CPU SCHEDULING

RONG ZHENG

OVERVIEW

Why scheduling?
Non-preemptive vs Preemptive policies

FCFS, SJF, Round robin, multilevel queues with feedback,
guaranteed scheduling

SHORT-TERM, MID-TERM, LONG-

TERM SCHEDULER
g

Get CPU
System request
Admit process Interrupt

(New D Rosdy)
Completion

Activate ‘ Deactivate l Deactivate

uspended _ /~Suspendec
Ready Waiting

Completion

Long-term scheduler: admission control
Mid-term scheduler: who gets to be loaded in memory

Short-term scheduler: who (in ready queue) gets to be
executed

SCHEDULING METRICS

Waiting time: Waiting time is the sum of the periods spent waiting
In the ready queue.

Turnaround time: The interval from the time of submission of a
process to the time of completion is the turnaround time.

« The sum of the periods spent waiting to get into memory,
waiting in the ready queue, executing on the CPU, and doing |/
O.

Response time (interactive processes): the time from the
submission of a request until the first response is produced.

Throughput: number of jobs completed per unit of time

« Throughput related to turningaround time, but not same thing:

CRITERIA OF A GOOD
SCHEDULING POLICY

Maximize throughput/utilization
Minimize response time, waiting time

« Throughput related to response time, but not same thing
No starvation

- Starvation happens whenever some ready processes
never get CPU time

Be fair

« How to measure fairness

Tradeoff exists

DIFFERENT TYPES OF POLICIES

A non-preemptive CPU scheduler will never remove the CPU
from a running process

» Will wait until the process releases the CPU because i) It
issues a system call, or ii) It terminates

* Obsolete
A preemptive CPU scheduler can temporarily return a
running process to the ready queue whenever another
process requires that CPU in a more urgent fashion

* Has been waiting for too long

* Has higher priority

JOB EXECUTION

load store
add store CPU burst
read from file 160 |-
140 -
wait for I/O I/0 burst
120 |-
store increment -
index CPU burst g 1001
write to file g
g 80H
wait for I/O I/0O burst h
60 |-
40 |-
load store
add store CPU burst
read from file 20 |-
I 1 1 1 1
0 8 16 24 32 40
wait for I/O I/O burst burst duration (milliseconds)

With time slicing, thread may be forced to give up CPU before finishing
current CPU burst. Length of slices?

FIRST- COME FIRST-SERVED
(FCFS)

Simplest and easiest to implement

» Uses a FIFO (First-in-first-out) queue
Previously for non-preemptive scheduling

Example: single cashier grocery store

Process Burst Time
P, 24
P, 3

P, 3

FCFS

Suppose processes arrive in the order: P1, P2, P3

P,

P,

Ps

Waiting time for P1 =0; P2 =24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 =17
Average completion time: (24 + 27 + 30)/3 = 27

24

27

30

Convoy effect: short process behind long process

FCFS (CONT’D)

Suppose processes arrive in the order: P2, P1, P3

P, | Pg P,

Waiting time? P1=6; P2=0; P3=3
Average waiting time? 3
Average completion time? (3+6+30)/3 =13

Good to schedule to shorter jobs first

30

SHORTEST JOB FIRST (SJF)

Gives the CPU to the process requesting the least amount of
CPU time

* Will reduce average wait

* Must know ahead of time how much CPU time each process
needs

* Provably achieving shortest waiting time among non-
preemptive policies

* Need to know the execution time of processes ahead of time
— not realistic!

ROUND ROBIN

All processes have the same priority

Similar to FCFS but processes only get the CPU for a fixed
amount of time Tp,

« Time slice or time quantum
Processes that exceed their time slice return to the end of the
ready queue

The choice of is T.p, important

« Large 2 FCFS
« Small 2> Too much context switch overhead

EXAMPLE OF RR

Process Burst Time
P, 53
P, 8
P, 68
P, 24

RR schedule

Remaining Time

53

8
68
24

EXAMPLE OF RR

Process Burst Time Remaining Time
P, 53 33
P, 8 8
P; 68 68
P, 24 24
RR schedule
I31

0 20

EXAMPLE OF RR

Process Burst Time
P, 53
P, 8
P, 68
P, 24
RR schedule
P, | P,

Remaining Time

33

0
68
24

EXAMPLE OF RR

Process Burst Time
P, 53
P, 8
P, 68
P, 24
RR schedule
P, | P, |P;

