)[k] < (work->w - ((work->U)[k-1][k] - r)
*((work->U)[k-1][k] - r)) * (work->D)[k-1]){

//Omit these statements
}

• tsyn: the average cost for a synchronization point. Note that the threads cannot get the lock
swap_count_mutex at the same time, so we compute tsyn from the time when the last thread
finishes the for routine to the time point when the last thread unlocks swap_count_mutex.
Figure 10 shows an example. The green “for” block represents the process for the thread
to execute the current iteration of the for routine. The yellow “mutex” block means the
process for the thread to possess of the lock. tsyn begins at the end of the thread C’s “for”
block, which is the last thread that finishes the for block, and ends at the end of the thread
B’s mutex “block”.

pthread_mutex_lock(&swap_count_mutex);
if(joinCount < NUM_THREADS){

joinCount++;
pthread_cond_wait(&swap_loop_end, &swap_count_mutex);

} else {
joinCount = 1;
pthread_cond_broadcast(&swap_loop_end);

}
pthread_mutex_unlock(&swap_count_mutex);

• P (M), the probability for a for iteration to call ReduceSwapRestore in a matrixM . P (M) =
Nswap

Niteration
.

25

Figure 10: An example of computing tsyn

Id Nswap Nsyn Niteration P (M) Csyn
1 37 16 72 0.514 4.5
2 15 8 36 0.417 4.5
3 32 18 81 0.395 4.5
4 32 12 54 0.593 4.5
5 36 20 90 0.4 4.5
6 32 14 63 0.508 4.5
7 33 14 63 0.524 4.5
8 44 16 72 0.611 4.5
9 33 16 72 0.458 4.5
10 29 14 63 0.46 4.5

Average 0.488 4.5

Table 3: Analysis of the thread-pool implementation by using ten 10− by − 10 matrices.

• Csyn, the average number of for iterations before a synchronization point. Csyn = Niteration

Nsyn
=

n−1
2 where n is the dimension of U .

Given ten 10− by − 10 matrices, we compute the values of these variables as in table 3.
From table 3 we know, for an 10− by− 10 matrix, there are 4.5 iterations for each for routine,

and the probability for each iteration to call ReduceSwapRestore is 0.488. So in one while iter-
ation there may have 2 ≈ 0.488 × 4.5 iterations which will call ReduceSwapRestore for each for
routine, namely, before a synchronization point. Now we can compare the costs between the serial
implementation and the new parallel implementation, approximately. For simplicity, assume we
have 3 threads and Csyn = 5, figure 11 shows the possible processes of these two implementations.
Every green block represents an iteration. In iterations 2 and 4, ReduceSwapRestore is called, so
the cost should be tcheck + tswap. Other iterations just check the if condition, so the cost is tcheck.

Therefore, for each for routine, the total cost of the serial implementation tS and the total
cost of the parallel implementation tTP are

26

Figure 11: The for routine processes of the serial implementation and the new parallel implemen-
tation.

tS = 5tcheck + 2tswap
tTP = 2tcheck + tswap + tsyn
tS − tTP = 3tcheck + tswap − tsyn

• If 3tcheck + tswap ≤ tsyn, then tS ≤ tTP , the program cannot benefits from the parallel
implementation.

• If 3tcheck + tswap > tsyn, then tS > tTP , the parallel implementation can improve the effi-
ciency.

The above example is an ideal situation. In fact, ReduceSwapRestore may happen in iterations
1 and 4, which will make the parallel implementation slow. We’ll compute tS−tTP for more matrices
of different dimensions. Assuming there are four threads for the thread-pool implementation, and
we have an ideal situation like before. Table 4 show the results of 9 groups of different matrices,
where each group has 10 matrices of the same dimension. P (M) and Csyn are average values.

When the dimension (m,n) increments, tcheck and tsyn may not change because they do not
relate to n, but the coefficient of tcheck becomes larger. In addition, tswap increments because it
correlates with (m,n). So when (m,n) increases, tS − tTP increments, so the parallel implemen-
tation can improve efficiency when (m,n) reaches a large enough point. We can observe that in
table 2 such point may be (50, 50). Table 4 tells us possible tS − tTP values which can be used to
determine when the program can benefit if we already know tcheck, tsyn and tswap. However, as
we said, the results of table 4 is an ideal situation. If the structure of decomposition is uneven,
tS−tTP may be very little, or less than 0, where the parallel implementation cannot gain too much
advantage, or may even take more time.

27

Dimension P (M) Csyn P (M)× Csyn tS tTP tS − tTP

20,20 0.326 9.5 3 10tcheck + 3tswap 2tcheck + tswap + tsyn 8tcheck + 2tswap − tsyn

30,30 0.206 14.5 3 15tcheck + 3tswap 4tcheck + tswap + tsyn 11tcheck + 2tswap − tsyn

40,40 0.21 19.5 4 20tcheck + 4tswap 5tcheck + tswap + tsyn 15tcheck + 3tswap − tsyn

50,50 0.136 24.5 3 25tcheck + 3tswap 7tcheck + tswap + tsyn 18tcheck + 2tswap − tsyn

100,100 0.11 49.5 5 50tcheck + 5tswap 13tcheck + 2tswap + tsyn 37tcheck + 3tswap − tsyn

200,200 0.055 99.5 5 100tcheck + 5tswap 25tcheck + 2tswap + tsyn 75tcheck + 3tswap − tsyn

300,300 0.04 149.5 6 150tcheck + 6tswap 38tcheck + 2tswap + tsyn 112tcheck + 4tswap − tsyn

400,400 0.028 199.5 6 200tcheck + 6tswap 50tcheck + 2tswap + tsyn 150tcheck + 4tswap − tsyn

500,500 0.022 249.5 6 250tcheck + 6tswap 63tcheck + 2tswap + tsyn 187tcheck + 4tswap − tsyn

Table 4: tS − tTP of 9 groups of matrices

6.3.2 Implementation of the Reduce Part

Let’s first see the serial implementation of the Reduce part.

int i,j,start;
for(k = 2*n-3;k >= 1;k--){

if(k <= n-1){

start = 1;

}
else {

start = k-n+2;

}
for(i = start; i < (k+3)/2; i++){

j = k+2-i;
if(absd(U[i][j]) > 0.5){

Reduce(i, j, n, B, U, M);

}

}

}

B, U and M are the same symbols as we explained in previous section. Reduce(i, j) is realized
by function Reduce. Function absd returns the abstract value of U [i][j].

A parallel implementation with a thread pool We first designed the Swap part according
to the peer model for mutithreaded programs. One thread creates other threads on demand. When
each thread completes its iteration, it exits. It can slow our program clearly because we don’t reuse
idle threads to handle new iteration. Rather, we create and destroy a thread for each iteration.
Consequently, our program spends a lot of time in the Pthreads library. We addressed these
performance snags by redesigning it to use a thread pool. Also, we’ll use this design technique to
implement the Reduce part.

const int NUM_THREADS = 4;
static int joinCount = 1;
pthread_mutex_t reduce_count_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t reduce_loop_end = PTHREAD_COND_INITIALIZER;

28

struct work_reduce_t {

int offset;
int n;
basis *B;
double **U;
double **M;

};

void *subReduce(void *w_reduce) {

work_reduce_t *work = (work_reduce_t*)w_reduce;
int k,i,j,start;
reduceCount[work->offset] = 0;
for(k = 2 * (work->n) - 3 ; k >= 1; k--){

if(k <= (work->n)-1){
start = 1;

}
else{

start = k - (work->n) + 2;
}
for(i = start + (work->offset);i < (k+3)/2;i += NUM_THREADS){

j = k + 2 - i;
if(absd((work->U)[i][j])>0.5){

Reduce(i, j, work->n, work->B, work->U, work->M);
}

}

pthread_mutex_lock(&reduce_count_mutex);
if(joinCount < NUM_THREADS){

joinCount++;
pthread_cond_wait(&reduce_loop_end, &reduce_count_mutex);

}else{
joinCount = 1;
pthread_cond_broadcast(&reduce_loop_end);

}
pthread_mutex_unlock(&reduce_count_mutex);
}

}
...
void parallelLLL(const int m, const int n, basis *A, double w){

...
pthread_t reduce_t[NUM_THREADS];
work_reduce_t *w_reduce[NUM_THREADS];
for(int i = 0;i < NUM_THREADS;i++){

w_reduce[i] = new work_reduce_t;
w_reduce[i]->offset = i;
w_reduce[i]->n = n;

29

Dimensions 10,10 20,20 50,50 100,100 200,200 300,300 400,400 500,500
Reduce Times(S) 33 121 486 655 2220 3062 6023 2717
Reduce Times(TP) 33 121 486 655 2220 3062 6023 2717

Time Cost(S) 55 327 1095 3026 19201 39883 104778 63777
Time Cost(TP , 2 threads) 920 541 1633 2786 14880 28908 67252 47737
Time Cost(TP , 3 threads) 1467 2164 1791 3917 14346 29961 70382 52004
Time Cost(TP , 4 threads) 1261 1886 1899 3581 14949 29693 63720 56016

Table 5: Comparison of the Reduce cost between the serial implementation and the parallel im-
plementation using a thread pool.

w_reduce[i]->B = B;
w_reduce[i]->U = U;
w_reduce[i]->M = M;
pthread_create(&reduce_t[i], NULL, subReduce, (void*)w_reduce[i]);

}
for(int i = 0;i < NUM_THREADS;i++){

pthread_join(reduce_t[i],NULL);
}
...

