
Practical algorithms for constructing HKZ and Minkowski

reduced bases

Wen Zhang, Sanzheng Qiao, and Yimin Wei

April 20, 2011

Abstract

In this paper, three practical lattice basis reduction algorithms are presented. The first
algorithm constructs a Hermite, Korkine and Zolotareff (HKZ) reduced lattice basis, in
which a unimodular transformation is used for basis expansion. Our complexity analysis
shows that our algorithm is significantly more efficient than the existing HKZ reduction
algorithms. The second algorithm computes a Minkowski reduced lattice basis. It is the
first practical algorithm for Minkowski reduced bases for lattices of arbitrary dimensions.
The third algorithm is an improvement of the second algorithm by drastically reducing the
number of lattice points being searched. Since the original LLL algorithm is no longer
applicable to the third algorithm, we propose a notion of quasi-LLL reduction to accelerate
the computation.

Keywords Lattice, LLL reduced basis, HKZ reduced basis, Minkowski reduced basis, unimod-
ular transformation.

1 Introduction

A lattice is a set of discrete points representing integer linear combinations of linearly indepen-
dent vectors. The set of linearly independent vectors generating a lattice is called a basis for
the lattice. A lattice basis is usually not unique, but all the bases have the same number of
elements, called the dimension of the lattice. If the dimension of a lattice is larger than 1, there
are infinitely many bases. For example, Figure 1 depicts the lattice generated by a1 = [2.0, 0]T

and a2 = [2.7, 0.7]T . This lattice has dimension 2, and for any integer c, a1 and a2 + c · a1 form
a basis for this lattice.

Since a lattice can have more than one basis, it is desirable to find one that is nearly
orthogonal. It is reasonable to expect that the shorter the basis vectors are, the nearer they are
to orthogonal. For example, b1 = [−0.7,−0.7]T and b2 = [1.3,−0.7]T form another basis for
the lattice Figure 1. Figure 2 shows that the basis vectors b1 and b2 are shorter than a1 and
a2 with respect to the L2-norm, and they are nearer to orthogonal than a1 and a2.

A lattice basis consisting of relatively short vectors is called reduced. An ideally reduced
basis consists of shortest possible vectors. The problem of finding good reduced bases is known
as lattice reduction, which plays an important role in many fields of mathematics and computer
science [3, 4, 13, 18, 21], particularly in communications [1, 23] and cryptology [6, 22]. There
are vavious definitions of reduced bases. They differ in the degree of reduction.

1

2

a1

a

Figure 1: the lattice points generated by a1 and a2.

2

a1

a2

b1 b

Figure 2: a1, a2, b1 b2 and the lattice.

In 1850, Hermite introduced the first notion of reduction for lattices of arbitrary dimensions,
proposed an algorithm for computing such reduced bases, and proved its termination [25]. Her-
mite’s algorithm is of theoretical significance, but its complexity is still unknown. Schnorr and
Euchner [26] reconsidered this problem and developed a practical algorithm for constructing
the Hermite reduced basis. In 1873, Korkine and Zolotareff [9] strengthened the definition of
Hermite reduced basis. Their proposed notion of reduction is usually called the HKZ reduced
basis [13], named after Hermite, Korkine and Zolotareff. In 1983, using induction, Kannan [7]
presented the first algorithm for constructing the HKZ reduced bases. Helfrich [17], Kannan [8],
and Banihashemi and Khandani [27] further refined Kannan’s algorithm and improved the com-
plexity analysis. Note that the methods based on Kannan’s strategy are intended as theoretical
tools, and the related papers usually focus on asymptotic complexity. Agrell et. al. [1] presented
a practical algorithm and used it as a preprocessor for the integer least squares problems.

In 1891, Minkowski [14] defined a new notion of reduction, which is stronger than the HKZ
reduction. This definition is now known as the Minkowski reduced basis. The Minkowski reduced
bases are of fundamental importance in many fields of mathematics. For example, they are used
in assessing the quality of random number generators [18] and in the reduction of quadratic
forms in number theory [3].

The construction of Minkowski reduced bases is a classical problem which attracts much at-
tentions. Marsaglia [19] and Lagarias [15] presented two algorithms for constructing Minkowski
reduced bases for lattices of dimensions 2 and 3, respectively. Beyer, Roof, and Williamson [20]
presented a practical algorithm for lattices of dimensions less than 7. Algorithms for construct-
ing the Minkowski reduced bases for lattices of arbitrary dimensions can be found in [16, 17].
However, these algorithms are impractical for high dimensional lattices since there are stringent
restrictions on using them.

Both the construction of the HKZ reduced bases and the construction of the Minkowski
reduced bases consist of a sequence of the shortest point search problems. The shortest point
search problem, which is actually a special integer least squares problem, is to find a shortest

2

lattice point with respect to the L2-norm in a given lattice. This problem has been proven
to be NP-hard [28]. Even finding an approximate solution with which the ratio between the
computed distance and the shortest distance is upper-bounded by a constant, is also NP-hard
[29]. Therefore, the construction of an HKZ reduced or a Minkowski reduced basis requires
intensive computation. This motivates Lenstra, Lenstra, and Lovász [10] to develop the first
polynomial-time lattice reduction algorithm, known as the LLL algorithm, named after the three
authors. Their notion of reduced basis is actually a relaxation of the Hermite reduced basis [25].
The LLL algorithm has become the most important tool in public-key cryptanalysis [24] and
integer least squares problems [1, 30]. Further improvements of the LLL algorithm have been
developed. While some [31, 11, 34] improve the quality of the output of the LLL algorithm,
others [32, 23] improve the efficiency of the algorithm.

In this paper, we present three practical algorithms: one for constructing the HKZ reduced
bases and two for constructing the Minkowski reduced bases. The first algorithm uses the same
shortest point search algorithm during the recursive process as the algorithm in [1]. However, it
uses a different method for the expansion of a shortest vector into a new lattice basis. In [1], the
basis expansion strategy introduced by Kannan [7] is used, while in our new algorithm, the uni-
modular transformation technique presented in [33] is used. Note that the Kannan’s expansion
strategy only works for rational lattices, while the unimodular transformation technique works
for any real lattice and is much more efficient than the Kannan’s strategy.

The other two algorithms presented in this paper are focused on the construction of a
Minkowski reduced basis for a given lattice. In general, both algorithms are based on the
Schnorr and Euchner’s search strategy [26] and the unimodular transformation technique [33].
Specifically, the first algorithm uses a simple variation of the shortest point search algorithm
presented in [1] to compute a Minkowski reduced basis vector, while the second algorithm dy-
namically monitors the basis expansion condition during the search process. Thus, the second
algorithm is more efficient than the first one. However, the first algorithm can be preconditioned
by using the LLL algorithm, while the second one can not. In order to accelerate the second
algorithm, we propose a new lattice reduction method, called “incomplete LLL algorithm”, as
a preprocess for the second algorithm. Numerical results show that the combination of the
second algorithm and the incomplete LLL algorithm is much faster than the combination of the
first algorithm and the LLL algorithm, and both of them significantly outperform the existing
algorithms for the Minkowski reduced bases.