0O 20 28 48

Remaining Time

33

0
48
24

EXAMPLE OF RR

Process Burst Time Remaining Time
P, 53 33
P, 8 0
P; 68 48
P, 24 4
RR schedule

P, P, |P, |P,
0 20 28 48 68

EXAMPLE OF RR

Process Burst Time Remaining Time
P; 53 0
P, 8 0
P 68 0
P, 24 0
RR schedule

- - R R

O 20 28 48 68 88 108 112 125 145 153

RR WITH QUANTUM = 20

P, (P, [Py |P, I[Py [P, [P, [Py [P, [P,
0 20 28 48 68 88 108 112 125 145 153

Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

Average waiting time = (72+20+85+88)/4=66"4
Average completion time = (125+28+153+112)/4 = 104"/

WITH DIFFERENT TIME QUANTUM

P

P

F)

P

. 2 [T4 1 3
Best FCFS: [8] [24] [53] [68]
0O 8 32 85 153
Quantum P, P, P, P, Average _
Best FCFS 32 0 85 8 314
Wait
Time
Best FCFS 85 8 153 32 697>
Completion

Time

WITH DIFFERENT TIME QUANTUM

| P3 P, P, P,
Worst FCFS: [68] [53] [24] [8]
0 68 121 145 153
Quantum P, P, P, P, Average _
Best FCFS 32 0 85 8 314
Wait
Time
Worst FCFS | 68 145 0 121 831>
Best FCFS 85 8 153 32 697>
Completion
Time
Worst FCFS | 121 153 68 145 12134

WITH DIFFERENT TIME QUANTUM

P, P, P, P,
Worst FCFS: (68] 53] [24] (8]
0 68 121 145 153
| Quantum P. P_ P P. Average
P, [Py [Pg [Py | Py | Py [Py | Py Py [Pyl Py |Ps| Py |Ps| Py [Py | Py [Py [Py | Py
0O 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 133 141149153

Q=8
Q=10 /|82 10 85 68 61
Q=20 [|72 20 85 88 667
Worst FCF$ | 68 145 0 121 8315
Best FCFJ |85 8 153 32 6975
Q=1 [137 |30 153 81 100
R Q=5 j 135 |28 153 82 9915
. Q=38 133 |16 153 80 9515
Q=10 135 |18 153 92 9915
Q=20 125 |28 153 112 1047
Worst FCFS | 121 153 68 145 121%

IN REALITY

P,CS P, CS P, CS P, CSP,

The completion time is long with context switches

« More harmful to long jobs
Choice of slices:

- Typical time slice today is between 10ms — 100ms
+ Typical context-switching overhead is 0.1ms — 1ms
* Roughly 19% overhead due to context-switching

MULTILEVEL QUEUES WITH
PRIORITY

Distinguish among 15 item limigam
* Interactive processes — High priority expres’*‘ 539
* |/O-bound processes — Medium
priority
» Require small amounts of CPU
time
« CPU-bound processes — Low priority highest priority
* Require large amounts of CPU) system processes
time (number crunching)
One queue per priority m— e interactive processes
« Different quantum for each queue —
e interactive editing processes
Allow higher priority processes to take > batch processes
CPU away from lower priority processes
m— student processes

lowest priority

1. How do we know which is which?
2. What about starvation?

MULTI-LEVEL FEEDBACK

= —_—
SCHEDULING —— s o
ong-Running
P — Compute tasks
quantum = 16 — demoted to
/ low priority
- —_—
FCFS

Use past behavior to predict future

 First used in Cambridge Time Sharing System (CTSS)
« Multiple queues, each with a different priority
« Higher priority queues often considered “foreground” tasks

- Each queue has its own scheduling algorithm
* e.g., foreground — RR, background — FCFS

« Sometimes multiple RR priorities with quantum increasing exponentially
(highest:1ms, next:2ms, next: 4ms, etc.)