}
...

The symbols B, U, M, n and offset in structure work_reduce_t are the same as we defined in
structure work_swap_t, but here we don’t need m, D, w anymore. The lock reduce_count_mutex
is used for synchronization. The condition variable reduce_loop_end represents the event that
the variable jointCount reaches NUM_THREADS. Each thread calls an individual subReduce which
handles a different part of the values of i in the inner for routine assigned by parallelLLL of the
boss thread.

Testing the thread-pool implementation Given some matrices of different dimensions, table
5 shows its efficiency compared to the serial version. “Reduce Times” represents the number of
times that Reduce has been executed. S is the serial version and TP is the parallel version. “Time
cost” represents cost spent on the Reduce part in each test. The unit of time is microsecond.

Like the similar implementation for the Swap part, the two problems: Overhead and Structure
of Decomposition affect the efficiency of this implementation. Note that in Table 2, we can gain
efficiency increase when dimension just reaches (50, 50), but in table 5, it’s (100, 100). To see why,
let’s compute tS − tP as we did in table 4 under the same situation, but first we need to redefine
some variables.

• Niteration: the total number of iterations of the inner for routine in the Reduce part.

• Nreduce: the total number of the invoked times of the procedure Reduce.

• Nsyn: the total number of the synchronization points in the parallel implementation.

• treduce: the average cost of executing the procedure Reduce.

• tcheck: the average cost of executing each inner for iteration which contains the average time
of computing start, plus the average cost used to check the condition of if statement, but
without the statements within it.

• tsyn: the average cost for a synchronization point. We use the same calculation rule as in
figure 10.

30

Dimension P (M) Csyn P (M)× Csyn tS tTP tS − tTP

20,20 0.545 5.135 3 5tcheck + 3treduce 2tcheck + treduce + tsyn 3tcheck + 2treduce − tsyn

30,30 0.444 7.632 3 8tcheck + 3treduce 2tcheck + treduce + tsyn 6tcheck + 2treduce − tsyn

40,40 0.366 10.13 4 10tcheck + 4treduce 3tcheck + treduce + tsyn 7tcheck + 3treduce − tsyn

50,50 0.34 12.629 4 13tcheck + 4treduce 5tcheck + treduce + tsyn 8tcheck + 3treduce − tsyn

100,100 0.169 25.127 4 25tcheck + 4treduce 7tcheck + treduce + tsyn 18tcheck + 3treduce − tsyn

200,200 0.076 50.126 4 50tcheck + 4treduce 13tcheck + treduce + tsyn 37tcheck + 3treduce − tsyn

300,300 0.066 75.126 5 75tcheck + 5treduce 19tcheck + 2treduce + tsyn 56tcheck + 3treduce − tsyn

400,400 0.056 100.125 6 100tcheck + 6treduce 25tcheck + 2treduce + tsyn 75tcheck + 4treduce − tsyn

500,500 0.039 125.125 5 125tcheck + 5treduce 32tcheck + 2treduce + tsyn 93tcheck + 3treduce − tsyn

Table 6: tS − tTP of 9 groups of matrices

Dimension\tS − tTP the Swap part the Reduce part
20,20 8tcheck + 2tswap − tsyn 3tcheck + 2treduce − tsyn
30,30 11tcheck + 2tswap − tsyn 6tcheck + 2treduce − tsyn
40,40 15tcheck + 3tswap − tsyn 7tcheck + 3treduce − tsyn
50,50 18tcheck + 2tswap − tsyn 8tcheck + 3treduce − tsyn
100,100 37tcheck + 3tswap − tsyn 18tcheck + 3treduce − tsyn
200,200 75tcheck + 3tswap − tsyn 37tcheck + 3treduce − tsyn
300,300 112tcheck + 4tswap − tsyn 56tcheck + 3treduce − tsyn
400,400 150tcheck + 4tswap − tsyn 75tcheck + 4treduce − tsyn
500,500 187tcheck + 4tswap − tsyn 93tcheck + 3treduce − tsyn

Table 7: Comparison of tS − tTP between the parallel implementations with a thread pool on the
Swap part and the Reduce part

• P (M), the probability for an inner for iteration to call Reduce in a matrix M . P (M) =
Nreduce

Niteration
.

• Csyn, the average number of inner for iterations before a synchronization point. Csyn =
Niteration

Nsyn
.

Table 6 shows tS − tTP for 90 matrices of different dimensions using 4 threads. Comparisons
between table 4 and table 6 are showed in table 7.

In table 7, assuming tsyn of the Swap part and tsyn of the Reduce part are almost the same,
two tcheck are both O(1). For the same dimension matrix, on the one hand, the coefficient of tcheck
in the Swap part is almost two times more than that in the Reduce part. On the other hand, tswap
is more than treduce because ReduceSwapRestore executes more codes than Reduce. Therefore,
tS − tTP in the Swap part will reach 0 prior to tS − tTP in the Reduce part, which explains what
we found between table 2 and table 5.

A parallel implementation with reduction list In the thread-pool implementation of the
Swap part, it always needs to call ReduceSwapRestore at some positions of k in each iteration of
the while loop, because if not, it means finish is true and the program will end. However, in the
implementation of the Reduce part, there is no need to call Reduce in some iterations of the outer
for loop. In such an iteration, the inner for routine will only compute the variable j and check
the condition of if, but never call Reduce. This give rise to another parallel implementation.

In this new implementation, we’ll use a boss thread to compute the positions that need to
be reduced in each iteration of the outer for loop. When it finds such a position, the thread
will first store it on a linked list without calling Reduce, then check another position. After the
thread stores all positions that need to be reduced in current iteration, it will assign them to other

31

worker threads to reduce one by one. If there is no such position, the thread will enter into the
next iteration of the outer for loop without waking up other worker threads. This method may
increase efficiency from three aspects:

• Since there is no need to call other worker threads when there is no position to be reduced
in an iteration, the synchronization part at the end can be omitted.

• The positions assigned to other worker threads are all needed to be reduced, so each thread
will get an even part of work, which eliminates the problem of Structure of Decomposition.

• Although the boss thread checks all positions serially, since tcheck, even after plusing the
expenses of operations for storing positions, is very small, the benefits from the above two
aspects may be much more than those saved from assigning check procedures to several
worker threads.

We’ll use a structure to record position information and a linked list to link these positions.

const int NUM_THREADS = 4;
static int joinCount = 1;
bool end = false;

struct work_reduce_t {

int id;
int n;
basis *B;
double **U;
double **M;

};

struct node {

int i;
int j;
node *next;

};
node* linklist = NULL;
node* head = NULL;
node* current = NULL;

pthread_mutex_t reduce_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t list_empty = PTHREAD_COND_INITIALIZER;
pthread_cond_t list_not_empty = PTHREAD_COND_INITIALIZER;

void *subReduce(void *w_reduce) {

work_reduce_t *work = (work_reduce_t*)w_reduce;
int i, j;
bool run = false;
while(!end){

32

pthread_mutex_lock(&reduce_mutex);
if(current == NULL){

if(joinCount < NUM_THREADS){

joinCount++;
pthread_cond_wait(&list_not_empty, &reduce_mutex);

}
else {

joinCount = 1;
pthread_cond_signal(&list_empty);
pthread_cond_wait(&list_not_empty, &reduce_mutex);

}

}
else {

run = true;
i = current->i;
j = current->j;
current = current->next;

}
pthread_mutex_unlock(&reduce_mutex);
if(run){

run = false;
Reduce(i,j,work->n, work->B, work->U, work->M);

}

}

}

void parallelLLL(const int m, const int n, basis *A, double w){

...
pthread_mutex_lock(&reduce_mutex);
int i,j,start;
linklist = new node;
head = linklist;
pthread_t reduce_t[NUM_THREADS];
work_reduce_t *w_reduce[NUM_THREADS];
for(int i = 0; i < NUM_THREADS; i++){

w_reduce[i] = new work_reduce_t;
w_reduce[i]->id = i;
w_reduce[i]->n = n;
w_reduce[i]->B = B;
w_reduce[i]->U = U;
w_reduce[i]->M = M;
pthread_create(&reduce_t[i], NULL, subReduce, (void*)w_reduce[i]);

}
for(k = 2 * n - 3;k >= 1;k--){

if(k <= n-1){

start = 1;

}
else {

33

start = k - n + 2;

}
for(i = start;i < (k+3)/2;i++){

j = k + 2 - i;
if(absd(U[i][j])>0.5){

linklist->next = new node;
linklist = linklist->next;
linklist->i = i;
linklist->j = j;
linklist->next = NULL;
if (current == NULL) {

current = linklist;

}

}

}
if(current != NULL) {

pthread_cond_broadcast(&list_not_empty);
pthread_cond_wait(&list_empty, &reduce_mutex);

}

}
end = true;
pthread_cond_broadcast(&list_not_empty);
pthread_mutex_unlock(&reduce_mutex);

for (int i = 0;i < NUM_THREADS;i++){

pthread_join(reduce_t[i],NULL);

}

node* previous;
while (head != NULL){

previous = head;
head = head->next;
delete previous;

}
...

