
MEMORY MANAGEMENT –
PART I

RONG ZHENG

MULTIPROGRAMMING

Physical Reality: Processes/Threads share the same
hardware

•  Need to multiplex CPU (CPU Scheduling)
•  Need to multiplex use of Memory (Today)

Why worry about memory multiplexing?

•  The complete working state of a process and/or kernel is
defined by its data in memory (and registers)

•  Consequently, cannot just let different processes use the
same memory

•  Probably don’t want different processes to even have access
to each other’s memory (protection)

OBJECTIVES OF MEMORY
MANAGEMENT
•  Abstraction of exclusive and contiguous logical memory

space to processes
•  Might be larger than the amt of physical memory

•  Allow sharing of memory space across cooperating
processes

•  Protection: ever wonder what is a segmentation fault?
•  Efficiency

•  a single memory access typically involves multiple instructions
even I/O operations

•  physical memory should be well utilized

27
7

BINDING OF INSTRUCTIONS AND
DATA TO MEMORY

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, loop
 …

checkit: …

Process view of memory"

0x0300 00000020
 … …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

Physical addresses"

Assume 4byte words
0x300 = 4 * 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000

BINDING OF INSTRUCTIONS AND
DATA TO MEMORY

0x0300 00000020
 … …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, loop
 …

checkit: …

Process view of memory" Physical addresses"
8C2000C0
0C000340
2021FFFF
14200242

0x0900!

0xFFFF!

0x0300!

0x0000!

00000020

Physical "
Memory"

BINDING OF INSTRUCTIONS AND
DATA TO MEMORY

0x300 00000020
 … …
0x900 8C2000C0
0x904 0C000280
0x908 2021FFFF
0x90C 14200242
 …
0x0A00

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, r0, loop
 …

checkit: …

Process view of memory" Physical addresses"
0x0900!

0xFFFF!

0x0300!

0x0000!

Physical"
Memory"

?"
App X"

Need address translation!"

BINDING OF INSTRUCTIONS AND
DATA TO MEMORY

0x1300 00000020
 … …
0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
 …
0x1A00

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, r0, loop
 …

checkit: …

Process view of memory" Processor view of memory"
0x0900!

0xFFFF!

0x0300!

0x0000!
Memory"

App X"

8C2004C0
0C000680
2021FFFF
14200642

00000020 0x1300!

0x1900!

•  One of many possible translations!"
•  Where does translation take place?"

Compile time, Link/Load time, or Execution time?"
"

MULTI-STEP PROCESSING OF A
PROGRAM FOR EXECUTION
Preparation of a program for execution involves
components at:

•  Compile time (i.e., “gcc”)
•  Link/Load time (unix “ld” does link)
•  Execution time (e.g. dynamic libs)

Addresses can be bound to final values
anywhere in this path

•  Depends on hardware support
•  Also depends on operating system

Dynamic Libraries
•  Linking postponed until execution
•  Small piece of code, stub, used to locate

appropriate memory-resident library routine
•  Stub replaces itself with the address of the

routine, and executes routine

EXAMPLE OF GENERAL ADDRESS TRANSLATION

Prog 1!
Virtual!

Address!
Space 1!

Prog 2!
Virtual!

Address!
Space 2!

Code"
Data"
Heap"
Stack"

Code"
Data"
Heap"
Stack"

Data 2"

Stack 1"

Heap 1"

OS heap & "
Stacks"

Code 1"

Stack 2"

Data 1"

Heap 2"

Code 2"

OS code"

OS data"Translation Map 1! Translation Map 2!

Physical Address Space!

EVOLUTION OF MEMORY
MANAGEMENT

28
4

No memory
management

Division between
kernel and user
memory space

Early systems Uniprogramming
e.g., MS Dos

Segmentation

Multiprogramming

Paging,
Multi-level paging

Memory management unit
introduced

Translation
lookaside buffer
(TLB)

Both hardware support and software
implementation evolve over time

Virtual memory

NO MEMORY MANAGEMENT

The very first computers had no operating system
whatsoever

Each programmer
•  Had access to whole main memory of the computer
•  Had to enter the bootstrapping routine loading his or her

program into main memory
Advantage:

•  Programmer is in total control of the whole machine.
Disadvantage:

•  Much time is lost entering manually the bootstrapping routine.

UNIPROGRAMMING

Every system includes a memory-
resident monitor

•  Invoked every time a user program
would terminate

•  Would immediately fetch the next
program in the queue (batch
processing)

Should prevent user program from
corrupting the address space of kernel
processes

Must add a Memory Management
Unit (MMU)

0x00000000!

0xFFFFFFFF!
Application!

Operating!
System!