The rest of the paper is organized as follows. In Section 2, we review several concepts on
lattices and bases. In Sections 3 and 4, we introduce the famous LLL and sphere decoding
algorithms which will be used later. The new algorithm for constructing an HKZ reduced basis
is given in Section 5. Section 6 presents the first algorithm for constructing a Minkowski reduced
basis. The incomplete LLL algorithm and the second algorithm for constructing a Minkowski
reduced basis are presented in Section 7. Finally, the paper is concluded in Section 8.

2 Preliminaries

In this section, we briefly review some basic concepts in the field of lattice theory. Given a real
matrix B ∈ Rm×n, m ≥ n, of full column rank, the set

L = {Bz, for all integer n-vectors z ∈ Zn},

3

containing discrete grid points, is called a lattice generated by B. The linearly independent
columns of B form a basis for L.

A set of lattice points does not uniquely determine a basis, but all the bases have the same
number n of elements, called the dimension of L. In general, if Z ∈ Rn×n is an integer matrix
whose inverse is also an integer matrix, then both B and BZ generate the same lattice. An
integer matrix M ∈ Rn×n is called unimodular if det(M) = ±1, where det(M) denotes the
determinant of M . It is obvious that an integer nonsingular matrix Z is unimodular if and only
if its inverse is also integer. Thus two different bases of a lattice are related with each other by
a unimodular matrix.

The determinant of a lattice is defined by

det(L) =
√

det(BTB),

where B is a generating matrix of the lattice L. From the definition of unimodular, det(BTB) =
det((BZ)TBZ), for any unimodular Z. Hence the determinant of a lattice is independent of
the choice of basis. Actually, the determinant of a lattice can be viewed as the volume of the
parallelepiped spanned by a basis for the lattice.

Since a lattice can have many bases, it is desirable to find one that is nearly orthogonal. The
problem for finding good reduced bases is known as lattice reduction. In terms of matrix, the
goal of lattice reduction is to find a unimodular Z so that the columns of BZ form a reduced
basis.

There are various definitions of a reduced basis, and most of them are based on the orthogonal
decomposition of the lattice generating matrix that can be achieved by the following procedure.

Procedure 1 (Gram-Schmidt Orthogonalization) Given a matrix B = [b1, · · · ,bn] ∈
Rm×n, this procedure produces matrices Q∗ and U such that B = Q∗U , where Q∗ ∈ Rm×n

has orthogonal columns and U ∈ Rn×n is upper triangular with a unit diagonal.

1. U ← n× n identity matrix In.
2. q∗

1 ← b1.
3. for j = 2 : n
4. for i = 1 : j − 1

5. U(i, j)←
(bj ,q∗

i)

‖q∗

i
‖2

2

.

6. end

7. q∗
j ← bj −

∑j−1
i=1 U(i, j)q∗

i .

8. end
9. Q∗ ← [q∗

1, · · · ,q
∗
n].

Note that the above Gram-Schmidt orthogonalization (GSO) procedure is square-root free.
So the GSO can be performed in exact arithmetic for integer or rational lattice generating
matrices, since all the operations are rational arithmetic. Therefore the GSO is widely used in
applications of cryptology, in which the lattice generating matrices usually appear to be integral
[24]. However, the generating matrices in the applications of communications are usually real or
complex [1, 23], and the computations of the GSO are not numerically stable for such matrices
[5]. So in such applications, the GSO is usually replaced by a mathematically equivalent but

4

numerically stable QR decomposition, obtained by applying a sequence of Householder or Givens
transformations [5, 11]:

B = QR, (1)

where Q has orthonormal columns and R = [ri,j] is an upper triangular matrix with positive
diagonal. Setting the diagonal matrix D = diag(di) with di = ‖q∗

i ‖2, then the GSO and the QR
decomposition are related by

Q∗ = QD and R = DU.

For simplicity, in this paper, we consider floating-point lattice basis matrices arised from
communications and use the QR decomposition approach (1). It is straightforward to convert
our derivations into the integer case.

To reduce the lengths of basis vectors, Hermite firstly introduced a weak notion of reduction
[13, Page 37] that is often a necessary condition for a reduced basis.

Definition 1 (Size-reduced) A lattice basis {b1, · · · ,bn} ⊆ Rm is called size-reduced if the
upper triangular factor R in the QR decomposition (1) of B = [b1 · · · ,bn] satisfies

|ri,j| ≤
1

2
|ri,i|, for 1 ≤ i < j ≤ n.

Let ⌊a⌉ denote an integer closest to a, then a size-reduced basis of a given lattice can be
obtained by the following process.

Algorithm 1 (Size-reduction) Given a lattice basis {b1, · · · ,bn} ⊆ Rm, this algorithm com-
putes matrices Q with orthonormal columns, R upper triangular, and Z unimodular such that
BZ = QR is size-reduced.

1. Initial QR decomposition: B = QR.
2. Initial Z = In;
3. for j = 2 : n
4. for i = j − 1 : −1 : 1
5. Reduce(i, j);
6. endfor
7. endfor

The procedure Reduce(i, j) on line 5 reduces the size of ri,j.

Procedure 2 (Reduce(i, j)) Given R and Z, this procedure updates R and Z such that the
updated R satisfies |ri,i| ≥ 2 |ri,j |.

1. Calculate γ = ⌊ri,j/ri,i⌉;
2. if γ 6= 0
3. Form Zij = In − γeiej , where ei is the ith unit vector;
4. Apply Zij to R and Z: R← RZij and Z ← ZZij ;
5. endif

5

In 1850, Hermite [25] proposed a notion of reduction for arbitrary dimensional lattices.
Korkine and Zolotareff [9] further strengthened the definition and proposed a new notion called
HKZ reduced basis [13], named after Hermite, Korkine and Zolotareff.

Definition 2 (HKZ reduced) A lattice basis {b1,b2, ...,bn} ⊆ Rm is called HKZ reduced if
it is size-reduced, and for each trailing (n − i + 1)-by-(n − i + 1), 1 ≤ i ≤ n, submatrix of the
upper triangular matrix R in the decomposition (1) of B = [b1 b2 ... bn], its first column is a
shortest nonzero vector in the lattice generated by the submatrix.

From Definition 2, an HKZ reduced basis contains a shortest nonzero lattice vector with
respect to the L2-norm as its first element.

Minkowski [14] in 1891 defined a new notion of reduction which is stricter than the HKZ
reduced basis, known as the Minkowski reduced basis.

Definition 3 (Minkowski reduced) A lattice basis {b1,b2, ...,bn} ⊆ Rm is called Minkowski
reduced if for i = 1, · · · , n, bi is a shortest lattice vector so that {b1, ...,bi} can be extended to
a basis for L.

It can be seen from Definition 3 that Minkowski reduced bases require each element as short
as possible, and this concept can be considered as the strongest definition of a reduced basis. Of
course, as an HKZ reduced basis, a Minkowski reduced basis contains a shortest nonzero lattice
point as its first element.