}

node is a structure used to store i and j of a position of U that needed to be reduced. The
pointer linklist is used to construct a list and head points to the first node of the list, which will
be used to delete this list at the end. current is a pointer that points to the head of the positions
that have not been reduced. The list work as figure 12 shows. When the program begins, it creates
the first node without any value of i or j so that the program can delete this list from this node
later. When it finds a position which is the first one, it creates a node and link it to the tail of the
list and set current and linklist to point to this node. If the program finds another position, it
will create another node, add it to the tail of the list and set linklist to this new node. When
the program finds all positions in current iteration of the outer for routine, it may look like what
the figure shows, where linklist points to the last node whose next node is set to be NULL. Then
the program will enter the next iteration and add new nodes.

34

Figure 12: Procedures of adding nodes in a list

35

Figure 13: Procedures of worker threads on a list

The condition variable list_empty represents an event - the list is empty or all nodes on the
list have been reduced. list_not_empty represents that new node(s) has(have) been added to
the list. After each iteration of the outer for loop, if the program finds some positions, that is,
current!=NULL, the boss thread will wake up other threads, then sleep and wait for the worker
threads to reduce these positions on the list. If there is no such position, namely, current=NULL,
the program will enter the next iteration directly, without any synchronization. When the worker
threads are waken up, they will work as figure 13 shows. Each thread selects a node from the list
at a time and calls Reduce. If a thread is holding the list, other threads are forbidden to possess
it in order to avoid race conditions caused by writing a value to current simultaneously. When a
thread fetches a node, firstly, it stores its values of i and j to the local variable i and j, and set
current to point to the next node. Then, after it releases the lock reduce_mutex so that other
threads can fetch nodes from the list, it calls Reduce. If a thread finds current to be NULL, which
means all nodes have been reduced, it will signal our list_empty condition variable to wake up
the boss thread and wait for another cycle.

u

Testing the reduction-list implementation To compare efficiencies between the reduction-
list implementation and the thread-pool implementation, we’ll test their performances by using

36

Dimensions 10,10 20,20 50,50 100,100 200,200 300,300 400,400 500,500
Reduce Times(S) 33 121 486 655 2220 3062 6023 2717

Reduce Times(TP/RL) 33 121 486 655 2220 3062 6023 2717
Time Cost(S) 55 327 1095 3026 19201 39883 104778 63777

Cost(TP , 2 threads) 920 541 1633 2786 14880 28908 67252 47737
Cost(TP , 3 threads) 1467 2164 1791 3917 14346 29961 70382 52004
Cost(TP , 4 threads) 1261 1886 1899 3581 14949 29693 63720 56016
Cost(RL, 2 threads) 1920 1214 1248 7490 14120 28429 68781 48329
Cost(RL, 3 threads) 2025 6035 1569 6195 13343 26960 77149 47819
Cost(RL, 4 threads) 1417 1043 1930 3079 13673 27169 79306 51302

Table 8: Comparison of the Reduce cost among the serial implementation, the implementation
with a thread pool and the implementation with reduced list.

the same matrices used in table 5. Table 8 shows the results. “RL” means the reduction-list
implementation, and “TP” represents the thread-pool implementation.

From table 8 we know that it is not possible to say that one parallel implementation is better
than another. The reason is that the efficiencies of them depend on the specific matrix and the
running platform. However, we can decide which one will be used in different situations on our
platform. Before that, we need more tests.

Figure 14 to figure 21 shows the results of 100 random matrices, 10 matrices for each dimension,
by using 7 kinds of implementations. The meanings of the symbols used in each figure are

• serial: the serial implementation

• TP 2: the thread-pool implementation by using 2 threads.

• TP 3: the thread-pool implementation by using 3 threads.

• TP 4: the thread-pool implementation by using 4 threads.

• RL 2: the reduction-list implementation by using 2 threads.

• RL 3: the reduction-list implementation by using 3 threads.

• RL 4: the reduction-list implementation by using 4 threads.

From figure 14 to figure 17 we know that no parallel implementation can run faster than the
serial implementation when dimension is smaller than (50,50). But from figure 18 we already find
in some matrices, the thread-pool implementation by using 2 threads is better.

Figure 19 shows that the thread-pool implementation by using 3 or 4 threads are bad choices,
but others cannot be distinguished better or worse.

From figure 20 to 23 we notice the reduction-list implementation by using 3 or 4 threads are
always the most efficient implementations, which proves that the reduction-list implementation is
a good choice when the dimension of the computed basis is larger than (100,100).

37

Figure 14: Costs of ten 10− by − 10 matrices

Figure 15: Costs of ten 20− by − 20 matrices

38

Figure 16: Costs of ten 30− by − 30 matrices

Figure 17: Costs of ten 40− by − 40 matrices

39

Figure 18: Costs of ten 50− by − 50 matrices

Figure 19: Costs of ten 100− by − 100 matrices

40

Figure 20: Costs of ten 200− by − 200 matrices

Figure 21: Costs of ten 300− by − 300 matrices

41

Figure 22: Costs of ten 400− by − 400 matrices

Figure 23: Costs of ten 500− by − 500 matrices

42

Appendix Code listings
For simplicity, we just give the parallel implementation with Pthread, where the "Swap" part is
implemented by using a thread pool, and the "Reduce" part is implemented by using a reduction
list. Also, we give a simple test file.

/*
* vector.h
*
* Class vector : data structure of the vector in linear algebra,
* which can be represented by an n-tuple of real numbers.
* V = [Vi] = (v1, v2, , vn)
* The class defines the necessary input and ouput functions and
* arithmetic operations on vectors:
* - Multiplication of vectors
* - Scalar Multiplication
* - Addition
* - Subtraction
* Also, the class defines other useful functions for vector computing.
*/

#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <stdexcept>

using namespace std;

#ifndef VECTOR_H
#define VECTOR_H

class vector{

//output operator
friend ostream& operator<‌<(ostream&, const vector&);

//Multiplication of vectors
friend double operator*(const vector&, const vector&);

//Scalar Multiplication
friend vector operator*(double, const vector&);
friend vector operator*(const vector&, double);

//Addition
friend vector operator+(const vector&, const vector&);

//Subtraction
friend vector operator-(const vector&, const vector&);

//The number of the elements in the vector

43

size_t length;

//Point to an array that stores elements of the vector
double *val;

public:

//Default constructor
vector();

//Constructor by length
vector(const size_t);

//Copy constructor
vector(const vector&);

//Overloaded assignment operator =
vector& operator=(const vector&);

//Overloaded subscript operator []
double& operator[](const size_t);

//Overloaded subscript operator []
const double& operator[](const size_t) const;

//Input function
void input();

//Computer two vectors, verify whether they are independent
bool isIndependent(const vector&);

//Give the number of elements in this vector
size_t size(){

return length;
}

//destructor
~vector();

};

#endif

/*
* vector.cpp
*
* Implementation of the class vector.
*
*/

#include "vector.h"

44

/*
* Function: default constructor
* --
* The default vector has no any element in it.
*
*/
vector::vector(){

length = 0;
val = 0;

};

/*
* Function: constructor using an length
* --
* The values of the vector will be 0.
*
*/
vector::vector(const size_t l):length(l){

val = new double[l];
for(size_t i = 0;i != length;++i){

*(val+i) = 0;
}

}

/*
* Function: copy constructor
* --
* If the lengths of two vectors are not the same, an exception will be thrown.
*
*/
vector::vector(const vector& vec):length(vec.length){

try{
if(length != vec.length)

throw logic_error("Error: Not the same length \
in copy constructor!");

else{
if(length != 0){

val = new double[length];
for(size_t i = 0;i != length;++i){

*(val + i) = *(vec.val + i);
}

}
}

}
catch(logic_error l){

cout<‌<l.what()<‌<endl;
}

}

/*
* Function: assignment operator =
* --
* Assignment operator of two vectors. As in copy constructor, If the lengths