Va
lid

 3
2-

bi
t!

A
dd

re
ss

es
!

UNIPROGRAMMING
Assuming that the OS occupies
memory locations 0 to START – 1
MMU will prevent the program from
accessing memory locations 0 to
START – 1
Advantage:

•  No time is lost re-entering manually
the bootstrapping routine

Disadvantage:
•  CPU remains idle every time the user

program does an I/O.

RAM Address

> START

YES

NO

trap

CONTIGUOUS ADDRESS SPACE
AND FIXED PARTITION

Multiprogramming with fixed partitions

•  Requires I/O controllers and interrupts
OS dedicates multiple partitions for user
processes

•  Partition boundaries are fixed
Each process must be confined between its first
and last address

Computer often had
•  A foreground partition (FG)
•  Several background partitions

(BG0, . . .)

Monitor

FG

BG0

BG1

CONTIGUOUS ADDRESS SPACE
AND FIXED PARTITION

Advantage:

•  No CPU time is lost while system does
I/O

Disadvantages:

•  Partitions are fixed while processes
have different memory requirements

•  Many systems were requiring
processes to occupy a specific partition

RAM Address

> FIRST

NO

trap

 ≤ LAST

YES

NO

trap

CONTIGUOUS ADDRESS SPACE
AND VARIABLE PARTITION

Multiprogramming with variable partitions

OS allocates contiguous extents of memory to processes
•  Initially each process gets all the memory space it needs and

nothing more
Processes that are swapped out can return to any main
memory location

Monitor

EXTERNAL SEGMENTATION

Initially everything works fine

•  Three processes occupy most
of memory

•  Unused part of memory is
very small

P0

P1

P2

Monitor

EXTERNAL FRAGMENTATION (CONT’D)

When P0 terminates

•  Replaced by P3
•  P3 must be smaller than P0

Start wasting memory space

P3

P1

P2

Monitor

EXTERNAL FRAGMENTATION (CONT’D)

When P2 terminates

•  Replaced by P4
•  P4 must be smaller than P0

plus the free space
Start wasting more memory
space P3

P1

P4

EXTERNAL FRAGMENTATION

Happens in all systems using multiprogramming with
variable partitions

Occurs because new process must fit in the hole left by
terminating process

•  Very low probability that both process will have exactly the
same size

•  Typically the new process will be a bit smaller than the
terminating process

AN ANALOGY

Replacing an old book by a new book on a
bookshelf

New book must fit in the hole left by old book
•  Very low probability that both books have

exactly the same width
•  We will end with empty shelf space between

books
Solution: push books left and right

Other situations fragmentation occurs in computer systems?

Monitor

MEMORY COMPACTION

When external fragmentation
becomes a problem we push
processes around in order to
consolidate free spaces

P3

P1

P4

Monitor

MEMORY COMPACTION

Works very well when memory
sizes were small

large overhead with more
processes and large memory
sizes

Problematic if address binding
is done at compilation or
loading stage

P3

P1

P4

FREE

SEGMENTATION

Non-contiguous allocation

Partition physical memory into fixed-size entities
•  Page frames

Allocate non-contiguous page frames to processes

Let the MMU take care of the address translation

SEGMENTATION (CONT’D)

Logical View: multiple separate segments
•  Typical: Code, Data, Stack
•  Others: memory sharing, etc

Each segment is given region of contiguous memory
•  Has a base and limit
•  Can reside anywhere in physical memory

1"

3"

2"

4"

user view of"
memory space "

1"

4"

2"

3"

physical "
memory
space"

1"

2"

COFF IN NACHOS

The Common Object File Format (COFF) -- a specification of
a format for executable, object code, and shared library
computer files used on Unix systems.

COFF header

COFF table entry .text

COFF table entry .rodata

COFF table entry .data

COFF table entry .bss

#define Dim 20

nachos -d ac -x matmult.coff
initializing .text section (3 pages)
…
initializing .bss section (5 pages)

#define Dim 50

nachos -d ac -x matmult.coff
initializing .text section (3 pages)
…
initializing .bss section (30 pages)

SEGMENTATION (CONT’D)!

Segment map resides in Memory Management Unit!
•  Segment number mapped into base/limit pair"
•  Base added to offset to generate physical address"
•  Error check catches offset out of range"

!
As many chunks of continguous physical memory as entries!

•  Segment addressed by portion of virtual address"
!
What is “V/N” (valid / not valid)?!

•  Can mark segments as invalid; requires check as well"

Base0" Limit0" V"
Base1" Limit1" V"
Base2" Limit2" V"
Base3" Limit3" N"
Base4" Limit4" V"
Base5" Limit5" N"
Base6" Limit6" N"
Base7" Limit7" V"

Offset"Seg #"Virtual!
Address!