3 The LLL Reduction

Although the reduction quality of an HKZ reduced or a Minkowski reduced bases is good, the
corresponding algorithms for obtaining them are computationally intensive, since both of the
two reduction notions are associated with the shortest point search problem, which has been
proven to be NP-hard [28].

Lenstra, Lenstra, and Lovász [10] reconsidered the Hermite’s algorithm [25] and proposed a
relaxed version of the HKZ reduced basis as follows:

Definition 4 (LLL reduced) Given an ω ∈ (0.25, 1.0), a lattice basis {b1,b2, ...,bn} is called
LLL-reduced if the upper triangular matrix R in the decomposition (1) of B = [b1 b2 ... bn]
satisfies

|ri,j| ≤ |ri,i|/2, 1 ≤ i < j ≤ n (size-reduced), (2)

and
r2
i,i + r2

i−1,i ≥ ω r2
i−1,i−1, 1 < i ≤ n. (3)

It is easy to see that both an HKZ reduced basis and an LLL reduced basis require size-
reduction. The main difference between them is that for each trailing (n− i + 1)-by-(n− i + 1)
submatrix of the upper triangular matrix R in the decomposition (1) of the lattice generating
matrix, an HKZ reduced basis requires that its first column be a shortest nonzero vector in
the lattice generated by the submatrix, while an LLL reduced basis only requires that its first
column scaled by a factor of ω be shorter than its second column. Thus, an HKZ reduced basis

6

is LLL reduced for any 0.25 < ω < 1. To justify that an LLL reduced basis consists of vectors
reasonably short, it is shown in [10] that if b1,b2, ...,bn form an LLL-reduced basis for a lattice,
then

η1−iλ2
i ≤ ‖bi‖

2
2 ≤ ηn−iλ2

i , (4)

where η = (ω− 1/4)−1 and λ1, λ2, ..., λn are the Minkowski minima [3, Page 201]. In particular,
when ω = 3/4, then η = 2 and

21−iλ2
i ≤ ‖bi‖

2
2 ≤ 2n−iλ2

i .

In the LLL algorithm, the condition (2) is enforced by Procedure 2, the condition (3) is
enforced by the following procedure, which swaps columns i−1 and i of R and restores its upper
triangular structure.

Procedure 3 (SwapRestore(i)) Given matrices Q with orthonormal columns, R upper trian-
gular, and Z unimodular, this procedure updates Q, R, and Z such that the update R satisfies
the condition (3).

1. Compute the plane reflection G such that

G

[

ri−1,i−1 ri−1,i

0 ri,i

]

P is upper triangular, where P =

[

0 1
1 0

]

;

2. Apply Qi = diag([Ii−2 G In−i]) and permutation Πi = diag([Ii−2 P In−i]) to
Q, R, and Z: Q← QQi, R← QiRΠi, Z ← ZΠi;

The famous LLL algorithm, which is widely used in many fields of cryptology [24] and
communications [1, 30] due to its high efficiency, is presented in terms of matrix [11] as follows:

Algorithm 2 (LLL(B, ω)) Given a lattice generating matrix B = [b1, · · · ,bn] ∈ Rm×n and a
parameter ω, 0.25 < ω < 1, this algorithm computes a unimodular matrix Z ∈ Zn×n and the
upper triangular matrix factor R ∈ Rn×n in the QR decomposition of BZ, so that R satisfies
the conditions (2) and (3) in Definition 4. In other words, columns of BZ form an LLL reduced
basis for the lattice.

1. Compute the QR decomposition: B = QR;
2. Set Z ← I;
3. k ← 2;
4. while k ≤ n
5. Reduce(k − 1, k);
6. if r2

k,k + r2
k−1,k < ω r2

k−1,k−1;

7. SwapRestore(k);
8. k ← max(k − 1, 2);
9. else
10. for i = k − 2 downto 1
11. Reduce(i, k);
12. endfor
13. k ← k + 1;
14. endif
15. endwhile

7

It is shown in [10] that the LLL algorithm has polynomial-time complexity for integer lattices.
For real or complex lattices, numerical results [11, 23, 30] have shown that the LLL algorithm
is also very efficient, although its complexity in such cases is still unknown.

The LLL algorithm has now become the most practical tool in many fields in mathematics,
computer science, and communications. For example, in wireless multiple-antennas systems,
the LLL algorithm is employed to improve the performance of multiinput multioutput (MIMO)
detection [23, 35, 36]

4 The Closest Point Search Problem

As pointed out previously, the calculation of the HKZ or the Minkowski reduced bases involves
solving a sequence of shortest point search problems. The shortest point search problem is closely
related to the closest point search problem. Let B ∈ Rm×n and let x ∈ Rm be an observed vector,
then the closet point search problem is actually the integer least squares problem:

min
z
{‖Bz − x‖2 : z ∈ Zn} (5)

The optimization problem (5) is to find a lattice point Bz that is closest the observed vector x.
In particular, when x = 0, then the closest point search problem reduces to the shortest point
search problem.

The closest point search problem arises in many applications in communications. In channel
coding, if a lattice is used as a code for Gaussian channel, the maximum-likelihood estimation
leads to a closest point search problem of the form (5), and the process for solving this problem
is usually referred to as decoding [1, 35, 36].

The choice of method for solving the closest point problem (5) depends on the structure of
the lattice generating matrix. For many classical lattices, efficient search algorithms exploiting
the special structure of the lattice generating matrix are known [37, 38]. However, since the
optimization problem (5) is proven to be NP-hard [28], the cost of theses algorithms quickly
becomes prohibitive as the dimension of the lattice increases.

For the general lattice closest point search problem, that is, the lattice generating matrix
has no exploitable structure, there are mainly two strategies: Kannan’s strategy [7] and Pohst’s
strategy [40]. The two strategies are unified in the same framework in [1]. In general, the
common feature of most algorithms for solving this problem is to first identify a region in which
the optimal solution of (5) must lie, and then exhaustively search the lattice points in this region
for a closest point, while possibly reducing the size of the region dynamically.