45

* of them are not the same, an exception will be thrown.
*
*/
vector& vector::operator=(const vector& vec){

try{
if(length != vec.length)

throw logic_error("Error: Not the same length in operator = !");
else{

if(length != 0){
for(size_t i = 0;i != length;++i){

*(val + i) = *(vec.val + i);
}

}
}

}
catch(logic_error l){

cout<‌<l.what()<‌<endl;
}
return *this;

}

/*
* Function: subscript operator =
* --
* Get the ith element using the subscript of the vector (l-value)
*
*/
double& vector::operator[](const size_t i){

try{
if(i <= length && i > 0)

return *(val + i - 1);
else

throw logic_error("Error:Wrong index!");
}
catch(logic_error l){

cout<‌<l.what()<‌<endl;
}
return *val;

}

/*
* Function: subscript operator =
* --
* Get the ith element using the subscript of the vector (r-value)
*
*/
const double& vector::operator[](const size_t i) const{

try{
if(i <= length && i > 0)

return *(val + i - 1);
else

throw logic_error("Error:Wrong index!");
}

46

catch(logic_error l){
cout<‌<l.what()<‌<endl;

}
return *val;

}

/*
* Function: input
* --
* Initialize the vector or change the values in this vector.
*
*/
void vector::input(){

double d;
for(size_t i = 0;i < length;i++){

cout<‌<"Input element "<‌<i + 1<‌<" : ";
cin>‌>d;
*(val + i) = d;

}
cout<‌<endl;

}

/*
* Function: isIndependent
* --
* Compute two vectors, verify whether they are independent. In linear
* algebra, a family of vectors is linearly independent if none of them
* can be written as a linear combination of finitely many other vectors
* in the collection. Two vectors P and Q are dependent when the determinant
* of the matrix
* | P*P P*Q |
* | Q*P Q*Q |
* equals to 0, where * is inner product of vectors.
*
*/
bool vector::isIndependent(const vector & v){

double d = ((*this) * (*this)) * (v*v) - ((*this) * v) * (v * (*this));
if(d)

return true;
return false;

}

/*
* Function: destructor
* --
* Since we have a double pointer val that points to an array that stores
* elements of the vector, we need to free these memories if we don’t use
* this vector anymore.
*
*/
vector::~vector(){

delete [] val;
}

47

/*
* Function: output operator <‌<
* --
* Output the elements of the vector.
*
*/
ostream& operator<‌<(ostream& os, const vector &b){

for(size_t i = 0;i != b.length;i++){
os<‌<*(b.val + i)<‌<endl;

}
return os;

}

/*
* Function: operator *
* --
* Representing inner product of two vectors. If the lengths of them are
* not the same, an exception will be thrown.
*
*/
double operator*(const vector& bl, const vector& br){

double sum = 0;
try{

if(bl.length != br.length)
throw logic_error("Error: not the same length in operator * !");

else{
for(size_t i = 0;i != bl.length;i++){

sum += (*(bl.val + i)) * (*(br.val + i));
}

}
}
catch(logic_error l){

cout<‌<l.what()<‌<endl;
}
return sum;

}

/*
* Function: operator *
* --
* Representing the scalar multiplication on a vector, which is the product
* of a vector and a numerical value, the numerical value is on the left.
*
*/
vector operator*(double d, const vector& br){

vector b(br.length);
for(size_t i = 0;i != br.length;i++){

*(b.val + i) = d * (*(br.val + i));
}
return b;

}
/*

48

* Function: operator *
* --
* Also represent the scalar multiplication on a vector, but the numerical
* value is on the right.
*
*/
vector operator*(const vector& bl, double d){

vector b(bl.length);
for(size_t i = 0;i != bl.length;i++){

*(b.val + i) = d * (*(bl.val + i));
}
return b;

}

/*
* Function: operator +
* --
* Addition between two vectors. If the lengths of them are not the same,
* an exception will be thrown.
*
*/
vector operator+(const vector& bl, const vector& br){

vector b(bl.length);
try{

if(bl.length != br.length)
throw logic_error("Error: not the same length in operator + !");

else
{

for(size_t i = 0;i != bl.length;i++){
(b.val + i) = ((bl.val + i)) + (*(br.val + i));

}
}

}
catch(logic_error l){

cout<‌<l.what()<‌<endl;
}
return b;

}

/*
* Function: operator -
* --
* Substraction between two vectors. If the lengths of them are not the same,
* an exception will be thrown.
*
*/
vector operator-(const vector& bl, const vector& br){

vector b(bl.length);
try{

if(bl.length != br.length)
throw logic_error("Error: not the same length in operator - !");

else
{

49

for(size_t i = 0;i != bl.length;i++){
(b.val + i) = ((bl.val + i)) - (*(br.val + i));

}
}

}
catch(logic_error l){

cout<‌<l.what()<‌<endl;
}
return b;

}

/*
* basis.h
*
* Class basis : data structure of the basis for lattice.
* In linear algebra, a basis is a set of linearly independent vectors that,
* in a linear combination, can represent every vector in a given vector
* space or free module, or more simply put form a "coordinate system".
* The class defines the necessary input and ouput functions, subscript
* operator and file operations.
*
*/

#include "vector.h"

#ifndef BASIS_H
#define BASIS_H

class basis {

//Overloaded operator <‌<
friend ostream& operator<‌<(ostream&, const basis&);

//The number of coloumns in the basis.
size_t n;

//The number of rows in the basis.
size_t m;

//Pointer to a 2-dimensioned array which stores the values of the basis.
vector **b;

//The lower bound of the range in which a random number will be generated.
static const int lowest = -10;

//The higher bound of the range in which a random number will be generated.
static const int highest = 10;

public:

//Default constructor.

50

basis():n(0),m(0){
b = 0;

}

//Constructor using dimension
basis(const size_t, const size_t);

//Copy constructor.
basis(const basis&);

//Interface to return the number of coloumns: n.
size_t sizeN(){

return n;
}

//Interface to return the number of rows: m.
size_t sizeM(){

return m;
}

//Input function
void input();

//Overloaded subscript operator []
vector &operator[] (const size_t);
const vector &operator[] (const size_t) const;

//Generate an random basis whose vectors are independent
void randomBasis();

//Write the basis to a fixed file
bool writeToFile();

//Initialize the basis from a fixed file
bool readFromFile();

//Write the basis to a given file
bool writeToFile(string);

//Initialize the basis from a given file
bool readFromFile(string);

//Destructor
~basis(){

delete [] b;
}

};

#endif

/*

51

* basis.cpp
*
* Implementation of basis class
*
*/

#include "basis.h"
#include "vector.cpp"
#include <cstdlib>
#include <ctime>

/*
* Function: default constructor
* --
* Constructor using the dimension of the basis, that is, the number of
* vectors that this basis contains, and the number of elements in these
* vectors each.These values in the basis are not initialized.
*
*/
basis::basis(const size_t ml, const size_t nl){

m = ml;
n = nl;
try{

if(m > 0 && n > 0){
b = new vector*[n];
for(size_t i = 0;i != n;i++){

b[i] = new vector(m);
}

}
else

throw logic_error("Error,constructing with wrong sizes in \
basis(const size_t n, const size_t m)!");

}
catch(logic_error l){

cout<‌<l.what()<‌<endl;
}

}

/*
* Function: operator []
* --
* Overloaded subscript operator [], give the ith vector in the basis (l-value)
*
*/
vector& basis::operator[] (const size_t i){

try{
if(i <= n && i>0)

return *(b[i-1]);
else

throw logic_error("Error: wrong index in basis::operator[]");
}
catch(logic_error l){

cout<‌<l.what()<‌<endl;

52

}
return *(b[0]);

}

/*
* Function: operator []
* --
* Overloaded subscript operator [], give the ith vector in the basis (r-value)
*
*/
const vector& basis::operator[] (const size_t i) const{

try{
if(i <= n && i > 0)

return *(b[i-1]);
else

throw logic_error("Error: wrong index in basis::operator[]");
}
catch(logic_error l){

cout<‌<l.what()<‌<endl;
}
return *(b[0]);

}

/*
* Function: operator <‌<
* --
* Overloaded operator <‌<, output the values in the basis as the form of a
* matrix.
*
*/
ostream& operator<‌<(ostream& os, const basis& ba){

for(size_t i = 1;i != ba.m + 1;i++){
cout<‌<"| ";
for(size_t j = 1;j != ba.n + 1;j++){

cout<‌<ba[j][i]<‌<" ";
}
cout<‌<"|"<‌<endl;

}
return os;

}

/*
* Function: randomBasis
* --
* Generate an random basis whose vectors are independent, and the values
* are in the range of "lowest" to "highest".
*
*/
void basis::randomBasis(){

srand((unsigned)time(0));
int range = (highest - lowest) + 1;
for(size_t i = 0;i < n;i++){

for(size_t j = 1;j <= m;j++){

53

(*(b[i]))[j] = lowest + int(range * (rand() / (RAND_MAX + 1.0)));
}
if(i > 0){

for(size_t k = 0;k < i;k++){
//Test if *b[i] and *b[k] are independent.If not, i = i - 1.
if(!((*(b[i])).isIndependent((*(b[k]))))){

i--;//Rerandom the vector *b[i];
break;

