
CPU SCHEDULING

RONG ZHENG

OVERVIEW

Why scheduling?
Non-preemptive vs Preemptive policies
FCFS, SJF, Round robin, multilevel queues with feedback,
guaranteed scheduling

2

SHORT-TERM, MID-TERM, LONG-
TERM SCHEDULER

Long-term scheduler: admission control
Mid-term scheduler: who gets to be loaded in memory
Short-term scheduler: who (in ready queue) gets to be
executed

3

Running Terminated

New Ready Waiting
Admit process

Completion

Interrupt

Get CPU

Exit

System request

Suspended
Ready

Suspended
Waiting

Activate Deactivate Deactivate

Completion

SCHEDULING METRICS

Waiting time: Waiting time is the sum of the periods spent waiting
in the ready queue.
Turnaround time: The interval from the time of submission of a
process to the time of completion is the turnaround time.

•  The sum of the periods spent waiting to get into memory,
waiting in the ready queue, executing on the CPU, and doing I/
O.

Response time (interactive processes): the time from the
submission of a request until the first response is produced.

Throughput: number of jobs completed per unit of time
•  Throughput related to turningaround time, but not same thing:

CRITERIA OF A GOOD
SCHEDULING POLICY

Maximize throughput/utilization
Minimize response time, waiting time

•  Throughput related to response time, but not same thing
No starvation

•  Starvation happens whenever some ready processes
never get CPU time

Be fair

•  How to measure fairness

Tradeoff exists

5

DIFFERENT TYPES OF POLICIES

A non-preemptive CPU scheduler will never remove the CPU
from a running process

•  Will wait until the process releases the CPU because i) It
issues a system call, or ii) It terminates

•  Obsolete
A preemptive CPU scheduler can temporarily return a
running process to the ready queue whenever another
process requires that CPU in a more urgent fashion

•  Has been waiting for too long
•  Has higher priority

6

JOB EXECUTION

7

262 Chapter 6 CPU Scheduling

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

Figure 6.1 Alternating sequence of CPU and I/O bursts.

one process has to wait, the operating system takes the CPU away from that
process and gives the CPU to another process. This pattern continues. Every
time one process has to wait, another process can take over use of the CPU.

Scheduling of this kind is a fundamental operating-system function.
Almost all computer resources are scheduled before use. The CPU is, of course,
one of the primary computer resources. Thus, its scheduling is central to
operating-system design.

6.1.1 CPU–I/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes:
process execution consists of a cycle of CPU execution and I/O wait. Processes
alternate between these two states. Process execution begins with a CPU burst.
That is followed by an I/O burst, which is followed by another CPU burst, then
another I/O burst, and so on. Eventually, the final CPU burst ends with a system
request to terminate execution (Figure 6.1).

The durations of CPU bursts have been measured extensively. Although
they vary greatly from process to process and from computer to computer,
they tend to have a frequency curve similar to that shown in Figure 6.2. The
curve is generally characterized as exponential or hyperexponential, with a
large number of short CPU bursts and a small number of long CPU bursts.

6.1 Basic Concepts 263

fr
eq

ue
nc

y

160

140

120

100

80

60

40

20

0 8 16 24 32 40
burst duration (milliseconds)

Figure 6.2 Histogram of CPU-burst durations.

An I/O-bound program typically has many short CPU bursts. A CPU-bound
program might have a few long CPU bursts. This distribution can be important
in the selection of an appropriate CPU-scheduling algorithm.

6.1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried out
by the short-term scheduler, or CPU scheduler. The scheduler selects a process
from the processes in memory that are ready to execute and allocates the CPU
to that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
queue can be implemented as a FIFO queue, a priority queue, a tree, or simply
an unordered linked list. Conceptually, however, all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

6.1.3 Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-
stances:

1. When a process switches from the running state to the waiting state (for
example, as the result of an I/O request or an invocation of wait() for
the termination of a child process)

With time slicing, thread may be forced to give up CPU before finishing
current CPU burst. Length of slices?

FIRST- COME FIRST-SERVED
(FCFS)

Simplest and easiest to implement
•  Uses a FIFO (First-in-first-out) queue

Previously for non-preemptive scheduling

Example: single cashier grocery store

8

Process Burst Time  
P1 24  
P2 3  
P3 3

FCFS
Suppose processes arrive in the order: P1 , P2 , P3

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17
Average completion time: (24 + 27 + 30)/3 = 27
Convoy effect: short process behind long process

9

P1 P2 P3

24 27 300

FCFS (CONT’D)

Suppose processes arrive in the order: P2, P1 , P3

Waiting time? P1 = 6; P2 = 0; P3 = 3

Average waiting time? 3
Average completion time? (3+6+30)/3 = 13

Good to schedule to shorter jobs first

10

P1P3P2

63 300

SHORTEST JOB FIRST (SJF)

Gives the CPU to the process requesting the least amount of
CPU time

•  Will reduce average wait
•  Must know ahead of time how much CPU time each process

needs
•  Provably achieving shortest waiting time among non-

preemptive policies
•  Need to know the execution time of processes ahead of time

– not realistic!