Specifically, let B ∈ Rm×n is of full column rank and let L(B) be the lattice generated by
B. We write B as

B = [B1,bn],

where B1 is an m× (n− 1) matrix consisting of the first n− 1 columns of B and bn is the last
column of B. Then L(B) can be decomposed into a stack of (n− 1)-dimensional sublattices:

L(B) =

+∞
⋃

un=−∞

{c + unbn : c ∈ L(B1)}, un ∈ Z. (6)

It is easy to see that these sublattices distinguish from each other by the shift unbn, thus un

is called the index of the sublattice. The index indicates the sublattice in which a certain

8

lattice point lies. Denote b⊥ the orthogonal projection of bn on the orthogonal complementary
subspace R(B1)

⊥ of the range space R(B1) of B1. Then a sublattice with index un is contained
in a subspace Sun

defined by

Sun
= {v + unb⊥ : v ∈ R(B1)} (7)

Let x ∈ Rm be the observed vector to be decoded in the lattice L(B). The orthogonal distance
from x to the subspace Sun

is

d(x, Sun
) = |un − ûn| · ‖b⊥‖2, where ûn =

xTb⊥

‖b⊥‖
2
2

. (8)

Let x̂ denote the closest lattice point to x, and suppose that x̂ lies in a sublattice St defined in
(6) with index t ∈ Z. If an upper bound ρn on ‖x̂− x‖2 is given, then

d(x, St) ≤ ρn. (9)

From (8) and (9), x̂ must lie in one of the sublattices indexed by

un =

⌈

ûn −
ρn

‖b⊥‖2

⌉

, . . . ,

⌊

ûn +
ρn

‖b⊥‖2

⌋

, (10)

a finite sequence of consecutive integers. Therefore, an n-dimensional closest point search prob-
lem can be reduced to a finite number of (n − 1)-dimensional closest point search problems,
leading to a recursive method for solving the problem (5). In summary, we present the following
pseudo code for solving the closest point search problem.

Algorithm 3 (Decode(B,x)) Given a matrix B ∈ Rm×n (m ≥ n) of full column rank and a
vector x ∈ Rm, this algorithm computes a solution of the closest point search problem (5).

1. if m = 1
2. return z = ⌊ x

B
⌉;

3. else
4. Determine an initial size ρn of the search region;
5. Compute b⊥ defined previously and ûn in (8);
6. For each index un in (10), solve the (n− 1)-dimensional

closest point search problem
wun

= Decode(B1,x− ûnb⊥ − unb)
in a search region with an updated size ρn−1;

7. For each index un in (10), construct zun
= [wun

un]T, find z
minimizing ‖Bzun

− x‖2, and return z.

There are various implementations of Algorithm 3. The main differences among them have
the following three aspects:

• The choice of the initial size ρn of search region. The most algorithms based on the Kannan
strategy [7, 17, 8, 27] or the Phost strategy [39, 40, 41] take the distance between x and the
first column of the lattice generating matrix as the initial size. A better choice is the Babai

9

nearest point [42], which is usually closer to x than the first column of the lattice generating
matrix. The most algorithms based on the Schnorr-Euchner strategy [26, 1] take the
distance between x and the Babai nearest point as the initial size. Furthermore, algorithms
based on the Phost or the Schnorr-Euchner strategy reduce the size ρn dynamically to
improve their performance. That is, when any lattice point x′ inside the search region is
found, the bound ρn can be reduced to ‖x′ − x‖2, since ‖x′ − x‖2 ≤ ρn. The algorithms
based on the Kannan strategy scan all the (n − 1)-dimensional sublattices with the same
value of ρn.

• The choice of the updated upper bound ρn−1. Generally, the algorithms based on the
Kannan strategy search all the sublattices with indices in (10) using the same value of ρn−1.
The methods in [7], [17], [8], and [27] differ from each other mainly on how the updated
bounds ρk, k = 1, ..., n, are chosen. The algorithms based on the Phost [39, 40, 41] or
the Schnorr-Euchner [26, 1] strategy update ρn−1 =

√

ρ2
n − d(x, Sun

)2, which differs from
sublattice to sublattice. Geometrically, the lattice points inside a hypersphere are searched.

• The order in which the sublattices are examined. The algorithms based on the Kannan or
the Phost strategy scan all the (n−1)-dimensional sublattices with indices in (10) following
a natural order. Assuming that ûn ≤ ⌊ûn⌉, the algorithms based on the Schnorr-Euchner
strategy [26, 1] search sublattices with indices following the alternating order:

un = ⌊ûn⌉, ⌊ûn⌉ − 1, ⌊ûn⌉+ 1, ⌊ûn⌉ − 2, (11)

The order in (11) is obtained according to nondecreasing distances d(x, Sun
). By using

this search order, the chance of finding the correct sublattice early is maximized. So the
algorithms based on the Schnorr-Euchner strategy are usually more efficient than those
based on the Kannan or the Phost stategy.

In addition to the above three aspects, the structure of the given lattice generating matrix
also has a significant impact on the efficiency of the decoding algorithm. All the algorithms
mentioned above usually use the LLL algorithm as a preprocessor, since the performance of the
decoding algorithm can be further improved for the LLL reduced bases. For applications where
the same lattice is searched many times, a better choice is to use the HKZ reduction algorithm
as a preprocessor [1].

5 A New Algorithm for Constructing the HKZ Reduced Bases

In 1983, Kannan [7] proposed the first algorithm for constructing the HKZ reduced bases for gen-
eral lattices. Based on Kannan strategy, Helfrich [17], Kannan [8], and Banihashemi and Khan-
dani [27] further refined Kannan’s algorithm. All the algorithms based on the Kannan strategy
are intended as theoretical results rather than practical tools, since the induction conditions
imposed by the Kannan strategy are crucial and the complexity quickly becomes prohibitive as
the dimension of lattices increases.

From Definition 2, the key to the construction of an HKZ reduced basis is to recursively
find a shortest nonzero lattice vector and then to extend this vector to a basis for the lattice.
From Section 4, the Schnorr-Euchner strategy is currently the most efficient method for finding

10

a shortest nonzero lattice point. Agrell et al. [1] presented a practical implementation of the
Schnorr-Euchner strategy and combine their sphere decoding algorithm with the Kannan’s basis
expansion algorithm to construct an HKZ reduced basis for a given lattice.

In this section, we present a new algorithm for computing the HKZ reduced bases for general
lattices. In our algorithm, we adopt the sphere decoding method in [1] to compute a shortest
nonzero lattice vector. However, instead of the Kannan’s basis expansion method used in [1],
we use a novel unimodular transformation basis expansion strategy.

Firstly, we state the Kannan’s basis expansion method.

Algorithm 4 (SELECT-BASIS(n; b1, · · · ,bn+1)[8]) Suppose that b1, · · · ,bn+1 are vectors in
Qm for some m ≥ n and span an n-dimensional lattice L of Qm. This procedure returns a basis
{a1, · · · ,an} for L, where a1 is a shortest lattice vector in the direction of b1.

1. if n = 0 or b1 = 0 then do the obvious;
2. if b1 is independent of b2, · · · ,bn+1

3. a1 ← b1;
4. else

5. Find the rationals α2, · · · , αn+1 (unique) such that
∑n+1

j=2 αjbj = b1;

6. M ← least common multiples of the denominators of α2, · · · , αn+1;
7. γ ← gcd(Mα2, · · · ,Mαn+1);
8. Let M/γ = p/q, where p, q are relatively prime integers. a1 ← (1/q)b1;
9. endif

10. bi ← bi −
〈bi,a1〉
〈a1,a1〉

a1, i = 2, · · · , n + 1;

11. (c2, · · · , cn)← SELECT-BASIS(n− 1;b2, · · · ,bn+1);
12. Lift ci to ai in L for i = 2, · · · , n and return (a1, · · · ,an).