Base2" Limit2" V"

+" Physical!
Address!

>" Error!offset!

Check Valid"

Access!
Error!

EXAMPLE: FOUR SEGMENTS (16 BIT ADDRESSES)
Seg ID #! Base! Limit!

0 (code)! 0x4000! 0x0800!
1 (data)! 0x4800! 0x1400!
2 (shared)! 0xF000! 0x1000!
3 (stack)! 0x0000! 0x3000!

Offset"Seg"
0!14!13!15!

0x4000!

0x0000!

0x8000!

0xC000!

Virtual!
Address Space!

Virtual Address Format!

0x0000!

0x4800!
0x5C00!

0x4000!

0xF000!

Physical!
Address Space!

Space for!
Other Apps!

Shared with!
Other Apps!

Might !
be shared!

SegID = 0!

SegID = 1!

segment
table

PROBLEMS WITH
SEGMENTATION

How to partition

Size of segments vary
•  Can still suffer from external

fragmentation
No easy for sharing

30
4

Monitor

P3, seg 1

P1, seg 1

P3, seg 2

PAGING
The problem of external
fragmentation in segmentation is due
to the mismatch between physical
and virtual memory

•  holes in physical memory that no
process/segment can fit

Basic idea: equal sized pages in
physical and virtual memory

•  How big the sizes?"
•  How to look up the physical page

from a virtual page?"
•  Where to store such information?"
•  Internal fragmentation and

validity of pages"

30
5

68451 MMU used with
Motorola 68010

PAGE TABLE

A page table consists of a collection of pages

•  Resides in memory
•  One page table per process

A page table entry (PTE) contains

•  A page frame number
•  Several special bits

Assuming 32-bit addresses, all fit into four bytes

Page frame number Bits

THE SPECIAL BITS

Valid bit:

•  1 if page is in main memory,
•  0 otherwise

Dirty bit: 1 if page has been modified since it was brought
into main memory, 0 otherwise

•  A dirty page must be saved in the process swap area on disk
before being expelled from main memory

•  A clean page can be immediately expelled
Page-referenced bit:1 if page has been recently accessed,
0 otherwise

•  Often simulated in software
…

Physical Address!
Offset"

IMPLEMENTATION OF PAGING

Virtual address mapping!
•  Offset from Virtual address copied to Physical Address"

•  Example: 10 bit offset à 1024-byte pages"
•  Virtual page # is all remaining bits à look up the page table entry"

•  Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries"
•  Physical page # copied from table into physical address"

•  Check Page Table bounds and permissions"

Offset"Virtual"
Page #"Virtual Address:!

Access!
Error!

>"PageTableSize"

PageTablePtr" page #0"

page #2"
page #3"
page #4"
page #5"

V,R"
page #1" V,R"

V,R,W"
V,R,W"
N"
V,R,W"

page #1" V,R"

Check Perm"

Access!
Error!

Physical"
Page #"

8.5 Paging 369

The page size (like the frame size) is defined by the hardware. The size of a
page is a power of 2, varying between 512 bytes and 1 GB per page, depending
on the computer architecture. The selection of a power of 2 as a page size
makes the translation of a logical address into a page number and page offset
particularly easy. If the size of the logical address space is 2m, and a page size is
2n bytes, then the high-order m − n bits of a logical address designate the page
number, and the n low-order bits designate the page offset. Thus, the logical
address is as follows:

p d

page number page offset

m – n n

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 8.12. Here, in the logical address, n= 2 and m = 4. Using a page size
of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the
programmer’s view of memory can be mapped into physical memory. Logical
address 0 is page 0, offset 0. Indexing into the page table, we find that page 0

logical memory

physical memory

page table

i
j
k
l

m
n
o
p

a
b
c
d
e
f
g
h

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

0

4

8

12

16

20

24

28

1
2
3

5
6
1
2

Figure 8.12 Paging example for a 32-byte memory with 4-byte pages.

AN EXAMPLE

8-bit address, 4 byte pages!

a"
b"
c"
d"
e"
f"
g"
h"
i"
j"
k"
l"

0x00!

0x04!

0x08!

Virtual!
Memory!

0x00!

i"
j"
k"
l"

0x04!

0x08!

e"
f"
g"
h"

0x0C!

a"
b"
c"
d"

0x10!

Physical!
Memory!

4"
3"
1"

Page!
Table!

0!

1!
2!

0000 0000!

0001 0000!

0000 0100! 0000 1100!

0000 1000!

0000 0100!

0000 1011!

0000 0111!

