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MULTIPROGRAMMING 

Physical Reality: Processes/Threads share the same 
hardware 

•  Need to multiplex CPU (CPU Scheduling) 
•  Need to multiplex use of Memory (Today) 

Why worry about memory multiplexing? 

•  The complete working state of a process and/or kernel is 
defined by its data in memory (and registers) 

•  Consequently, cannot just let different processes use the 
same memory 

•  Probably don’t want different processes to even have access 
to each other’s memory (protection) 



OBJECTIVES OF MEMORY 
MANAGEMENT 
•  Abstraction of exclusive and contiguous logical memory 

space to processes 
•  Might be larger than the amt of physical memory 

•  Allow sharing of memory space across cooperating 
processes 

•  Protection: ever wonder what is a segmentation fault? 
•  Efficiency 

•  a single memory access typically involves multiple instructions 
even I/O operations 

•  physical memory should be well utilized 
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BINDING OF INSTRUCTIONS AND 
DATA TO MEMORY 

data1:  dw  32 
  …   

start:  lw  r1,0(data1)   
 jal  checkit 

loop:  addi r1, r1, -1 
 bnz  r1, loop 
 … 

checkit: …   

Process view of memory"

0x0300 00000020 
   …     … 
0x0900 8C2000C0 
0x0904 0C000280 
0x0908 2021FFFF 
0x090C 14200242 
 … 
0x0A00 

Physical addresses"

Assume 4byte words 
0x300 = 4 * 0x0C0 
0x0C0 = 0000 1100 0000 
0x300 = 0011 0000 0000 



BINDING OF INSTRUCTIONS AND 
DATA TO MEMORY 

0x0300 00000020 
   …     … 
0x0900 8C2000C0 
0x0904 0C000280 
0x0908 2021FFFF 
0x090C 14200242 
 … 
0x0A00 

data1:  dw  32 
  …   

start:  lw  r1,0(data1)   
 jal  checkit 

loop:  addi r1, r1, -1 
 bnz  r1, loop 
 … 

checkit: …   

Process view of memory" Physical addresses"
8C2000C0 
0C000340 
2021FFFF 
14200242 

0x0900!

0xFFFF!

0x0300!

0x0000!

00000020 

Physical "
Memory"



BINDING OF INSTRUCTIONS AND 
DATA TO MEMORY 

0x300  00000020 
   …     … 
0x900  8C2000C0 
0x904  0C000280 
0x908  2021FFFF 
0x90C  14200242 
 … 
0x0A00 

data1:  dw  32 
  …   

start:  lw  r1,0(data1)   
 jal  checkit 

loop:  addi r1, r1, -1 
 bnz  r1, r0, loop
  … 

checkit: …   

Process view of memory" Physical addresses"
0x0900!

0xFFFF!

0x0300!

0x0000!

Physical"
Memory"

?"
App X"

Need address translation!"



BINDING OF INSTRUCTIONS AND 
DATA TO MEMORY 

0x1300 00000020 
   …     … 
0x1900 8C2004C0 
0x1904 0C000680 
0x1908 2021FFFF 
0x190C 14200642 
 … 
0x1A00 

data1:  dw  32 
  …   

start:  lw  r1,0(data1)   
 jal  checkit 

loop:  addi r1, r1, -1 
 bnz  r1, r0, loop
  … 

checkit: …   

Process view of memory" Processor view of memory"
0x0900!

0xFFFF!

0x0300!

0x0000!
Memory"

App X"

8C2004C0 
0C000680 
2021FFFF 
14200642 

00000020 0x1300!

0x1900!

•  One of many possible translations!"
•  Where does translation take place?"

Compile time, Link/Load time, or Execution time?"
"



MULTI-STEP PROCESSING OF A 
PROGRAM FOR EXECUTION 
Preparation of a program for execution involves 
components at: 

•  Compile time (i.e., “gcc”) 
•  Link/Load time (unix “ld” does link) 
•  Execution time (e.g. dynamic libs) 

Addresses can be bound to final values 
anywhere in this path 

•  Depends on hardware support  
•  Also depends on operating system 

Dynamic Libraries 
•  Linking postponed until execution 
•  Small piece of code, stub, used to locate 

appropriate memory-resident library routine 
•  Stub replaces itself with the address of the 

routine, and executes routine 



EXAMPLE OF GENERAL ADDRESS TRANSLATION 

Prog 1!
Virtual!

Address!
Space 1!

Prog 2!
Virtual!

Address!
Space 2!