Secondly, we give a brief complexity analysis of Algorithm 4. Step 11 shows that the algo-
rithm is recursive and each time the problem size is reduced by one, from n downto 1. In each
recursion, the major cost is in steps 2 and 5, which involve solving systems of linear equations
requiring O(k3) arithmetic operations, assuming the k is the problem size in the recursion. Thus
the complexity of Algorithm 4 is O(n4) (O(

∑n
k=1 k3)). Moreover, note that Algorithm 4 only

works for rational lattices, not general real lattices.
We propose a basis expansion method based on the unimodular transformation presented

in [33], which is applicable for general real or complex lattices. Specifically, let B ∈ Rm×n be
a matrix generating the lattice L. Suppose that Bz is a shortest nonzero point of L, where
z = [zi] ∈ Zn. Then the problem of expanding Bz to a basis of L is equivalent to the problem
of constructing an n-by-n unimodular matrix Z whose first column is z, because the columns
of BZ form a basis for L. In other words, Z−1z = e1, which says that Z−1, also unimodular,
transforms z into the first unit vector e1.

For the special case when n = 2, we have the following algorithm:

Procedure 4 (Unim2(p, q)[33]) Let [p q]T be a nonzero integer vector and gcd(p, q) = d. Using
the extended Euclidean algorithm, find integers a and b such that ap+bq = d. The integer matrix

M =

[

p/d −b
q/d a

]

, (12)

11

is unimodular and

M−1

[

p
q

]

=

[

d
0

]

, M−1 =

[

a b
−q/d p/d

]

.

The above procedure shows that given a nonzero integer vector [p q]T, gcd(p, q) = d, we can
construct an integer unimodular matrix (12) whose inverse can be applied to [p q]T to annihilate
its second entry. In particular, if gcd(p, q) = ±1, then [p q]T can be transformed into the first
unit vector.

Now we consider the general case when n > 2. Since Bz is a shortest nonzero lattice point,
we have gcd(zi) = ±1, implying that a sequence of the plane unimodular transformations M
described above can be applied to transform z into the first unit vector.

As pointed out earlier, the construction of an HKZ reduced basis involves the shortest lattice
vector search problem and we adopt the sphere decoding method. Since the LLL algorithm
introduced in Section 3 can significantly accelerate the search process of the sphere decoding
algorithm [1], we use the LLL algorithm as a preprocessor.

Putting all things together, we present our new algorithm for constructing an HKZ reduced
basis.

Algorithm 5 (LLL-aid-HKZ-red(B, w)) Given a lattice generator matrix B ∈ Rm×n and a
parameter ω, where 0.25 < ω < 1, this algorithm computes a unimodular matrix Z ∈ Zn×n such
that the columns of BZ form an HKZ reduced basis.

1. Compute the QR decomposition: B = QR;
2. Z ← In;
3. for k = 1 to n− 1
4. Apply the LLL algorithm to R(k : n, k : n);
5. Use the sphere decoding algorithm [1] to find a nonzero vector z ∈ Zn−k+1 so that

R(k : n, k : n)z is a shortest point in the lattice generated by R(k : n, k : n);
6. Transform(k, z);
7. endfor
8. for j = 2 to n
9. for i = j − 1 downto 1
10. Reduce(i, j);
11. endfor
12. endfor

The procedure Transform in line 6 expands the shortest nonzero lattice vector found in line 5
to a basis for the n−k+1-dimensional lattice generated by the trailing submatrix R(k : n, k : n) of
R using Procedure 4. Moreover, since the LLL algorithm is incorporated into the algorithm, this
procedure should also maintain the upper triangular structure of R and update the unimodular
matrix Z. The following is an implementation of the procedure.

Procedure 5 (Transform(k, z)[33]) Given R ∈ Rn×n upper triangular, Z ∈ Zn×n unimodular,
and an integer vector z ∈ Zn−k+1, 1 ≤ k ≤ n− 1, such that gcd(zi) = ±1,

12

1. for j = n− k + 1 downto 2
2. Mj ← Unim2(zj−1, zj);
3. Uj ← diag(Ij−2,Mj , In−j−k+1);

4. z← U−1
j z;

5. Zj ← diag(Ik−1, Uj);
6. R← RZj ;
7. Z ← ZZj;
8. find a plane reflection Qj to restore the upper triangular structure of R;
9. R← QjR;
10. endfor

The major cost of the above procedure is in step 7, where the unimodular Z is updated. It
requires O(n) floating-point operations for each iteration. Thus the total cost is O(n(n − k)).
In particular, when the size of z is n, the complexity is O(n2). Hence Procedure 5 is much more
efficient than Algorithm 4.

6 New Algorithm for Computing Minkowski Reduced Bases: I

In 1985, Helfrich [17] and Afflerbach and Grothe [16] proposed algorithms for constructing
the Minkowski reduced bases for lattices of arbitrary dimensions. The Helfrich’s algorithm
is based on the Kannan strategy [7]. Consequently, there are severe restrictions on applying
the algorithm. Therefore this algorithm is of theoretical significance. On the other hand, the
Afflerbach’s algorithm is based on the Phost strategy [40]. It is practical for lattices of dimensions
less than 8. For lattices of dimensions larger than 7, however, the algorithm may fail.

In this section, we present a new algorithm for constructing the Minkowski reduced bases
for general lattices. The proposed new algorithm is based on Schnorr-Euchner strategy [26]. So
it is much more efficient than the existing algorithms [17, 16] and it is practical for lattices of
arbitrary dimensions. We first state the following result useful for our derivation.

Lemma 1 ([43]) Let B = [b1, · · · ,bn] ∈ Rm×n and L be the lattice generated by B. For
a vector v =

∑n
i=1 vibi there exists a basis for L containing {b1, · · · ,bk,v} if and only if

gcd(vk+1, · · · , vn) = 1.

For clarity, as the HKZ algorithm in Section 5, we present a recursive version of our algorithm.
Apparently, the first Minkowski reduced basis vector m1 = Bz is a shortest nonzero lattice
vector in L, which can be obtained by applying the sphere decoding algorithm [1]. We can
extend m1 to a basis for L by calling Procedure Transform(1, z). Now, suppose that a basis
{m1, · · · ,mp−1,b

′
p, · · · ,b

′
n}, 1 < p ≤ n, has been obtained, to extend {m1, · · · ,mp−1} to a

Minkowski reduce basis for L, we must solve the following two problems:

• Constructing the pth Minkowski reduced basis vector mp.

• Extending {m1, · · · ,mp} to a basis for L.

To solve the first problem, denoting Bp = [m1 · · · mp−1 b′
p · · · b′

n], from Lemma 1, we have

‖mp‖2 = min{‖Bpz‖2 : z = [z1, · · · , zn]T ∈ Zn, gcd(zp, · · · , zn) = 1}.