PageTablePtrB" page #0"
page #1"
page #2"
page #3"

page #5"

V,R"
N"
V,R,W"
N"

page #4" V,R"
V,R,W"

page #4" V,R"

SHARED MEMORY

Offset"Virtual"
Page #"Virtual Address!

(Process A):!

PageTablePtrA" page #0"
page #1"

page #3"
page #4"
page #5"

V,R"
V,R"

page #2" V,R,W"
V,R,W"
N"
V,R,W"

Offset"Virtual"
Page #"Virtual Address!

(Process B):!

Shared!
Page!

This physical page!
appears in address!
space of both processes!

page #2" V,R,W"

SELECTING THE RIGHT PAGE
SIZE

Increasing the page size

•  Increases the length of the offset
•  Decreases the length of the page number
•  Reduces the size of page tables

•  Less entries
•  Increases internal fragmentation: unused space in an

allocated frame

4KB seems to be a good choice

3583B

4KB

SUMMARY OF PAGING
Pros

•  Simple memory allocation
•  Easy to share

Con i) Internal fragmentation: may not use up the last page
Con ii) Each logical memory access ! two memory accesses

•  Solution: use special hardware cache called translation look-aside buffer
(TLB)

Con iii)
•  For small page size, more page table entries needed (e.g, 1K pages, 32-bit,

4 million page table entries)
•  Page table entries needed whether in use or not

•  Possible solutions:
•  Combining segmentation with paging
•  Multi-level page tables (tradeoff space complexity with time complexity)
•  Inverted page table
•  Include page table entries only when needed (which are in use?)
•  Variable page size

TRANSLATION LOOK-ASIDE
BUFFER (TLB)

31
3

A high-speed cache is set up for
page table entries (key,value)

•  Can concurrently check
with multiple entries

Contains page table entries that
have been most recently used
TLB miss requires more time
Replacement policy for TLB

•  Flush TLB during context
switch

•  TLB miss loads new entries
into the TLB

8.5 Paging 373

The standard solution to this problem is to use a special, small, fast-
lookup hardware cache called a translation look-aside buffer (TLB). The TLB
is associative, high-speed memory. Each entry in the TLB consists of two parts:
a key (or tag) and a value. When the associative memory is presented with an
item, the item is compared with all keys simultaneously. If the item is found,
the corresponding value field is returned. The search is fast; a TLB lookup in
modern hardware is part of the instruction pipeline, essentially adding no
performance penalty. To be able to execute the search within a pipeline step,
however, the TLB must be kept small. It is typically between 32 and 1,024 entries
in size. Some CPUs implement separate instruction and data address TLBs. That
can double the number of TLB entries available, because those lookups occur
in different pipeline steps. We can see in this development an example of the
evolution of CPU technology: systems have evolved from having no TLBs to
having multiple levels of TLBs, just as they have multiple levels of caches.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by the
CPU, its page number is presented to the TLB. If the page number is found, its
frame number is immediately available and is used to access memory. As just
mentioned, these steps are executed as part of the instruction pipeline within
the CPU, adding no performance penalty compared with a system that does
not implement paging.

If the page number is not in the TLB (known as a TLB miss), a memory
reference to the page table must be made. Depending on the CPU, this may be
done automatically in hardware or via an interrupt to the operating system.
When the frame number is obtained, we can use it to access memory (Figure
8.14). In addition, we add the page number and frame number to the TLB, so

page table

f

CPU

logical
address

p d

f d

physical
address

physical
memory

p

TLB miss

page
number

frame
number

TLB hit

TLB

Figure 8.14 Paging hardware with TLB.

PERFORMANCE IMPLICATIONS

Tm be the main memory access time, p be the probability of
TLB hit

•  Access time using TLB = 2(1-p)Tm + p*Tm

•  e.g., p = 0.99 à 1.01Tm

•  Compared to 2Tm using page table only

COMBINING PAGING WITH
SEGMENTATION

Used with Intel 32-bit architecture!
Segment map on MMU, page table in memory!
!

31
5

page #0"
page #1"

page #3"
page #4"
page #5"

V,R"
V,R"

page #2" V,R,W"
V,R,W"
N"
V,R,W"

Offset"

Physical Address!

Virtual !
Address:!

Offset"Virtual"
Page #"

Virtual"
Seg #"

Base0" Limit0" V"
Base1" Limit1" V"
Base2" Limit2" V"
Base3" Limit3" N"
Base4" Limit4" V"
Base5" Limit5" N"
Base6" Limit6" N"
Base7" Limit7" V"

Base2" Limit2" V"

Access!
Error!>"

page #2" V,R,W"

Physical"
Page #"

Check Perm"

Access!
Error!