}
}

}
}

}

/*
* Function: input
* --
* Initialize the basis or change the values in this basis.
*
*/
void basis::input(){

double d;
for(size_t i = 0;i < n;i++){

cout <‌< "Input the "<‌<i + 1<‌<"th vector of the basis:"<‌<endl;
for(size_t j = 1;j <= m;j++){

cout<‌<"Element "<‌<j<‌<" : ";
cin>‌>d;
(*(b[i]))[j] = d;

}
cout<‌<endl;

}
}

/*
* Function: writeToFile
* --
* Write the basis to a fixed file "Basis.txt". The first line contains the
* dimension (m,n), which enables the program to allocate appropriate
* memory first when it reads the basis from the file, then add the elements
* to the current basis.
*
*/
bool basis::writeToFile(){

try{
ofstream outfile("Basis.txt");
if(outfile){

outfile<‌<m<‌<" "<‌<n<‌<endl;
for(size_t i = 0;i < n;i++){

for(size_t j = 1;j <= m;j++){
outfile<‌<(*b[i])[j]<‌<" ";

}
outfile<‌<endl;

}

54

outfile.close();
cout<‌<"Successfully save -- Basis.txt!"<‌<endl;
return true;

}
else{

cout<‌<"No such file!"<‌<endl;
}

}
catch(exception e){

cout<‌<e.what()<‌<endl;
}
return false;

}

/*
* Function: readFromFile
* --
* Initialize the basis from a fixed file "Basis.txt". The program reads the
* first line to get dimension in order to check if the dimension of the
* current basis matches the dimension of the basis in the file, if so, then
* it will assign these elements to the current basis, otherwise, throw an
* exception.
*
*/
bool basis::readFromFile(){

try{
ifstream infile("Basis.txt");
if(infile){

string line;
getline(infile,line,’\n’);
istringstream stream(line);
int m1,n1;
stream>‌>m1>‌>n1;
if(m1!=m||n1!=n){

cout<‌<"Failure! The sizes of the basis in the file and this \
basis are not compatible!"<‌<endl;

cout<‌<"The basis in the file is \
a "<‌<m1<‌<"-by-"<‌<n1<‌<"basis."<‌<endl;

return false;
}
else{

size_t i = 0;
while(getline(infile,line,’\n’)){

stream.clear();
stream.str(line);
for(size_t j = 1;j <= m;j++){

stream>‌>(*b[i])[j];
}
i++;

}
cout<‌<"Successfully read -- Basis.txt"<‌<endl;
return true;

}

55

infile.close();
}
else{

cout<‌<"No such file!"<‌<endl;
}

}
catch(exception e){

cout<‌<e.what()<‌<endl;
}
return false;

}

/*
* Function: writeToFile
* --
* Write the basis to a given file.
*
*/
bool basis::writeToFile(string file){

try{
ofstream outfile(file.c_str(),ios::out);
if(outfile){

outfile<‌<m<‌<" "<‌<n<‌<endl;
for(size_t i = 0;i < n;i++){

for(size_t j = 1;j <= m;j++){
outfile<‌<(*b[i])[j]<‌<" ";

}
outfile<‌<endl;

}
outfile.close();
cout<‌<"Successfully save -- "<‌<file<‌<endl;
return true;

}
else{

cout<‌<"No such file!"<‌<endl;
}

}
catch(exception e){

cout<‌<e.what()<‌<endl;
}
return false;

}

/*
* Function: readFromFile
* --
* Read the basis from a given file.
*
*/
bool basis::readFromFile(string file){

try{
ifstream infile(file.c_str());
if(infile){

56

string line;
getline(infile,line,’\n’);
istringstream stream(line);
int m1,n1;
stream>‌>m1>‌>n1;
if(m1 != m || n1 != n){

cout<‌<"Failure! The sizes of the basis in the file and this \
basis are not compatible!"<‌<endl;

cout<‌<"The basis in the file \
is a "<‌<m1<‌<"-by-"<‌<n1<‌<" basis."<‌<endl;

return false;
}
else{

size_t i = 0;
while(getline(infile,line,’\n’)){

stream.clear();
stream.str(line);
for(size_t j = 1;j <= m;j++){

stream>‌>(*b[i])[j];
}
i++;

}
cout<‌<"Successfully read -- "<‌<file<‌<endl;
return true;

}
infile.close();

}
else{

cout<‌<"No such file!"<‌<endl;
}

}
catch(exception e){

cout<‌<e.what()<‌<endl;
}
return false;

}

/*
* LLL.cpp
*
* The file defines the several necessary functions used in the LLL algorithm.
*
*/

#include "basis.cpp"

/*
* Function: absd
* --
* Calculate the abstract value of a double value. In the algorithm, the
* argument will be an element of the matrix U.

57

*
*/
float absd(double d){

return (d >= 0)?d:-d;
}

/*
* Function: closedInt
* --
* Calculate an integer nearest a value.
*
*/
int closedInt(double d){

int i = (int)(absd(d)+0.5);
if(d >= 0)

return i;
else

return -i;
}

/*
* Function: maxValue
* --
* Calculate the bigger one of two values.
*
*/
int maxValue(int a,int b){

return a > b?a:b;
}

/*
* Function: outputMatrix
* --
* Output the values in a n-by-n matrix. In the algorithm, there are two
* such matrices: U and M. The matrix U, computed from Gram-Schmidt method,
* is upper triangular with a unit diagonal. M is an integer unimodular
* transformation matrix, which is computed from the procedure Reduce(i,j).
*
*/
void outputMatrix(double **matrix,int n){

cout<‌<endl;
for(int i = 1;i <= n;i++){

cout<‌<"| ";
for(int j = 1;j <= n;j++)

cout<‌<matrix[i][j]<‌<" ";
cout<‌<"|"<‌<endl;

}
cout<‌<endl;

}

/*

58

* Function: outputArray
* --
* Output the values in array. We use this function to output the values of
* D, which represents the matrix D computed from the Gram-Schmidt method.
*
*/
void outputArray(double *ar,int n){

for(int i = 1;i < =n;i++){
cout <‌<"D"<‌<i<‌<" : "<‌< ar[i] <‌< " | ";

}
cout<‌<endl;

}

/*
* Function: initializeDU
* --
* Compute the D and U in the decomposition B = Q(D~1/2)U using the
* Gram-Schmidt method.
*
*/
void initializeDU(double *D,double **U,basis *Q,basis *B,int n){

for(int i = 1;i <= n;++i){
(*Q)[i] = (*B)[i];
for(int j = 1;j < i;++j){

U[j][i] = ((*B)[i] * (*Q)[j]) / D[j];
(*Q)[i] = (*Q)[i] - U[j][i] * (*Q)[j];

}
U[i][i] = 1;//Unit diagonal
for(int k = i + 1;k <= n;k++){//Initialize U[i][j] = 0 when i>j

U[k][i] = 0;
}
D[i] = (*Q)[i]*(*Q)[i];

}
}

/*
* Function: initializeMatrix
* --
* Initialize a matrix to be an identity matrix. In the algorithm, we use this
* function to initialize the matrix M.
*
*/
void initializeMatrix(double **matrix,int n){

for(int q = 1;q <= n;q++){
for(int p = 1;p <= n;p++){

if(q != p){
matrix[q][p] = 0;

}
else{

matrix[q][p] = 1;

59

}
}

}
}

/*
* Function: Reduce
* --
* Procedure Reduce(i,j) used in the LLL algorithm
*
*/
void Reduce(int i,int j,int n,basis *B,double **U,double **M){

int r = closedInt(U[i][j]);// r is an integer nearest U[i][j]

/*
* B <- B * M[i][j] :
* Apply M[i][j] to B. M[i][j] = I[n] - r * e[i] * (e[j]~T)
* e[i] is the ith unit vector
*/
(*B)[j] = (*B)[j] - r * (*B)[i];

//U <- U * M[i][j] : Apply M[i][j] to U
for(int k = 1;k <= i-1;++k){

U[k][j] = U[k][j] - r * U[k][i];
}
U[i][j] = U[i][j] - r;

//Update M
for(int q = 1;q <= n;q++){

M[q][j] = M[q][i] * (-r) + M[q][j];
}

}

/*
* Function: SwapRestore
* --
* Procedure SwapRestore(i) used in the LLL algorithm
*
*/
void SwapRestore(int i,basis *B,double **U,double **Z,double *D,int m,int n){

//Update D
double d = D[i] + U[i-1][i]*U[i-1][i]*D[i-1];
D[i] = (D[i-1]*D[i])/d;
double x = (U[i-1][i]*D[i-1])/d;
D[i-1] = d;