11

ROUND ROBIN

All processes have the same priority
Similar to FCFS but processes only get the CPU for a fixed
amount of time TCPU

•  Time slice or time quantum
Processes that exceed their time slice return to the end of the
ready queue
The choice of is TCPU important

•  Large à FCFS
•  Small à Too much context switch overhead

12

EXAMPLE OF RR

RR schedule

13

Process Burst Time Remaining Time 
 P1 53 53  
 P2 8 8 
P3 68 68 
P4 24 24

EXAMPLE OF RR

RR schedule

14

Process Burst Time Remaining Time 
 P1 53 33  
 P2 8 8 
P3 68 68 
P4 24 24

P1

0 20

EXAMPLE OF RR

RR schedule

15

Process Burst Time Remaining Time 
 P1 53 33  
 P2 8 0  
P3 68 68 
P4 24 24

P1

0 20

P2

28

EXAMPLE OF RR

RR schedule

16

Process Burst Time Remaining Time 
 P1 53 33  
 P2 8 0 
P3 68 48  
P4 24 24

P1

0 20

P2

28

P3

48

EXAMPLE OF RR

RR schedule

17

Process Burst Time Remaining Time 
 P1 53 33  
 P2 8 0 
P3 68 48 
P4 24 4

P1

0 20

P2

28

P3

48

P4

68

EXAMPLE OF RR

RR schedule

18

Process Burst Time Remaining Time 
 P1 53 0 
 P2 8 0 
P3 68 0  
P4 24 0

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4

112

P1

125

P3

145

P3

153

RR WITH QUANTUM = 20

Waiting time for P1=(68-20)+(112-88)=72
 P2=(20-0)=20
 P3=(28-0)+(88-48)+(125-108)=85
 P4=(48-0)+(108-68)=88

Average waiting time = (72+20+85+88)/4=66¼
Average completion time = (125+28+153+112)/4 = 104½

19

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4

112

P1

125

P3

145

P3

153

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

WITH DIFFERENT TIME QUANTUM
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

31¼885032Best FCFS

69½32153885Best FCFS

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1
31¼885032Best FCFS

69½32153885Best FCFS

121¾14568153121Worst FCFS

83½121014568Worst FCFS

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 68 121 145 153

Worst FCFS:

WITH DIFFERENT TIME QUANTUM

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

P1

0 8 56

P2 P3 P4 P1 P3 P4 P1 P3 P4 P1 P3 P1 P3 P3P3

16 24 32 40 48 64 72 80 88 96 104 112

P1 P3 P1

120 128 133 141 149

P3

153

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 68 121 145 153

Worst FCFS:

WITH DIFFERENT TIME QUANTUM

IN REALITY

The completion time is long with context switches
•  More harmful to long jobs

Choice of slices:

•  Typical time slice today is between 10ms – 100ms
•  Typical context-switching overhead is 0.1ms – 1ms
•  Roughly 1% overhead due to context-switching

23

P0 P2 P3 CS CS P1 CS CS P4

MULTILEVEL QUEUES WITH
PRIORITY
Distinguish among

•  Interactive processes – High priority
•  I/O-bound processes – Medium

priority
•  Require small amounts of CPU

time
•  CPU-bound processes – Low priority

•  Require large amounts of CPU
time (number crunching)

One queue per priority
•  Different quantum for each queue

Allow higher priority processes to take
CPU away from lower priority processes

24

6.3 Scheduling Algorithms 275

system processes

highest priority

lowest priority

interactive processes

interactive editing processes

batch processes

student processes

Figure 6.6 Multilevel queue scheduling.

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted.

Another possibility is to time-slice among the queues. Here, each queue gets
a certain portion of the CPU time, which it can then schedule among its various
processes. For instance, in the foreground–background queue example, the
foreground queue can be given 80 percent of the CPU time for RR scheduling
among its processes, while the background queue receives 20 percent of the
CPU to give to its processes on an FCFS basis.

6.3.6 Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows
a process to move between queues. The idea is to separate processes according
to the characteristics of their CPU bursts. If a process uses too much CPU time,
it will be moved to a lower-priority queue. This scheme leaves I/O-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback queue scheduler with three
queues, numbered from 0 to 2 (Figure 6.7). The scheduler first executes all

1.  How do we know which is which?
2.  What about starvation?

MULTI-LEVEL FEEDBACK
SCHEDULING

Use past behavior to predict future
•  First used in Cambridge Time Sharing System (CTSS)
•  Multiple queues, each with a different priority

•  Higher priority queues often considered “foreground” tasks
•  Each queue has its own scheduling algorithm

•  e.g., foreground – RR, background – FCFS
•  Sometimes multiple RR priorities with quantum increasing exponentially

(highest:1ms, next:2ms, next: 4ms, etc.)
Adjust each job’s priority as follows (details vary)

•  Job starts in highest priority queue
•  If timeout expires, drop one level
•  If timeout doesn’t expire, push up one level (or to top)

Long-Running
Compute tasks

demoted to  
low priority

276 Chapter 6 CPU Scheduling

quantum ! 8

quantum ! 16

FCFS

Figure 6.7 Multilevel feedback queues.

processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will be executed only if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go off to its next I/O burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CPU cycles left over from queues 0
and 1.