EXAMPLE: SEGMENTED PAGE

•  Given a memory size of 256 = 28 addressable bytes,

•  a page table indexing 8=23 pages,
•  a page size of 32 bytes = 25, and

•  8 = 23 logical segments

1.  How many bits is a physical address?

2.  How many bits for the segment number, page table, and
offset?

3.  How many bits is a virtual address?
4.  How many segment table entries do we need?

8 bits

3 3 5

11 bits

8

Offset"Virtual"
Page #"

Virtual"
Seg #"

MULTI-LEVEL PAGING

31
7

Physical!
Address:!

Offset"Physical"
Page #"

4KB

10 bits" 10 bits" 12 bits"
Virtual !
Address:!

Offset"Virtual"
P2 index"

Virtual"
P1 index"

4 bytes"

PageTablePtr"

Tree of Page Tables!
Tables fixed size (1024 entries, 4KB per
table)!
Valid bits on Page Table Entries !

•  Don’t need every 2nd-level table"
•  Even when exist, 2nd-level tables can reside

on disk if not in use" 4 bytes

stack"

1111 1111!
stack"

heap"

code"

data"

Virtual memory view!

0000 0000!

0100 0000!

1000 0000!

1100 0000!

page1 #" offset!

Physical memory view!

data"

code"

heap"

stack"

0000 0000!
0001 0000!

0101 000!

0111 000!

1110 0000!

page2 #"

111 !
110 null!
101 null!
100 !
011 null!
010 !
001 null!
000 !

11 11101 !
10 11100!
01 10111!
00 10110!

11 01101 !
10 01100!
01 01011!
00 01010!

11 00101 !
10 00100!
01 00011!
00 00010!

11 null !
10 10000!
01 01111!
00 01110!

Page Tables!
(level 2)!

Page Table!
(level 1)!

1111 0000!

EXAMPLE (3 BITS FOR LEVEL-1, 2 BITS FOR LEVEL-2

USE OF MULTI-LEVEL PAGING

32-bit machines

64-bit machine

31
9

8.6 Structure of the Page Table 379

logical address

outer page
table

p1 p2

p1

page of
page table

p2

d

d

Figure 8.18 Address translation for a two-level 32-bit paging architecture.

into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as
follows:

p1 p2 d

page number page offset

10 10 12

where p1 is an index into the outer page table and p2 is the displacement
within the page of the inner page table. The address-translation method for this
architecture is shown in Figure 8.18. Because address translation works from
the outer page table inward, this scheme is also known as a forward-mapped
page table.

Consider the memory management of one of the classic systems, the VAX
minicomputer from Digital Equipment Corporation (DEC). The VAX was the
most popular minicomputer of its time and was sold from 1977 through 2000.
The VAX architecture supported a variation of two-level paging. The VAX is a 32-
bit machine with a page size of 512 bytes. The logical address space of a process
is divided into four equal sections, each of which consists of 230 bytes. Each
section represents a different part of the logical address space of a process. The
first 2 high-order bits of the logical address designate the appropriate section.
The next 21 bits represent the logical page number of that section, and the final
9 bits represent an offset in the desired page. By partitioning the page table in
this manner, the operating system can leave partitions unused until a process
needs them. Entire sections of virtual address space are frequently unused, and
multilevel page tables have no entries for these spaces, greatly decreasing the
amount of memory needed to store virtual memory data structures.

An address on the VAX architecture is as follows:

s p d

section page offset

2 21 9

where s designates the section number, p is an index into the page table, and d
is the displacement within the page. Even when this scheme is used, the size
of a one-level page table for a VAX process using one section is 221 bits ∗ 4

Vax

380 Chapter 8 Main Memory

bytes per entry = 8 MB. To further reduce main-memory use, the VAX pages the
user-process page tables.

For a system with a 64-bit logical address space, a two-level paging scheme
is no longer appropriate. To illustrate this point, let’s suppose that the page
size in such a system is 4 KB (212). In this case, the page table consists of up
to 252 entries. If we use a two-level paging scheme, then the inner page tables
can conveniently be one page long, or contain 210 4-byte entries. The addresses
look like this:

p1 p2 d

outer page inner page offset

42 10 12

The outer page table consists of 242 entries, or 244 bytes. The obvious way to
avoid such a large table is to divide the outer page table into smaller pieces.
(This approach is also used on some 32-bit processors for added flexibility and
efficiency.)