//Swap the columns i-1 and i of B
vector tempB(m);
tempB = (*B)[i];
(*B)[i] = (*B)[i-1];
(*B)[i-1] = tempB;

60

//Update M, swap the columns i-1 and i of M
double m;
for(int q = 1;q <= n;q++){

m = M[q][i-1];
M[q][i-1] = M[q][i];
M[q][i] = m;

}

//Swap the columns i-1 and i of U
double tempU;
for(int j = 1;j<=i-2;j++){

tempU = U[j][i-1];
U[j][i-1] = U[j][i];
U[j][i] = tempU;

}

//Apply X[i]~(-1) to U
double u = U[i-1][i];
for(int k = i+1;k<=n;k++){

double u1 = U[i-1][k];
double u2 = U[i][k];
U[i-1][k] = u1 * x + (1 - x * u) * u2;
U[i][k] = u1 - u*u2;

}
U[i-1][i] = x;

}

/*
* Function: ReduceSwapRestore
* --
* ReduceSwapRestore(i,r) in the LLL algorithm with delayed size-reduction.
*
*/
void ReduceSwapRestore(int i,basis *B,double **U,double **Z,double *D,int m,int n,int r){

//Update D
double d = D[i] + (U[i-1][i]-r)*(U[i-1][i]-r)*D[i-1];
D[i] = (D[i-1]*D[i])/d;
double x = ((U[i-1][i]-r)*D[i-1])/d;
D[i-1] = d;

//Update the columns i-1 and i of B
vector tempB(m);
tempB = (*B)[i-1];
(*B)[i-1] = (*B)[i] - r * ((*B)[i-1]);
(*B)[i] = tempB;

//Update the columns i-1 and i of M
double m;
for(int q = 1;q <= n;q++){

m = M[q][i-1];
M[q][i-1] = M[q][i] - r * M[q][i-1];

61

M[q][i] = m;
}

//Update the columns i-1 and i of U
double tempU;
for(int j = 1;j <= i - 2;j++){

tempU = U[j][i-1];
U[j][i-1] = U[j][i] - r * U[j][i-1];
U[j][i] = tempU;

}

//Apply X[i]~(-1) to U
double u = U[i-1][i];
for(int k = i + 1;k <= n;k++){

double u1 = U[i-1][k];
double u2 = U[i][k];
U[i-1][k] = u1 * x + (1 - x * u + r * x) * u2;
U[i][k] = u1 + (r- u) * u2;

}
U[i-1][i] = x;

}

/*
* Function: verifyConditions
* --
* Verify whether a basis satisfies the conditions defined by the LLL algorithm.
*
*/
void verifyConditions(basis *a, basis* b,int m,int n,double w,double **z){

//Another Q, used in verification process
basis *q = new basis(m,n);

//Another D, used in verification process
double *d = new double[n+1];

//Another U, used in verification process
double **u = new double*[n+1];
for(int i = 0;i <= n;++i){

u[i] = new double[n+1];
}

/*
* According to the result basis B , initialize the values of d, u and q
* by Gram-Schmdit process.
*/
initializeDU(d,u,q,b,n);

cout<‌<endl;
cout<‌<"-------------------- Verify Conditions -------------------"<‌<endl;
cout<‌<endl;

/*

62

* Output U to justify the size-reduced condition.If it satisfies this
* condtion, then all values in upper triangular should be bigger than
* or equal to 0.5.
*/
cout<‌<"Verify Size Reduced"<‌<endl;
cout<‌<"-------------------"<‌<endl;
cout<‌<endl;
cout<‌<"The values in U are:"<‌<endl;
outputMatrix(u,n);
bool sr = true;
for(int j = 1;j <= n;j++){

for(int i = 1;i < j;i++){
if(u[i][j] > 0.5){

sr = false;
cout <‌< "Mistake : U["<‌<i<‌<"]["<‌<j<‌<"] > 0.5"<‌<endl;

}
}

}
if(sr){

cout <‌< "Yes, all |U[i][j]|<=0.5, the size \
reduced condition is satisfied!"<‌<endl;

}
else{

cout <‌< "Sorry, the size reduced condition is not satisfied!"<‌<endl;
}
cout<‌<endl;
cout<‌<"-------------------"<‌<endl;
cout<‌<endl;

/*
* For k = 2,3,...,n, verify the loose increasing condition.If it satisfies
* this condition:
* When k = i, then (d[i] + d[i-1] * U[i-1][i] * U[i-1][i]) >= w * d[i-1],
* it outputs "Yes", otherwise, "Not".
*/
cout<‌<"Verify Loose Increasing"<‌<endl;
cout<‌<"-----------------------"<‌<endl;
bool sv = true;
for(int k = 2;k < =n;k++){

cout<‌< "i = "<‌<k<‌<": ";
if(d[k] < (w - u[k-1][k] * u[k-1][k]) * d[k-1]){

sv = false;
cout<‌<"(d[i]+d[i-1]*U[i-1][i]*U[i-1][i]) < w*d[i-1]. NOT"<‌<endl;

}
else
{

cout<‌<"(d[i]+d[i-1]*U[i-1][i]*U[i-1][i]) >= w*d[i-1]. YES"<‌<endl;
}

}
if(sv){

cout <‌< "Yes, all (d[i] + d[i-1]*U[i-1][i]*U[i-1][i]) >= w*d[i-1], \
this condition is satisfied!"<‌<endl;

}

63

else{
cout <‌< "Sorry, the condition is not satisfied!"<‌<endl;

}
cout<‌<"-----------------------"<‌<endl;
cout<‌<endl;

/*
* Verify if the result basis equals the product of the original basis A
* and Z.
*/
cout<‌<"Verify if B = AM"<‌<endl;
cout<‌<"-----------------------------------"<‌<endl;
cout<‌<"Now A is:"<‌<endl;
cout<‌<*a<‌<endl;
cout<‌<"Now M is:"<‌<endl;
outputMatrix(m,n);
cout<‌<"So AM is:"<‌<endl;
bool baz = true;
double sum;
for(int i = 1;i <= n;i++){

cout<‌<"| ";
for(int j = 1;j <= m;j++){

sum = 0;
for(int k = 1;k <= n;k++){

sum = sum + (*a)[k][i] * z[k][j];
}
cout<‌<sum<‌<" ";
if(sum != (*b)[j][i]){

cout <‌< "Error ";
baz = false;

}
}
cout<‌<"|"<‌<endl;

}
cout<‌<endl;
if(baz){

cout<‌<"Congratulations! B = AM."<‌<endl;
}
else{

cout<‌<"Sorry! B != AM."<‌<endl;
cout<‌<"The result basis B is:"<‌<endl;
cout<‌<*b<‌<endl;

}
cout<‌<"-----------------------------------"<‌<endl;
cout<‌<endl;
cout<‌<"---"<‌<endl;
cout<‌<endl;

delete q;
delete [] d;
delete [] u;

}

64

/*
* parallelLLLRL.cpp
*
* Implementation of the parallel LLL algorithm with Pthread.
* The "Swap" part is implemented by using a thread pool.
* The "Reduce" part is implemented by using a reduction list.
* We use the same number of threads in these two parts.
*
*/

#include <pthread.h>
#include <sys/time.h>
#include <sys/wait.h>
#include "LLL.cpp"

//Number of threads
const int NUM_THREADS = 4;

//Record the number of threads that enter the waiting state
static int joinCount = 1;

/*
* Used to record the times that the procedure ReduceSwapRestore has been
* called in each thread.
*/
int swapCount[NUM_THREADS];

//Used to record the times that the procedure Reduce has been called
int reduceCount = 0;

/* ----------- Pthread Varible definitions for the "Swap" part ------------- */
/* --- */

//The mutex lock for the swap procedures
pthread_mutex_t swap_count_mutex = PTHREAD_MUTEX_INITIALIZER;

/*
* Condition variable used by some thread to notify other threads of the ending
* of the current iteration of the while loop in the "Swap" part.
*/
pthread_cond_t swap_loop_end = PTHREAD_COND_INITIALIZER;

//This structure is used to pass parameters to swap worker threads
struct work_swap_t {

int offset;
int m;
int n;
basis *B;
double **U;
double **Z;
double *D;
double w;

65

};

/*
* The global variable finish is used to determine whether the while loop should
* be ended. If the procedure ReduceSwapRestore is called in an iteration of the
* while loop, the variable is set to be false. It is set to be global beacuse
* all worker threads need to check the variable.
*/
static bool finish = false;

/*
* In order to avoid the race condition that the workers write a value to the
* global variable finish, we use an individual variable subfinish for each
* thread instead.
*/
static bool subfinish[NUM_THREADS];

/* --- */
/* --- */

/* ----------- Pthread Varible definitions for the "Reduce" part ----------- */
/* --- */