Code"
Data"
Heap"
Stack"

Code"
Data"
Heap"
Stack"

Data 2"

Stack 1"

Heap 1"

OS heap & "
Stacks"

Code 1"

Stack 2"

Data 1"

Heap 2"

Code 2"

OS code"

OS data"Translation Map 1! Translation Map 2!

Physical Address Space!



EVOLUTION OF MEMORY 
MANAGEMENT 
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No memory 
management 

Division between 
kernel and user 
memory space 

Early systems Uniprogramming 
e.g., MS Dos 

Segmentation 

Multiprogramming 

Paging, 
Multi-level paging  

Memory management unit  
introduced 

Translation 
lookaside buffer 
(TLB) 

Both hardware support and software 
implementation evolve over time 

Virtual memory 



NO MEMORY MANAGEMENT 

The very first computers had no operating system 
whatsoever 

Each programmer 
•  Had access to whole main memory of the computer  
•  Had to enter the bootstrapping routine loading his or her 

program into main memory 
Advantage: 

•  Programmer  is in total control of the whole machine. 
Disadvantage: 

•  Much time is lost entering manually the bootstrapping routine.  



UNIPROGRAMMING 

Every system includes a memory-
resident monitor  

•   Invoked every time a user program 
would terminate  

•  Would immediately fetch the next 
program in the queue (batch 
processing) 

Should prevent user program from 
corrupting the address space of kernel 
processes 

Must add a  Memory Management  
Unit (MMU) 

0x00000000!

0xFFFFFFFF!
Application!

Operating!
System!

Va
lid

 3
2-

bi
t!

A
dd

re
ss

es
!



UNIPROGRAMMING 
Assuming that the OS occupies 
memory locations 0 to START – 1 
MMU will prevent the program from 
accessing memory locations 0 to 
START – 1 
Advantage: 

•  No time is lost re-entering manually 
the bootstrapping routine 

Disadvantage: 
•  CPU remains idle every time the user 

program does an I/O. 
 
  

RAM Address 

> START 

YES 

NO 

trap 



CONTIGUOUS ADDRESS SPACE 
AND FIXED PARTITION 

Multiprogramming with fixed partitions 

•  Requires I/O controllers and interrupts 
OS dedicates multiple partitions for user 
processes 

•  Partition boundaries are fixed 
Each process must be confined between its first 
and last address 

Computer often had  
•  A foreground partition (FG) 
•  Several background partitions 

(BG0, . . .) 

Monitor 

FG 

BG0 

BG1 



CONTIGUOUS ADDRESS SPACE 
AND FIXED PARTITION 

Advantage: 

•  No CPU time is lost while system does  
I/O 

Disadvantages: 

•  Partitions are fixed  while processes 
have different memory requirements 

•  Many systems were requiring 
processes to occupy a specific partition 

RAM Address 

>  FIRST 

NO 

trap 

 ≤  LAST 

YES 

NO 

trap 



CONTIGUOUS ADDRESS SPACE 
AND VARIABLE PARTITION 

Multiprogramming with variable partitions 

OS allocates contiguous extents of memory to processes 
•  Initially each process gets all the memory space it needs and 

nothing more 
Processes that are swapped out can return to any main 
memory location 



Monitor 

EXTERNAL SEGMENTATION 

Initially everything works fine 

•  Three processes occupy most 
of memory 

•  Unused part of memory is 
very small 

P0 

P1 

P2 



Monitor 

EXTERNAL FRAGMENTATION (CONT’D) 

When P0 terminates 

•  Replaced by P3 
•   P3 must be smaller than P0 

Start wasting memory space 

P3 

P1 

P2 



Monitor 

EXTERNAL FRAGMENTATION (CONT’D) 

When P2 terminates 

•  Replaced by P4 
•   P4 must be smaller than P0 

plus the free space 
Start wasting  more memory 
space P3 

P1 

P4 



EXTERNAL FRAGMENTATION 

Happens in all systems using multiprogramming with 
variable partitions 

Occurs because new process must fit in the hole left by 
terminating process 

•  Very low probability that both process will have  exactly the 
same size 

•  Typically  the new process will be a bit smaller than the 
terminating process 



AN ANALOGY 

Replacing an old book  by a new book on a 
bookshelf 

New book must fit in the hole left by old book 
•  Very low probability that both books have 

exactly the same width 
•  We will end with empty shelf space between 

books 
Solution: push books left and right 

 

Other situations fragmentation occurs in computer systems? 