We can divide the outer page table in various ways. For example, we can
page the outer page table, giving us a three-level paging scheme. Suppose that
the outer page table is made up of standard-size pages (210 entries, or 212 bytes).
In this case, a 64-bit address space is still daunting:

p1 p2 p3

2nd outer page outer page inner page

32 10 10

d

offset

12

The outer page table is still 234 bytes (16 GB) in size.
The next step would be a four-level paging scheme, where the second-level

outer page table itself is also paged, and so forth. The 64-bit UltraSPARC would
require seven levels of paging—a prohibitive number of memory accesses—
to translate each logical address. You can see from this example why, for 64-bit
architectures, hierarchical page tables are generally considered inappropriate.

8.6.2 Hashed Page Tables

A common approach for handling address spaces larger than 32 bits is to use
a hashed page table, with the hash value being the virtual page number. Each
entry in the hash table contains a linked list of elements that hash to the same
location (to handle collisions). Each element consists of three fields: (1) the
virtual page number, (2) the value of the mapped page frame, and (3) a pointer
to the next element in the linked list.

The algorithm works as follows: The virtual page number in the virtual
address is hashed into the hash table. The virtual page number is compared
with field 1 in the first element in the linked list. If there is a match, the
corresponding page frame (field 2) is used to form the desired physical address.
If there is no match, subsequent entries in the linked list are searched for a
matching virtual page number. This scheme is shown in Figure 8.19.

A variation of this scheme that is useful for 64-bit address spaces has
been proposed. This variation uses clustered page tables, which are similar to

380 Chapter 8 Main Memory

bytes per entry = 8 MB. To further reduce main-memory use, the VAX pages the
user-process page tables.

For a system with a 64-bit logical address space, a two-level paging scheme
is no longer appropriate. To illustrate this point, let’s suppose that the page
size in such a system is 4 KB (212). In this case, the page table consists of up
to 252 entries. If we use a two-level paging scheme, then the inner page tables
can conveniently be one page long, or contain 210 4-byte entries. The addresses
look like this:

p1 p2 d

outer page inner page offset

42 10 12

The outer page table consists of 242 entries, or 244 bytes. The obvious way to
avoid such a large table is to divide the outer page table into smaller pieces.
(This approach is also used on some 32-bit processors for added flexibility and
efficiency.)

We can divide the outer page table in various ways. For example, we can
page the outer page table, giving us a three-level paging scheme. Suppose that
the outer page table is made up of standard-size pages (210 entries, or 212 bytes).
In this case, a 64-bit address space is still daunting:

p1 p2 p3

2nd outer page outer page inner page

32 10 10

d

offset

12

The outer page table is still 234 bytes (16 GB) in size.
The next step would be a four-level paging scheme, where the second-level

outer page table itself is also paged, and so forth. The 64-bit UltraSPARC would
require seven levels of paging—a prohibitive number of memory accesses—
to translate each logical address. You can see from this example why, for 64-bit
architectures, hierarchical page tables are generally considered inappropriate.

8.6.2 Hashed Page Tables

A common approach for handling address spaces larger than 32 bits is to use
a hashed page table, with the hash value being the virtual page number. Each
entry in the hash table contains a linked list of elements that hash to the same
location (to handle collisions). Each element consists of three fields: (1) the
virtual page number, (2) the value of the mapped page frame, and (3) a pointer
to the next element in the linked list.

The algorithm works as follows: The virtual page number in the virtual
address is hashed into the hash table. The virtual page number is compared
with field 1 in the first element in the linked list. If there is a match, the
corresponding page frame (field 2) is used to form the desired physical address.
If there is no match, subsequent entries in the linked list are searched for a
matching virtual page number. This scheme is shown in Figure 8.19.

A variation of this scheme that is useful for 64-bit address spaces has
been proposed. This variation uses clustered page tables, which are similar to

8.7 Example: Intel 32 and 64-bit Architectures 385

logical address selector

descriptor table

segment descriptor +

32-bit linear address

offset

Figure 8.22 IA-32 segmentation.

The linear address on the IA-32 is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question is used to generate
a linear address. First, the limit is used to check for address validity. If the
address is not valid, a memory fault is generated, resulting in a trap to the
operating system. If it is valid, then the value of the offset is added to the value
of the base, resulting in a 32-bit linear address. This is shown in Figure 8.22. In
the following section, we discuss how the paging unit turns this linear address
into a physical address.

8.7.1.2 IA-32 Paging

The IA-32 architecture allows a page size of either 4 KB or 4 MB. For 4-KB pages,
IA-32 uses a two-level paging scheme in which the division of the 32-bit linear
address is as follows:

p1 p2 d

page number page offset

10 10 12

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 8.18. The IA-32 address translation is shown in more detail in
Figure 8.23. The 10 high-order bits reference an entry in the outermost page
table, which IA-32 terms the page directory. (The CR3 register points to the
page directory for the current process.) The page directory entry points to an
inner page table that is indexed by the contents of the innermost 10 bits in the
linear address. Finally, the low-order bits 0–11 refer to the offset in the 4-KB
page pointed to in the page table.