//The mutex lock for the reduce procedures
pthread_mutex_t reduce_mutex = PTHREAD_MUTEX_INITIALIZER;

/*
* Condition variable used by the reducing thread to notify the main thread of
* the ending of reducing process.
*/
pthread_cond_t list_empty = PTHREAD_COND_INITIALIZER;

/*
* Condition variable used by the main thread to broadcast
* the ending of computing the list to reducing threads.
*/
pthread_cond_t list_not_empty = PTHREAD_COND_INITIALIZER;

/*
* When the main thread ends, the varable is set to be true
* to notify other reducing threads of the ending.
*/
bool end = false;

//This structure is used to pass parameters to reducing worker threads
struct work_reduce_t {

int id;
int n;
basis *B;
double **U;
double **M;

};

66

/*
* This structure is used to record the positions that need
* to be reduced in the matrix U.
*/
struct node {

int i;
int j;
node *next;

};

//linklist is used to construct the list
node* linklist = NULL;

/*
* head points to the first node of the list, which will be used to delete this
* list at the end.
*/
node* head = NULL;

//A pointer that points to the head of the positions that have not been reduced
node* current = NULL;

/* --- */
/* --- */

/*
* Function: subSwap
* --
* This function is executed by each swap worker thread. Each thread handles
* a different group of the values of k in the two for routines.
*
*/
void *subSwap(void* w_swap) {

//Cast void* to work_swap_t*
work_swap_t* work = (work_swap_t*)w_swap;

int r, k;

//Initialize the count variable for the current thread.
swapCount[work->offset] = 0;

while(!finish) {

//At the beginning, ReduceSwapRestore has not been called.
subfinish[work->offset] = true;

//The first for routine
for(k = 2 + 2 * (work->offset);k <= work->n;k = k + 2 * (NUM_THREADS)){

r = closedInt((work->U)[k-1][k]);
if((work->D)[k] < (work->w - ((work->U)[k-1][k] - r) *

67

((work->U)[k-1][k] - r)) * (work->D)[k-1]){
subfinish[work->offset] = false;
ReduceSwapRestore(k,work->B,work->U,work->Z,work->D,work->m,
work->n,r);
//Increment the count variable by 1.
swapCount[work->offset]++;

}
}

/*
* If there is one or more threads that still have not finished executing
* the first for routine, the current thread will wait other threads to
* finish their work, otherwise it will notify other threads of the
* ending of the first for routine.
*/
pthread_mutex_lock(&swap_count_mutex);
if(joinCount < NUM_THREADS){

joinCount++;
pthread_cond_wait(&swap_loop_end, &swap_count_mutex);

}
else{

joinCount = 1;
pthread_cond_broadcast(&swap_loop_end);

}
pthread_mutex_unlock(&swap_count_mutex);
//The second for routine
for(k = 3 + 2 * (work->offset);k <= work->n;k = k + 2 * (NUM_THREADS)){

r = closedInt((work->U)[k-1][k]);
if((work->D)[k] < (work->w - ((work->U)[k-1][k] - r) *

((work->U)[k-1][k] - r)) * (work->D)[k-1]){
subfinish[work->offset] = false;
ReduceSwapRestore(k,work->B,work->U,work->Z,work->D,work->m,
work->n,r);
swapCount[work->offset]++;

}
}

/*
* If there is one or more threads that still have not finished
* executing the second for routine, the current thread will wait other
* threads to finish their work, otherwise it will check if
* ReduceSwapRestore has been called in this while iteration by checking
* the values of the variable subfinish in all threads.Also, in will
* notify other threads of the ending of the second for routine.
*/
pthread_mutex_lock(&swap_count_mutex);
if(joinCount < NUM_THREADS){

joinCount++;
pthread_cond_wait(&swap_loop_end, &swap_count_mutex);

}
else{

finish = true;
for(int i = 0;i < NUM_THREADS; i++){

68

if(subfinish[i] == false) {
finish = false;
break;

}
}
joinCount = 1;
pthread_cond_broadcast(&swap_loop_end);

}
pthread_mutex_unlock(&swap_count_mutex);

}
}

/*
* Function: subReduce
* --
* This function is executed by each reducing worker thread. It checks the
* list calculated by the main thread and reduce the elements in the list
* if it is not empty. When some threads find that the list is empty, they
* enter the waiting state. Before entering the waiting state, the last
* reduce thread notifies the main thread they finish the reducing work.
*
*/
void *subReduce(void *w_reduce) {

//Cast void* to work_reduce_t*
work_reduce_t *work = (work_reduce_t*)w_reduce;

int i, j;
bool run = false;

while(!end){

/*
* When the main thread releases the reduce lock, the worker threads
* on the waiting state will obtain this lock orderly
*/
pthread_mutex_lock(&reduce_mutex);

/*
* If the thread finds all nodes have been reduced, it will signal our
* list_empty condition variable to wake up the boss thread, otherwise,
* it will set run to be true and fetch the current node to get the
* values of i and j, then relase the reduce lock and let other worker
* threads to check the list. After it gets the position information and
* release the lock, it will then reduce this position.
*/
if(current == NULL){

if(joinCount < NUM_THREADS){
joinCount++;
pthread_cond_wait(&list_not_empty, &reduce_mutex);

}
else {

joinCount = 1;

69

pthread_cond_signal(&list_empty);
pthread_cond_wait(&list_not_empty, &reduce_mutex);

}
}
else {

run = true;
i = current->i;
j = current->j;
current = current->next;

}
pthread_mutex_unlock(&reduce_mutex);
if(run){

run = false;
Reduce(i,j,work->n, work->B, work->U, work->M);

}
}

}

/*
* Function: parallelLLLRL
* --
* Main process to calculate the parallel algorithm. In this function,
* the "Reduce" part is implemented by using a reduction list.
*
*/
void parallelLLLRL(const int m, const int n, basis *A, double w){

//B is used to substitute A so that the original basis can be saved
basis *B = new basis(m,n);
for(int i = 1;i <= n;i++){

(*B)[i] = (*A)[i];
}

/*
* Q is used to save the result of the orthogonal basis computed by
* Gram-Schmdit process.
*/
basis *Q = new basis(m,n);

//D = diag(d1,d2,...,dn) is the positive diagonal.D[i] = Q[i]*Q[i].
double *D = new double[n+1];

/*
* U is an array n+1 elements, each element consists
* of n+1 doubles, which equals 2-dimensional array.
* U is upper triangular with unit diagonal. The first
* row and the first coloumn will not be used, they are
* used for reader to identify the index of U.
*/
double **U = new double*[n+1];
for(int i = 0;i <= n;i++){

U[i] = new double[n+1];
}

70

/*
* M is an array n+1 elements, each element consists
* of n+1 doubles, which equals 2-dimensional array.
* The first row and the first coloumn will not be
* used, they are used for reader to identify the
* index of M.
*/
double **M = new double*[n+1];
for(int i = 0;i <= n;i++){

M[i] = new double[n+1];
}

/*
* According to the basis B, initialize the values of D, U and Q by
* Gram-Schmdit process.
*/
initializeDU(D,U,Q,B,n);

//It initializes M to identity matrix.
initializeMatrix(M,n);

int r;
int k;

/*
* timeval variables are used to record the time points in the algorithm
* tv1: the time point when the "Swap" part begins.
* tvm: the time point when the "Swap" part ends, and at the same time,
* the "Reduce" part begins.
* tv2: the time point when the "Reduce" part ends.
*/
timeval tv1,tv2,tvm;

//Record the beginning time point of the "Swap" part
gettimeofday(&tv1,NULL);

/* -------------------- The "Swap" part ------------------------ */

//Initialize the worker threads for the "Swap" part
pthread_t swap_thread[NUM_THREADS];

//Each swap worker thread needs a distinct work_swap_t structure
work_swap_t *w_swap[NUM_THREADS];

//Compute the work_swap_t for each thread and create each worker thread
for(int i = 0;i < NUM_THREADS;i++) {

w_swap[i] = new work_swap_t;
w_swap[i]->offset = i;
w_swap[i]->m = m;
w_swap[i]->n = n;
w_swap[i]->B = B;
w_swap[i]->U = U;

71

w_swap[i]->Z = Z;
w_swap[i]->D = D;
w_swap[i]->w = w;
pthread_create(&swap_thread[i], NULL, subSwap, (void*)w_swap[i]);

}

//Join all worker threads for the "Swap" part.
for(int i = 0;i < NUM_THREADS;i++){

pthread_join(swap_thread[i],NULL);
}

//Record the ending time point of the "Swap" part
gettimeofday(&tvm,NULL);

/* -------------------- The "Reduce" part ---------------------- */

//The main thread obtains the reduce lock at first
pthread_mutex_lock(&reduce_mutex);

int i,j,start;

//Initialize the list
linklist = new node;
head = linklist;

//Initialize the worker threads for the "Reduce" part
pthread_t reduce_t[NUM_THREADS];