Monitor 

MEMORY COMPACTION 

When external fragmentation 
becomes a problem we push 
processes around in order to 
consolidate free spaces 

P3 

P1 

P4 



Monitor 

MEMORY COMPACTION 

Works very well when memory 
sizes were small 

large overhead with more 
processes and large memory 
sizes 

Problematic if address binding 
is done at compilation or 
loading stage 

P3 

P1 

P4 

FREE 



SEGMENTATION 

Non-contiguous allocation 

Partition physical memory into fixed-size entities 
•  Page frames 

Allocate non-contiguous page frames to processes 

Let the MMU take care of the address translation 



SEGMENTATION (CONT’D) 

Logical View: multiple separate segments 
•  Typical: Code, Data, Stack 
•  Others: memory sharing, etc 

Each segment is given region of contiguous memory 
•  Has a base and limit 
•  Can reside anywhere in physical memory 

1"

3"

2"

4"

user view of"
memory space "

1"

4"

2"

3"

physical "
memory 
space"

1"

2"



COFF IN NACHOS 

The Common Object File Format (COFF) -- a specification of 
a format for executable, object code, and shared library 
computer files used on Unix systems.  

 
 



COFF header 

COFF table entry .text 

COFF table entry .rodata 

COFF table entry .data 

COFF table entry .bss 

#define Dim     20 
 
nachos -d ac -x matmult.coff 
initializing .text section (3 pages) 
… 
initializing .bss section (5 pages) 
 

#define Dim     50 
 
nachos -d ac -x matmult.coff 
initializing .text section (3 pages) 
… 
initializing .bss section (30 pages) 
 



SEGMENTATION (CONT’D)!

Segment map resides in Memory Management Unit!
•  Segment number mapped into base/limit pair"
•  Base added to offset to generate physical address"
•  Error check catches offset out of range"

!
As many chunks of continguous physical memory as entries!

•  Segment addressed by portion of virtual address"
!
What is “V/N” (valid / not valid)?!

•  Can mark segments as invalid; requires check as well"

Base0" Limit0" V"
Base1" Limit1" V"
Base2" Limit2" V"
Base3" Limit3" N"
Base4" Limit4" V"
Base5" Limit5" N"
Base6" Limit6" N"
Base7" Limit7" V"

Offset"Seg #"Virtual!
Address!

Base2" Limit2" V"

+" Physical!
Address!

>" Error!offset!

Check Valid"

Access!
Error!



EXAMPLE: FOUR SEGMENTS (16 BIT ADDRESSES) 
Seg ID #! Base! Limit!

0 (code)! 0x4000! 0x0800!
1 (data)! 0x4800! 0x1400!
2 (shared)! 0xF000! 0x1000!
3 (stack)! 0x0000! 0x3000!

Offset"Seg"
0!14!13!15!

0x4000!

0x0000!

0x8000!

0xC000!

Virtual!
Address Space!

Virtual Address Format!

0x0000!

0x4800!
0x5C00!

0x4000!

0xF000!

Physical!
Address Space!

Space for!
Other Apps!

Shared with!
Other Apps!

Might !
be shared!

SegID = 0!

SegID = 1!

segment 
table 



PROBLEMS WITH 
SEGMENTATION 

How to partition 

Size of segments vary 
•  Can still suffer from external 

fragmentation 
No easy for sharing 
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Monitor 

P3, seg 1 

P1, seg 1 

P3, seg 2 



PAGING 
The problem of external 
fragmentation in segmentation is due 
to the mismatch between physical 
and virtual memory 

•  holes in physical memory that no 
process/segment can fit 

 
Basic idea: equal sized pages in 
physical and virtual memory 

•  How big the sizes?"
•  How to look up the physical page 

from a virtual page?"
•  Where to store such information?"
•  Internal fragmentation and 

validity of pages"
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68451 MMU used with  
Motorola 68010  



PAGE TABLE 

A page table consists of a collection of pages 

•  Resides in memory 
•  One page table per process 

A page table entry  (PTE) contains 

•  A page frame number   
•   Several special bits 

Assuming 32-bit addresses, all fit into four bytes 

Page frame number Bits 



THE SPECIAL BITS 

Valid bit: 

•  1 if page is in main memory,  
•  0 otherwise 

Dirty bit: 1 if page has been modified since it was brought 
into main memory, 0 otherwise 

•  A dirty page must be saved in the process swap area on disk 
before being expelled from main memory 

•  A clean page can be immediately expelled 
Page-referenced bit:1  if page has been  recently accessed, 
0 otherwise 

•  Often  simulated  in software 
… 

 

 
 



Physical Address!
Offset"

IMPLEMENTATION OF PAGING 

Virtual address mapping!
•  Offset from Virtual address copied to Physical Address"

•  Example: 10 bit offset à 1024-byte pages"
•  Virtual page # is all remaining bits à look up the page table entry"

•  Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries"
•  Physical page # copied from table into physical address"

•  Check Page Table bounds and permissions"

Offset"Virtual"
Page #"Virtual Address:!