One entry in the page directory is the Page Size flag, which—if set—
indicates that the size of the page frame is 4 MB and not the standard 4 KB.
If this flag is set, the page directory points directly to the 4-MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4-MB page frame.

Intel

MULTI-LEVEL TRANSLATION
ANALYSIS
Pros:

•  Only need to allocate as many page table entries as we need for
application – size is proportional to usage

•  In other words, sparse address spaces are easy
•  Easy memory allocation
•  Easy Sharing

•  Share at segment or page level (need additional reference
counting)

Cons:
•  One pointer per page (typically 4K – 16K pages today)
•  Page tables need to be contiguous

•  However, previous example keeps tables to exactly one page in
size

•  Two (or more, if >2 levels) lookups per reference
•  Seems very expensive!

HASHED PAGE TABLES

One entry per page

fast lookup but large table

32
1

8.6 Structure of the Page Table 381

hash table

q s

logical address
physical
address

physical
memory

p d r d

p rhash
function • • •

Figure 8.19 Hashed page table.

hashed page tables except that each entry in the hash table refers to several
pages (such as 16) rather than a single page. Therefore, a single page-table
entry can store the mappings for multiple physical-page frames. Clustered
page tables are particularly useful for sparse address spaces, where memory
references are noncontiguous and scattered throughout the address space.

8.6.3 Inverted Page Tables

Usually, each process has an associated page table. The page table has one
entry for each page that the process is using (or one slot for each virtual
address, regardless of the latter’s validity). This table representation is a natural
one, since processes reference pages through the pages’ virtual addresses. The
operating system must then translate this reference into a physical memory
address. Since the table is sorted by virtual address, the operating system is
able to calculate where in the table the associated physical address entry is
located and to use that value directly. One of the drawbacks of this method
is that each page table may consist of millions of entries. These tables may
consume large amounts of physical memory just to keep track of how other
physical memory is being used.

To solve this problem, we can use an inverted page table. An inverted
page table has one entry for each real page (or frame) of memory. Each entry
consists of the virtual address of the page stored in that real memory location,
with information about the process that owns the page. Thus, only one page
table is in the system, and it has only one entry for each page of physical
memory. Figure 8.20 shows the operation of an inverted page table. Compare
it with Figure 8.10, which depicts a standard page table in operation. Inverted
page tables often require that an address-space identifier (Section 8.5.2) be
stored in each entry of the page table, since the table usually contains several
different address spaces mapping physical memory. Storing the address-space
identifier ensures that a logical page for a particular process is mapped to the
corresponding physical page frame. Examples of systems using inverted page
tables include the 64-bit UltraSPARC and PowerPC.

1111 1111!
stack"

heap"

code"

data"

Virtual memory view!

0000 0000!

0100 0000!

1000 0000!

1100 0000!

page #"offset!

Inverted Table!
hash(virt. page #) = !

phys. frame #!

1110 0000!

h(11111) =!
h(11110) =!
h(11101) = !
h(11100) = !
h(10010)= !
h(10001)= !
h(10000)=!
h(01011)= !
h(01010)= !
h(01001)= !
h(01000)= !
h(00011)= !
h(00010)= !
h(00001)= !
h(00000)= !

stack"

Physical memory view!

data"

code"

heap"

stack"

0000 0000!
0001 0000!

0101 0000!

0111 0000!

1110 0000!

11101!
11100!
10111 !
10110!
10000!
01111!
01110!
01101 !
01100!
01011!
01010 !
00101 !
00100 !
00011 !
00010!

1011 0000!

Total size of page table ≈ number of pages used by
program in physical memory. Hash more complex"

HASHED PAGE TAKE

INVERTED PAGE TABLES (IPT)
Previously, with single-level paging, one page table per process
•  64-bit logical address space, 4KB per page " 264 – 12 = 252 entries!
•  If use multi-level page table, 1024 entries per page " 6 levels! (why)

In inverted page table, one entry for each real page
The entry contains <PID, page-number, flag>

32
3

382 Chapter 8 Main Memory

page table

CPU

logical
address physical

address physical
memory

i

pid p

pid

search

p

d i d

Figure 8.20 Inverted page table.

To illustrate this method, we describe a simplified version of the inverted
page table used in the IBM RT. IBM was the first major company to use inverted
page tables, starting with the IBM System 38 and continuing through the
RS/6000 and the current IBM Power CPUs. For the IBM RT, each virtual address
in the system consists of a triple:

<process-id, page-number, offset>.