13

The above minimization problem can be viewed as the shortest nonzero lattice vector problem
with the constraint gcd(zp, · · · , zn) = 1. Thus mp can be obtained by modifying the sphere
decoding algorithm [1]. Instead of using the length of the first column of the lattice generating
matrix as the initial size of search region, we use the length of the pth column, since z = ep,
the pth unit vector, satisfies the constraint gcd(zp, · · · , zn) = 1. The LLL algorithm can be
incorporated into the following algorithm as a preprocessor to accelerate the search process.

Algorithm 6 (M-Decode-1(R, p)) Given an upper triangular lattice generating matrix R ∈
Rn×n and an integer 1 ≤ p < n, this algorithm finds a solution vector z = [z1, · · · , zn]T ∈ Zn for
the following constrained optimization problem:

min ‖Rx‖2 such that x ∈ Zn and gcd{xp, · · · , xn} = 1. (13)

1. if n = 1, return z = 1; endif
2. Set the initial size ρ← ‖R(:, p)‖2 of the search region;
3. Call M-Search-1(R, 0, [], 0, ρ, p);

As shown above, this is a wrapper function. It calls M-Search-1, which finds a solution for
a more general problem, the closest point search problem with the constraint gcd(zp, ..., zn) = 1.
We present a recursive version of the procedure.

Procedure 6 (M-Search-1(R, y, zin, l, ρ, p)) Let R ∈ Rn×n be an upper triangular lattice
generating matrix, the center y ∈ Rn and the size ρ of the search region. This procedure finds
an integer vector z minimizing ‖Rz − y‖2, subject to the constraint gcd(zp, ..., zn) = 1. The
parameter zin is a partial solution and l is the distance between the current lattice vector and
the corresponding sublattice.

1. Initialize z to an empty vector;
2. for each index un in (10)

3. Update the distance ln =
√

l2 + (yn − unR(n, n))2;
4. if ln < ρ
5. Build solution bottom up: ẑ = [un zin]T;
6. if recursion level 1
7. if (ggcd(ẑp:n) = 1)
8. Reset ρ← ln;
9. Save z = ẑ;
10. endif
11. else
12. Update the center ŷ = y1:n−1 − unR(1 : n− 1, n);
13. Call M-Search-1(R(1 : n− 1, 1 : n− 1), ŷ, ẑ, ln, ρ, p);
14. if z̃ returned above is non-empty, set z = z̃; endif
15. endif
16. endif
17. endfor
18. Return z.

14

Note that in lines 7 and 8, whenever a shorter lattice vector satisfying the constraint is
found, the size ρ is reduced. When the LLL algorithm is incorporated at the beginning, the
unimodular matrix obtained from the LLL algorithm should be applied to ẑ when the greatest
common divisor is calculated in line 6. The function ggcd in line 6 is a generalization of the
greatest common divisor (gcd) of two integers.

Procedure 7 (ggcd(a)) This function returns the greatest common divisor of the entries of an
integer n-array a, n ≥ 1.

1. d = 0;
2. for i = 1 to n
3. d = gcd(d, ai);
4. if d = 1 break;
5. endfor
6. return d.

Once the pth Minkowski reduced basis vector mp = Bpz is found by Algorithm 6, the
second problem is to extend (m1, · · · ,mp) to a basis for L. In terms of matrices, it is to find a
unimodular matrix Z such that

Bp+1 = BpZ, (14)

which implies that the first p− 1 columns of Z are the first p− 1 unit vectors ei, i = 1, ..., p− 1
and the pth column of Z is z = [z1 ... zn]T found by Algorithm 6, so that the first p− 1 columns
of Bp+1 equal the first p−1 columns m1, ...,mp−1 of Bp and the pth column of Bp+1 is mp = Bpz
as desired. Since gcd(zp, ..., zn) = 1, from Section 5, we can construct a unimodular matrix Mp

whose first column is [zp ... zn]T. Now consider the two unimodular matrices

Z1 =

[

Ip−1 0
0 Mp

]

and Z2 =





















1 z1

. . .
...

1 zp−1

0
1

. . .0
1





















. (15)

We claim that the product Z1Z2 is a unimodular matrix satisfying (14). Indeed, Z1Z2 is uni-
modular since both Z1 and Z2 are unimodular, from (15), the first p − 1 columns of Z1Z2 are
the first p− 1 unit vectors and the pth column of Z1Z2 is z = [z1 ... zn]T.

The application of Z1 can be performed by Procedure 5 and the application of Z2 is the
calculation of a linear combination of the first p columns.

The new algorithm for constructing a Minkowski reduced basis for a general lattice is sum-
marized as follows. Again, the LLL algorithm can be incorporated into M-Decode-1 as a pre-
processor to improve the performance.

Algorithm 7 (M-Red-1(B)) Given a lattice generating matrix B ∈ Rm×n, m ≥ n, this algo-
rithm computes a unimodular matrix Z such that the columns of BZ form a Minkowski reduced
basis.

15

1. QR decomposition: B = QR;
2. Z ← In;
3. for k = 1 to n
4. Call M-Decode-1(R, k) to find the solution z for (13);
5. Call Transform(k, [zk, · · · , zn]T) to apply Z1 in (15);
6. Apply Z2 in (15) to R:

R(1 : k − 1, k)← R(1 : k − 1, k) + R(1 : k − 1, 1 : k − 1)[z1, · · · , zk−1]
T.

7. Apply Z2 to Z:
Z(:, k)← Z(:, k) + Z(:, 1 : k − 1)[z1, · · · , zk−1]

T.
8. endfor

7 New Algorithm for Computing Minkowski Reduced Bases: II

From the brief analysis in Section 6, we can see that Algorithm 6 usually costs more than the
sphere decoding algorithm [1], because the search size ρ is usually less often reduced than the
sphere decoding algorithm due to the constraint in (13), or the condition gcd(ẑp:n) = 1 in line 6
of Procedure 6. This motivates us to improve Algorithm 6. Our idea is to impose the constraint
as early as possible to reduce the number of points to be searched. Clearly, gcd(zp:n) can be
calculated as soon as zp, ..., zn are available. In Procedure 6, a solution is built bottom-up, from
zn to z1, thus the condition gcd(zp:n) = 1 can be checked at level p, instead of level 1 as in
Procedure 6. Here is the modified Procedure 6 based on the above idea.

Procedure 8 (M-Search-2(R, y, zin, l, ρ, p)) Let R ∈ Rn×n be an upper triangular lattice
generating matrix, the center y ∈ Rn and the size ρ of the search region. This procedure finds
an integer vector z minimizing ‖Rz − y‖2, subject to the constraint gcd(zp, ..., zn) = 1. The
parameter zin is a partial solution and l is the distance between the current lattice vector and
the corresponding sublattice.

1. Initialize z to an empty vector;
2. for each index un in (10)

3. Update the distance ln =
√

l2 + (yn − unR(n, n))2;
4. if ln < ρ
5. Build solution bottom up: ẑ = [un zin]

T;
6. if recursion level 1
7. if (ln > 0)
8. Reset ρ← ln;
9. Save z = ẑ;
10. endif
11 else
12. if (n 6= p) or (n = p andggcd(ẑp:n) = 1)
13. Update the center ŷ = y1:n−1 − unR(1 : n− 1, n);
14. Call M-Search-2 (R(1 : n− 1, 1 : n− 1), ŷ, ẑ, ln, ρ, p);
15. if z̃ returned above is non-empty, set z = z̃; endif
16. endif
17. endif

16

18. endif
19. endfor
20. Return z.