In general, a multilevel feedback queue scheduler is defined by the
following parameters:

• The number of queues

• The scheduling algorithm for each queue

• The method used to determine when to upgrade a process to a higher-
priority queue

• The method used to determine when to demote a process to a lower-
priority queue

• The method used to determine which queue a process will enter when that
process needs service

The definition of a multilevel feedback queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,

MULTI-PROCESSOR
SCHEDULING

Multi-processor on a single machine or on different machines
(clusters)

•  Process affinity: avoid moving data around
•  Load balancing
•  Power consumption

26

SCHEDULING IN LINUX

Traditionally
•  Multi-level feedback queue
•  RR within each queue

Modern implementation

•  Processes can be assigned one of three priority levels:
Real Time (highest), Kernel, or Time Shared (lowest)

•  Time shared processes use multi-level feedback queue
•  Priority levels of time-shared processes can be adjusted

(relatively) via nice command
•  For SMP, support process affinity and load balancing

27

REAL-TIME SCHEDULING

28

REAL-TIME SYSTEMS

Systems whose correctness depends on their temporal
aspects as well as their functional aspects

•  Control systems, automotive …
Performance measure

•  Timeliness on timing constraints (deadlines)
•  Speed/average case performance are less significant.

Key property
•  Predictability on timing constraints

Hard vs soft real-time systems

29

REAL-TIME WORKLOAD

Job (unit of work)
•  a computation, a file read, a message transmission, etc

Attributes

•  Resources required to make progress
•  Timing parameters

30

Released

Absolute
deadline

Relative deadline

Execution time

REAL-TIME TASK

Task : a sequence of similar jobs
•  Periodic task (p,e)

•  Its jobs repeat regularly
•  Period p = inter-release time (0 < p)
•  Execution time e = maximum execution time (0 < e < p)
•  Utilization U = e/p

31

5 1
0

15 0

RATE MONOTONIC

Optimal static-priority scheduling
It assigns priority according to period
A task with a shorter period has a higher priority

Executes a job with the shortest period

32

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

33

RM (RATE MONOTONIC)

Executes a job with the shortest period

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

34

RM (RATE MONOTONIC)

Executes a job with the shortest period

(4,1)

(5,2)

(7,2)

Deadline Miss !

5

5

10

10 15

15

T1

T2

T3

RM Utilization Bounds

0.5

0.6

0.7

0.8

0.9

1

1.1

1 4 16 64 256 1024 4096

The Number of Tasks

U
til

iz
at

io
n

RM – UTILIZATION BOUND

Real-time system is schedulable under RM if
 ∑Ci/Ti ≤ n (21/n-1)

Ci is the computation time (work load), Ti is the period

36

EDF (EARLIEST DEADLINE
FIRST)

Optimal dynamic priority scheduling
A task with a shorter deadline has a higher priority
Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

37

EDF (EARLIEST DEADLINE
FIRST)

Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

38

EDF (EARLIEST DEADLINE
FIRST)

Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

39

EDF (EARLIEST DEADLINE
FIRST)

Executes a job with the earliest deadline

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

40

EDF (EARLIEST DEADLINE
FIRST)

Optimal scheduling algorithm
•  if there is a schedule for a set of real-time tasks,
 EDF can schedule it.

(4,1)

(5,2)

(7,2)

5

5

10

10 15

15

T1

T2

T3

41

EDF – UTILIZATION BOUND

Real-time system is schedulable under EDF if and only if
 ∑Ci/Ti ≤ 1

 Liu & Layland,

 “Scheduling algorithms for multi-programming in a
hard-real-time environment”, Journal of ACM, 1973.

SUMMARY

Scheduling matters when resource is tight
•  CPU, I/O, network bandwidth
•  Preemptive vs non-preemptive
•  Burst time known or unknown
•  Hard vs soft real-time
•  Typically tradeoff in fairness, utilization

and real-timeliness

42

Utilization

R
esponse tim

e

100%

COMPARISON

43

Utilization
(throughput)

Response time Fairness

FCFS 100% High Good

SJF 100% Shortest Poor

RR 100% Medium Good

Multi-level priority
with feedback

100% Short Good

RM ∑Ci/Ti ≤ n (21/n-1) - -

EDF 100% - -