Each inverted page-table entry is a pair <process-id, page-number> where the
process-id assumes the role of the address-space identifier. When a memory
reference occurs, part of the virtual address, consisting of <process-id, page-
number>, is presented to the memory subsystem. The inverted page table
is then searched for a match. If a match is found—say, at entry i—then the
physical address <i, offset> is generated. If no match is found, then an illegal
address access has been attempted.

Although this scheme decreases the amount of memory needed to store
each page table, it increases the amount of time needed to search the table when
a page reference occurs. Because the inverted page table is sorted by physical
address, but lookups occur on virtual addresses, the whole table might need
to be searched before a match is found. This search would take far too long.
To alleviate this problem, we use a hash table, as described in Section 8.6.2,
to limit the search to one—or at most a few—page-table entries. Of course,
each access to the hash table adds a memory reference to the procedure, so one
virtual memory reference requires at least two real memory reads—one for the
hash-table entry and one for the page table. (Recall that the TLB is searched first,
before the hash table is consulted, offering some performance improvement.)

Systems that use inverted page tables have difficulty implementing shared
memory. Shared memory is usually implemented as multiple virtual addresses
(one for each process sharing the memory) that are mapped to one physical
address. This standard method cannot be used with inverted page tables;
because there is only one virtual page entry for every physical page, one

Can be combined with a hash map to avoid
linear search

IA64 (INTEL ITANIUM
ARCHITECTURE): INVERSE PAGE
TABLE (IPT)

Idea: index the page table by physical pages instead of VM

VMpage0, proc0"

VMpage2, proc0"

VMpage1, proc0"

VMpage3, proc0"

0x0000"

0x1000"

0x2000"

0x3000"

0x4000"

0x5000"

0x6000"

0x7000"

Physical memory 
in 4kB pages"

Page numbers in red"

pid 0 VMpage0
pid 1 …
pid 0 VMpage2
pid 0 VMpage1
xx free
pid 2 …
pid 1 …
pid 0 VMpage3

Inverse Page Table"

VMpage0
VMpage1
VMpage2
VMpage3 0x0"

0x1"
0x2"
0x3"
0x4"
0x5"
0x6"
0x7"

Process id 0"
Virtual memory"

IPT ADDRESS TRANSLATION
Need an associative map from VM page to IPT entry:
Use a hash map

pid 0 VMpage0
pid 1
pid 0 VMpage1
pid 0 VMpage2
xx free
pid 2
pid 1
pid 0 VMpage3

Inverse Page Table"

VMpage2 (52b) Offset (12b)

0x0"
0x1"
0x2"
0x3"
0x4"
0x5"
0x6"
0x7"

Process 0 virtual address"
0x3 Offset (12b)

Hash VM page #"

VMpage0, proc0"

VMpage2, proc0"

VMpage1, proc0"

VMpage3, proc0"

0x0000"

0x1000"

0x2000"

0x3000"

0x4000"

0x5000"

0x6000"

0x7000"

Physical address"

IPT ADDRESS TRANSLATION

Note: can’t share memory: only one hashed entry will match.

pid 0 VMpage0
pid 1
pid 0 VMpage1
pid 0 VMpage2
xx free
pid 2
pid 1
pid 0 VMpage3

Inverse Page Table"

VMpage2 (52b) Offset (12b)

0x0"
0x1"
0x2"
0x3"
0x4"
0x5"
0x6"
0x7"

Process 0 address"

VMpage4 (52b) Offset (12b)

Process 1 address"

IA64: INVERSE PAGE TABLE (IPT)

Pros:

•  Page table size naturally linked to physical memory size.
•  Only two memory accesses (most of the time).
•  Shouldn’t need to page out the page table.
•  Hash function can be very fast if implemented in hardware.

Cons:

•  Can’t (easily) share pages.
•  Have to manage collisions, e.g. by chaining, which adds

memory accesses.

Advantages! Disadvantages! Context switch!

Segmentation" Fast context switching:
Segment mapping
maintained by CPU "

External fragmentation" Load segment map (typically
a collection of segment
registers)"

Paging (single-
level page)"

No external
fragmentation, fast
easy allocation"

Large table size ~ virtual
memory"

Flush TLB"
Set Page table base register
(PTBR)"
Store in PCB page table
pointer and limit "

Paged
segmentation"

Table size ~ # of pages
in virtual memory, fast
easy allocation "

Multiple memory references
per page access "

(Segment registers)"
pointer to top level page
table in PTBR"

Multi-level
pages"

Inverted page
table"

Table size ~ # of pages
in physical memory"

Lookup time"
If combined with hash table,
two memory lookups"

SUMMARY