As shown above, the (p − 1)-dimensional sublattices indexed by those ẑp not satisfying
gcd(ẑp:n) = 1 are excluded from the search. Consequently, the number of lattice points to be
searched is significantly reduced.

Now we have the second algorithm for constructing the Minkowski reduced basis by simply
replacing M-Search-1 in Algorithm 6 with the above M-Search-2.

Algorithm 8 (M-Decode-2(R, p)) Given an upper triangular lattice generating matrix R ∈
Rn×n and an integer 1 ≤ p < n, this algorithm finds a solution vector z = [z1, · · · , zn]T ∈ Zn for
the constrained optimization problem 13.

1. if n = 1, return z = 1; endif
2. Set the initial size ρ← ‖R(:, p)‖2 of the search region;
3. Call M-Search-2(R, 0, [], 0, ρ, p);

Procedure 8 improves Procedure 6, with the caveat that the LLL algorithm cannot be used as
its preprocessor to accelerate the search process. As pointed out early, when the LLL algorithm
is used as a preprocessor, the unimodular matrix obtained from the LLL algorithm must be
applied to solution vector z when gcd(zp:n) is calculated. However, the application of the
unimodular matrix obtained from the LLL algorithm requires a complete n-vector, whereas at
level p, where gcd(zp:n) is calculated in Procedure 8, only a subvector zp:n is available. To
alleviate the problem, we propose a new technique for accelerating Procedure 8 by introducing
the definition of the quasi-LLL reduced basis.

Consider an n× n unimodular matrix Z with the following structure:

Z =

(

D E

0(n−p+1)×(p−1) F

)

, (16)

where D, E, and F have proper dimensions. Then both D and F are unimodular. If an integer
vector ẑ satisfies gcd(ẑp:n) = 1 then the integer vector z = Zẑ also satisfies the condition
gcd(zp:n) = 1, since zT

p:n = F ẑT
p:n and F is unimodular. Thus we propose a notion of reduced

basis, called quasi-LLL reduced basis by imposing the structure (16).

Definition 5 (quasi-LLL(p) reduced) Given an ω ∈ (0.25, 1.0) and an integer p: 1 ≤ p ≤ n,
a lattice basis {b1,b2, ...,bn} is called quasi-LLL(p) reduced if the upper triangular factor R in
the decomposition (1) of B = [b1 b2 ... bn] satisfies

|ri,j| ≤ |ri,i|/2, 1 ≤ i < j ≤ n (size-reduced), (17)

and
r2
i,i + r2

i−1,i ≥ ω r2
i−1,i−1, i = 2, 3, · · · , p− 1, p + 1, · · · , n. (18)

The only difference between Definition 4 and Definition 5 is that a quasi-LLL reduced basis
may not satisfy the condition

r2
p−1,p + r2

p,p ≥ r2
p−1,p−1. (19)

In particular, when p = 1, a quasi-LLL reduced basis is LLL reduced.
Now, we present an algorithm for computing a quasi-LLL reduced basis.

17

Algorithm 9 (quasi-LLL(B, p, ω)) Given a lattice generating matrix B = [b1, · · · ,bn] ∈
Rm×n and parameters ω ∈ R and p ∈ Z, where 0.25 < ω < 1 and 1 ≤ p ≤ n. This algo-
rithm computes an upper triangular matrix R ∈ Rn×n and a unimodular matrix Z ∈ Zn×n of
the structure (16), such that the columns of BZ form a quasi-LLL reduced basis.

1. Compute the QR decomposition: B = QR;
2. Set Z ← I;
3. Set k ← 2;
4. while k < p
5. Reduce(k − 1, k);
6. if r2

k,k + r2
k−1,k < ω r2

k−1,k−1;

7. SwapRestore(k);
8. k ← max(k − 1, 2);
9. else
10. for i = k − 2 downto 1
11. Reduce(i, k);
12. endfor
13. k ← k + 1;
14. endif
15. endwhile
16. for i = p− 1 downto 1
17. Reduce(i, p);
18. endfor
19. k ← p + 1;
20. while k ≤ n
21. Reduce(k − 1, k);
22. if r2

k,k + r2
k−1,k < ω r2

k−1,k−1;

23. SwapRestore(k);
24. k ← max(p + 1, k − 1);
25. else
26. for i = k − 2 downto 1
27. Reduce(i, k);
28. endfor
29. k ← k + 1;
30. endif
31. endwhile

As shown above, two parts, lines 3–15 and lines 19–31, of the algorithm respectively apply the
LLL algorithm to two separate blocks of R. When p = 1, this algorithm is the same as the LLL
algorithm. Now we can incorporate Algorithm 9 into Algorithm 8 to improve its performance:

Algorithm 10 (LLL-aid-M-Decode-2(R, p, ω)) Given an upper triangular matrix R ∈ Rn×n

and an integer 1 ≤ p ≤ n, this algorithm computes a vector z = [z1, · · · , zn]T ∈ Zn so that Rz is
a shortest lattice point with gcd(zp, · · · , zn) = 1.

1. [R, Z]← quasi-LLL(R, p, ω);

18

2. ẑ← M-Decode-2(R, p);
3. Return z← Z ẑ.

Finally, simply replacing M-Decode-1 in line 4 of Algorithm 7 with the above algorithm, we
have the second algorithm for constructing a Minkowski reduced basis for a given lattice.

Algorithm 11 (LLL-aid-M-Red-2(B, ω)) Given a lattice generating matrix B ∈ Rm×n, m ≥
n, this algorithm computes a unimodular matrix Z such that the columns of BZ form a Minkowski
reduced basis.

1. QR decomposition: B = QR;
2. Z ← In;
3. for k = 1 to n
4. Call LLL-aid-M-Decode-2(R, k, ω) to find the solution z for (13);
5. Call Transform(k, [zk, · · · , zn]T) to apply Z1 in (15);
6. Apply Z2 in (15) to R:

R(1 : k − 1, k)← R(1 : k − 1, k) + R(1 : k − 1, 1 : k − 1)[z1, · · · , zk−1]
T.

7. Apply Z2 to Z:
Z(:, k)← Z(:, k) + Z(:, 1 : k − 1)[z1, · · · , zk−1]

T.
8. endfor

8 Concluding Remarks

This paper presents three practical lattice basis reduction algorithms. In Section 5, a new HKZ
lattice reduction algorithm is presented. A unimodular transformation is used in our new algo-
rithm. Our analysis shows that our algorithm is significantly more efficient than the Kannan’s
strategy. Also, two algorithms for computing the Minkowski reduced basis are proposed. In
Section 6, we illustrate the ideas of our algorithms and give the first practical algorithm for
computing the Minkowski reduced basis for a lattice. The LLL algorithm can be incorporated
into both our HKZ lattice basis reduction algorithm and the first Minkowski lattice basis reduc-
tion algorithm to improve their performance. In Section 7, we present the second Minkowski
lattice basis reduction algorithm, which significantly improves our first Minkowski reduction
algorithm by drastically reducing the number of lattice points being searched. Furthermore, to
improve its performance, we propose a quasi-LLL reduction technique.