Adjust each job’s priority as follows (details vary)

 Job starts in highest priority queue
* |f timeout expires, drop one level
* If timeout doesn’t expire, push up one level (or to top)

MULTI-PROCESSOR
SCHEDULING

Multi-processor on a single machine or on different machines
(clusters)

* Process affinity: avoid moving data around

« Load balancing

« Power consumption

SCHEDULING IN LINUX

Traditionally

Multi-level feedback queue
RR within each queue

Modern implementation

Processes can be assigned one of three priority levels:
Real Time (highest), Kernel, or Time Shared (lowest)

Time shared processes use multi-level feedback queue

Priority levels of time-shared processes can be adjusted
(relatively) via nice command

For SMP, support process affinity and load balancing

REAL-TIME SCHEDULING

REAL-TIME SYSTEMS

Systems whose correctness depends on their temporal
aspects as well as their functional aspects

« Control systems, automotive ...
Performance measure

* Timeliness on timing constraints (deadlines)
» Speed/average case performance are less significant.

Key property
 Predictability on timing constraints

Hard vs soft real-time systems

REAL-TIME WORKLOAD

Job (unit of work)

* a computation, a file read, a message transmission, etc
Attributes

* Resources required to make progress

* Timing parameters

Absolute

deadline
Released Execution time

1 T e

« Relative deadline

\ 4

REAL-TIME TASK

Task : a sequence of similar jobs

* Periodic task (p,e)
* Its jobs repeat regularly
» Period p = inter-release time (0 < p)
- Execution time e = maximum execution time (0 < e < p)
« Utilization U = e/p

| .

- m

RATE MONOTONIC

Optimal static-priority scheduling
It assigns priority according to period
A task with a shorter period has a higher priority

Executes a job with the shortest period

T1(4,1)k T .

. |
T,(5.2) T l .
5 10 15
Ty(7.2). . -
5 10 15

RM (RATE MONOTONIC)

Executes a job with the shortest period

T1(4,1)h o 17 o T

A
T2(5,2)l] ;]] T] 1
5 10 15
TA(7,2)
5 10 15

RM (RATE MONOTONIC)

Executes a job with the shortest period

T(41)h i

Deadline Miss !

t/

T,5.2)| !

/]

5, 10
T3(7,2)l BB -

5

10

RM - UTILIZATION BOUND

Real-time system is schedulable under RM if
> C.T, < n (2'n-1)
C, is the computation time (work load), T; is the period

RM Utilization Bounds

1.1

0.9

0.8\
0.7 \‘\x‘éﬂ””r

0.6
0.5

Utilization

1 4 16 64 256 1024 4096

The Number of Tasks

EDF (EARLIEST DEADLINE
FIRST)

Optimal dynamic priority scheduling
A task with a shorter deadline has a higher priority

Executes a job with the earliest deadline

T1(4,1)k T .

l
T,(5.2)] T l .
5 10 15
Ty(7.2). . -
5 10 15

EDF (EARLIEST DEADLINE
FIRST)

Executes a job with the earliest deadline

T1(4,1)h . i . T

A
T,(52)] |)
5 10 15
T5(7,2)
5 10 15

EDF (EARLIEST DEADLINE

FIRST)

Executes a job with the earliest deadline

T1(4,1>h - 1]

17

r,52)] .t ¢ t
5 10 15
L2)
5 10 15

EDF (EARLIEST DEADLINE
FIRST)

Executes a job with the earliest deadline

rengll LM .
T,652)) 1] l 113

5 10
w72, . .|

5 10 15

i

EDF (EARLIEST DEADLINE
FIRST)

Optimal scheduling algorithm

* if there is a schedule for a set of real-time tasks,
EDF can schedule it.

renil | M htL
T,652)) 1 B t

woa| g |

5

EDF — UTILIZATION BOUND

Real-time system is schedulable under EDF if and only if
YCIT, =1

Liu & Layland,

“Scheduling algorithms for multi-programming in a
hard-real-time environment”, Journal of ACM, 1973.

SUMMARY

Scheduling matters when resource is tight

CPU, 1/0, network bandwidth
Preemptive vs non-preemptive
Burst time known or unknown
Hard vs soft real-time

Typically tradeoff in fairness, utilization
and real-timeliness

awil} asuodsay

Utilization

%001

COMPARISON

FCFS

SJF
RR

Multi-level priority
with feedback

RM

EDF

Utilization Response time
(throughput)

100% High

100% Shortest

100% Medium

100% Short

SC/T,<n(21-1) -

100% .

Good

Poor

Good

Good