//Each reducing worker thread needs a distinct work_reduce_t structure
work_reduce_t *w_reduce[NUM_THREADS];

//Compute the work_reduce_t for each thread and create each worker thread
for(int i = 0; i < NUM_THREADS; i++){

w_reduce[i] = new work_reduce_t;
w_reduce[i] -> id = i;
w_reduce[i] -> n = n;
w_reduce[i] -> B = B;
w_reduce[i] -> U = U;
w_reduce[i] -> M = M;
pthread_create(&reduce_t[i], NULL, subReduce, (void*)w_reduce[i]);

}

for(k = 2 * n-3; k >= 1; k--){
if(k <= n - 1){

start = 1;
}
else{

start = k - n + 2;
}
for(i = start;i < (k + 3)/2;i++){

//i + j always equals k + 2
j = k + 2 - i;

72

/*
* If the program finds a position which needs to be reduced, it
* will create a node and add this node to the tail of the list.
* If this new node is the first node added into the list, then
* current will be set to point to it.
*/
if(absd(U[i][j])>0.5){

linklist -> next = new node;
linklist = linklist -> next;
linklist -> i = i;
linklist -> j = j;
linklist -> next = NULL;
if (current == NULL) {

current = linklist;
}

/*
* Here, we know the position should be reduced, so we increment
* reduceCount by 1.
*/
reduceCount++;

}
}

/*
* If there is(are) a(some) node added into the list in the current
* iteration, the boss thread will wake up other threads, then sleep
* and wait for the worker threads to reduce these positions on the
* list.
*/
if(current != NULL) {

pthread_cond_broadcast(&list_not_empty);
pthread_cond_wait(&list_empty, &reduce_mutex);

}
}
end = true;
pthread_cond_broadcast(&list_not_empty);

//The main thread releases the reduce lock at the end
pthread_mutex_unlock(&reduce_mutex);

//Join the worker threads for the "Reduce" part
for (int i = 0;i < NUM_THREADS;i++){

pthread_join(reduce_t[i],NULL);
}

//Free all memories that have been used for the list
node* previous;
while (head != NULL){

previous = head;
head = head->next;
delete previous;

73

}

//Record the ending time point of the "Reduce" part
gettimeofday(&tv2,NULL);

//Output the result basis when the dimension is small
if(m <= 20 && n <= 20){

cout<‌<"The reduced basis is:"<‌<endl;
cout<‌<*B<‌<endl;

}
else{

cout<‌<"The result is too large to display!"<‌<endl;
}

double sumSwapCount = 0;
for(int i = 0;i < NUM_THREADS;i++){

sumSwapCount = sumSwapCount + swapCount[i];
}

//Output the costs and counts of the "Swap" part and the "Reduce" part
cout<‌<"Swap "<‌<sumSwapCount<‌<" times, Reduce "<‌<reduceCount<‌<" times."<‌<endl;
cout<‌<"It takes \

"<‌<(tv2.tv_usec-tv1.tv_usec)+1000000*(tv2.tv_sec-tv1.tv_sec)<‌<"\
microsecond(s) to reduce this basis!"<‌<endl;

cout<‌<"Swap cost:\
"<‌<(tvm.tv_usec-tv1.tv_usec)+1000000*(tvm.tv_sec-tv1.tv_sec)<‌<"\
microsecond(s)!"<‌<endl;

cout<‌<"Reduce cost:\
"<‌<(tv2.tv_usec-tvm.tv_usec)+1000000*(tv2.tv_sec-tvm.tv_sec)<‌<"\
microsecond(s)!"<‌<endl;

//Verify the result basis
char ch;
cout<‌<endl;
cout<‌<"Do you want to verify the reuslt?[Y/N]"<‌<endl;
cin>‌>ch;
while (!(ch==’Y’||ch==’y’||ch==’N’||ch==’n’)){

cout<‌<"Please input Y or N:"<‌<endl;
cin>‌>ch;

}
if(ch==’Y’||ch==’y’){

//Verify if the result satisfies the conditions of the LLL algorithm
verifyConditions(A,B,m,n,w,M);

}

//Free all memories used for the matrices in the algorithm
delete Q;
for(int i=0;i<=n;++i){

delete [] M[i];
}
delete [] M;
for(int i=0;i<=n;++i){

delete [] U[i];

74

}
delete [] U;
delete [] D;

}

/*
* test.cpp
*
* A simple test file for the parallel algorithm.
*
*/
void main(){

cout<‌<"**"<‌<endl;
cout<‌<"* *"<‌<endl;
cout<‌<"* This program is used to implement *"<‌<endl;
cout<‌<"* the parallel LLL algorithm *"<‌<endl;
cout<‌<"* *"<‌<endl;
cout<‌<"**"<‌<endl;
cout<‌<endl;

int n,m;
double w;

while(true){
cout<‌<"Please input the number of vectors:"<‌<endl;
cin>‌>n;
cout<‌<"Please input the number of elements in each vector:"<‌<endl;
cin>‌>m;
cout<‌<"Please input the parameter:"<‌<endl;
cin>‌>w;
try{

if(w<=0.25||w>=1)
throw logic_error("Error,constructing with wrong w in \

LLL(const size_t,const size_t,double)!");
else if(m>0&&n>0&&m>=n){

break;
}
else if(m<n)

throw logic_error("Error,can’t execute the LLL algroithm \
when m<n!");

else
throw logic_error("Error,constructing with wrong sizes in\

LLL(const size_t,const size_t,double)!");
}
catch(logic_error l){

cout<‌<endl;
cout<‌<l.what()<‌<endl;
cout<‌<"Please reinput these values again"<‌<endl;
cout<‌<endl;

}
}

75

basis *A = new basis(m,n);

char ch;

cout<‌<"Which method do you want to generate the matrix, random, input,\
or read from a file? [R/I/F]"<‌<endl;

cin >‌> ch;

while(!(ch == ’R’ || ch == ’r’ || ch == ’I’ || ch == ’i’ || ch == ’F’ ||
ch == ’f’)){
cout<‌<"Please input R, I or F:"<‌<endl;
cin>‌>ch;

}

bool file = true, rf = false;

if(ch == ’R’ || ch == ’r’){//Initialize a random generate matrix.
(*A).randomBasis();

}
else if(ch == ’I’|| ch == ’i’){//Initialize the generate matrix by hand.

bool isInde;
while(true){

(*A).input();
isInde = true;
for(int i = 1;i<n;i++){

for(int k=i+1;k<=n;k++){
//Test if *b[i] and *b[k] are independent.
if(!((*A)[i].isIndependent((*A)[k]))){

isInde = false;
}

}
}
if(isInde){

break;
}
else{

cout<‌<"Error:these vectors in this matrix are not linear\
independent, please input the a right basis:"<‌<endl;

cout<‌<endl;
}

}
}
else if(ch == ’F’ || ch == ’f’){

file = (*A).readFromFile();
rf = true;

}

if(file && m<= 20 && n <= 20){
cout<‌<endl;
cout<‌<"The generate matrix is:"<‌<endl;
cout<‌<(*A)<‌<endl;
cout<‌<endl;

76

}
else if(file&&(m>20||n>20)){

cout<‌<"The generate matrix is too large to display!"<‌<endl;
}

if(!rf){
cout<‌<"Save the basis for using in the next time?"<‌<endl;
cin>‌>ch;
if(ch == ’Y’ || ch = =’y’){

(*A).writeToFile();
}

}

if(file){
//Execute the parallel LLL algorithm
parallelLLLRL(m,n,A,w);

}

delete A;
}

77

References
[1] David Poole. The Gram-Schmidt Process and the QR Factorization. LINEAR ALGEBRA: A

MODERN INTRODUCTION, 2003, 375-376

[2] Franklin T. Luk, Sanzheng Qiao, Wen Zhang. A Lattice Basis Reduction Algorithm. 2010.

[3] A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovasz. Factorizing polynomials with rational coeffi-
cients. Mathematicsche Annalen, 261, 1982, 515-534.

[4] Wen Zhang, Yimin Wei, Sanzheng Qiao. The LLL Algorithm Using Fast Givens. 2010.

[5] Franklin T. Luk and Daniel M. Tracy. An improved LLL algorithm. Linear Algebra and its
Applications, 428(2-3), 2008, 441-452.

[6] G.H. Golub and C.F. Van Loan. Matrix Computations, Third Edition. The Johns Hopkins
University Press, Baltimore, MD, 1996.

[7] Wen Zhang. LLL algorithm with delayed size reduction. 2010. Personal Communication.

[8] Bradford Nichols, Dick Buttlar, and Jackie Farrell. Pthreads Programming. O’Reilly & Asso-
ciates, Inc. 1996.

[9] Blaise Barney. POSIX Threads Programming. Lawrence Livermore National Laboratory.
https://computing.llnl.gov/tutorials/pthreads/

78