References

[1] Erik Agrell, Thomas Eriksson, Alexander Vardy, and Kenneth Zeger. Closest point search
in lattices. IEEE Transactions on Information Theory, vol. 48, no. 8, 2002, 2201–2214.

[2] A. Barvinok. A Course in Convexity. Graduate Studies in Mathematics 54. American Math-
ematical Society, Providence, RI, 2002.

[3] J.W.S. Cassels. An Introduction to the Geometry of Numbers, Second Printing. Springer-
Verlag, Berlin, Heidelberg, 1997.

19

[4] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts in Math-
ematics 138, Second corrected printing. Springer, Berlin, 1995.

[5] G.H. Golub and C.F. Van Loan. Matrix Computations, Third Edition. The Johns Hopkins
University Press, Baltimore, MD, 1996.

[6] A. Joux and J. Stern. Lattice reduction: A toolbox for the cryptanalyst. Journal of Cryp-
tology, 11(3), 1998, 161–185.

[7] Ravi Kannan. Improved algorithms for integer programming and related lattice problems.
Proc. ACM Symp. Theory of Computing, Boston, MA, Apr, 1983, 193–206.

[8] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of
Operations Research, 3(12), 1987, 415–440.

[9] A. Korkine and G. Zolotareff. Sur les formes quadratiques. Maht. Ann., 6, 1873, 366–389.

[10] A.K. Lenstra, H.W. Lenstra, Jr. and L. Lovász. Factorizing polynomials with rational co-
efficients. Mathematicsche Annalen, 261, 1982, 515–534.

[11] F.T. Luk and D.M. Tracy. An improved LLL algorithm. Linear Algebra and its Applications,
428(2–3), 2008, 441–452.

[12] H. Minkowski. Geometrie der Zahlen. Teubner, Leipzig, 1896.

[13] The LLL Algorithm: Survey and Applications. Information Security and Cryptography,
Texts and Monographs. Editors Phong Q. Nguyen and Brigitte Vallée. Springer Heidelberg
Dordrecht London New York, 2010.

[14] H. Minkowski. Über die positiven quadratischen Formen und über kettenbruchähnliche
Algorithmen. Journal fur die Reine und Angewandte Mathematik, vol. 107, 1891, 278–297.

[15] J. C. Lagarias. Worst-case complexity bounds for algorithms in the theory of integral
quadratic forms. J. Algorithms, 1, 1980, 142–186.

[16] L. Afflerbach and H. Grothe. Calculation of Minkowski-reduced lattice bases. Computing,
vol. 35, no. 3-4, 1985, 269–276.

[17] Bettina Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced lattice
bases. Theoretical Computer Science, vol. 41, no. 2-3, 1985, 125–139.

[18] D. E. Knuth. The Art of Computer Programming, 2nd ed. Reading, MA: Addison-Wesley,
1981, vol. 2.

[19] G. Marsaglia. The structure of linear congruential sequences. Applications of Number The-
ory to Numerical Analysis (S. K. Zaremba, ed), 1972, 249-285.

[20] W. A. Beyer, R. B. Roof, and D. Williamson. The lattice structure of multiplicative con-
gruential pseudo-random vectors. Math. Comput, 25, 1971, 345-360.

[21] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization, Spriger, Berlin, 1993.

20

[22] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic Perspec-
tive, Kluwer Internat. Ser. Engrg. Comput. Sci. 671, Kluwer Academic Publishers, Boston,
MA, 2002.

[23] Y. H. Gan, C. Ling, and H. M. Mow. Complex lattice reduction algorithm for low-complexity
full-diversity MIMO detection. IEEE Transactions on Signal Processing, vol. 57, no. 7, 2009,
2701-2710.

[24] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc,
46, 1999, 203–213.

[25] C. Hermite. Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie
des nombres. J. Reine Angew. Math, 40, 1850, 279–290.

[26] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and
solving subset sum problems. Math. Programming, 66, 1994, 181–199.

[27] A. H. Banihashemi and A. K. Khandani. On the complexity of decoding lattices using the
Korking-Zolotarev reduced basis. IEEE Trans. Inform. Theory, 44, 1998, 162–171.

[28] D. Micciancio. The hardness of the closest vector problem with preprocessing. IEEE Trans.
Inform. Theory, 47, 2001, 1212–1215.

[29] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in
lattices, codes, and systems of linear equations. J. Comput. Syst. Sci, 54, 1997, 317–331.

[30] X. W. Chang and G. H. Golub. Solving ellipsoid-constrained integer least squares problems.
SIAM J. Matrix Anal. Appl, 31, 3, 2009, 1071–1089.

[31] C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theo. Comput.
Sci, 53, 1987, 201–224.

[32] P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM J. Com-
put, 39, 3, 2009, 874–903.

[33] F.T. Luk, S. Qiao, and W. Zhang. A Lattice Basis Reduction Algorithm. Institute for
Computational Mathematics Technical Report 10-04. Hong Kong Baptist University.

[34] F.T. Luk and S. Qiao. A Pivoted LLL Algorithm. Linear Algebra Appl, 2010.

[35] M. O. Damen, H. E. Gamal, and G. Caire. On maximum-likelihood detection and the search
for the closest lattice point. IEEE Trans. Inf. Theory, 49, 2003, 2389–2402.

[36] M. Taherzadeh, A. Mobasher, and A. K. Khandani. LLL reduction achieves the receive
diversity in MIMO decoding. IEEE Trans. Inf. Theory, 53, 2007, 4801–4805.

[37] A. Vardy and Y. Be’ery. Maximum-likelihood decoding of the Leech lattice. IEEE Trans.
Inform. Theory, 39, 1993, 1435–1444.

[38] A. H. Banihashemi and I. F. Blake. Trellis complexity and minimal trellis diagrams of
lattices. IEEE Trans. Inform. Theory, 44, 1998, 1829–1847.

21

[39] U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a
lattice, including a complexity analysis. Math. of Comput, 44, 1985, 463–471.

[40] M. Phost. On the computation of lattice vectors of minimal length, successive minima and
reduced bases with applications. ACM SIGSAM Bull, 15, 1981, 37–44.

[41] E. Viterbo and J. Boutros. A universal lattice code decoder for fading channels. IEEE
Trans. Inform. Theory, 45, 1999, 1639–1642.

[42] L. Babai. On Lovász’s lattice reduction and the nearest lattice point problem. Combinator-
ica, 6, 1986, 1–13.

[43] B.L. van der Waerden and H. Gross. Studien zur Theorie der Quadratischen Formen.
Birkhäuser, Basel, 1968.

22