Access!
Error!

>"PageTableSize"

PageTablePtr" page #0"

page #2"
page #3"
page #4"
page #5"

V,R"
page #1" V,R"

V,R,W"
V,R,W"
N"
V,R,W"

page #1" V,R"

Check Perm"

Access!
Error!

Physical"
Page #"

8.5 Paging 369

The page size (like the frame size) is defined by the hardware. The size of a
page is a power of 2, varying between 512 bytes and 1 GB per page, depending
on the computer architecture. The selection of a power of 2 as a page size
makes the translation of a logical address into a page number and page offset
particularly easy. If the size of the logical address space is 2m, and a page size is
2n bytes, then the high-order m − n bits of a logical address designate the page
number, and the n low-order bits designate the page offset. Thus, the logical
address is as follows:

p d

page number page offset

m – n n

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 8.12. Here, in the logical address, n= 2 and m = 4. Using a page size
of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the
programmer’s view of memory can be mapped into physical memory. Logical
address 0 is page 0, offset 0. Indexing into the page table, we find that page 0

logical memory

physical memory

page table

i
j
k
l

m
n
o
p

a
b
c
d
e
f
g
h

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

0

4

8

12

16

20

24

28

1
2
3

5
6
1
2

Figure 8.12 Paging example for a 32-byte memory with 4-byte pages.



AN EXAMPLE 
 

8-bit address, 4 byte pages!

a"
b"
c"
d"
e"
f"
g"
h"
i"
j"
k"
l"

0x00!

0x04!

0x08!

Virtual!
Memory!

0x00!

i"
j"
k"
l"

0x04!

0x08!

e"
f"
g"
h"

0x0C!

a"
b"
c"
d"

0x10!

Physical!
Memory!

4"
3"
1"

Page!
Table!

0!

1!
2!

0000 0000!

0001 0000!

0000 0100! 0000 1100!

0000 1000!

0000 0100!

0000 1011!

0000 0111!



PageTablePtrB" page #0"
page #1"
page #2"
page #3"

page #5"

V,R"
N"
V,R,W"
N"

page #4" V,R"
V,R,W"

page #4" V,R"

SHARED MEMORY 
 

Offset"Virtual"
Page #"Virtual Address!

(Process A):!

PageTablePtrA" page #0"
page #1"

page #3"
page #4"
page #5"

V,R"
V,R"

page #2" V,R,W"
V,R,W"
N"
V,R,W"

Offset"Virtual"
Page #"Virtual Address!

(Process B):!

Shared!
Page!

This physical page!
appears in address!
space of both processes!

page #2" V,R,W"



SELECTING THE RIGHT PAGE 
SIZE 

Increasing the page size 

•  Increases the length of the offset 
•  Decreases the length of the page number 
•  Reduces the size of page tables 

•  Less entries 
•  Increases internal fragmentation: unused space in an 

allocated frame 

 

 

4KB seems to be a good choice  

3583B 

4KB 



SUMMARY OF PAGING 
Pros 

•  Simple memory allocation 
•  Easy to share 

Con i) Internal fragmentation: may not use up the last page 
Con ii) Each logical memory access ! two memory accesses 

•  Solution: use special hardware cache called translation look-aside buffer 
(TLB)  

Con iii) 
•  For small page size, more page table entries needed (e.g, 1K pages, 32-bit, 

4 million page table entries) 
•  Page table entries needed whether in use or not 

•  Possible solutions: 
•  Combining segmentation with paging 
•  Multi-level page tables (tradeoff space complexity with time complexity) 
•  Inverted page table  
•  Include page table entries only when needed (which are in use?) 
•  Variable page size 



TRANSLATION LOOK-ASIDE 
BUFFER (TLB)  

31
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A high-speed cache is set up for 
page table entries (key,value) 

•  Can concurrently check 
with multiple entries 

Contains page table entries that 
have been most recently used 
TLB miss requires more time 
Replacement policy for TLB 

•  Flush TLB during context 
switch 

•  TLB miss loads new entries 
into the TLB 

 

8.5 Paging 373

The standard solution to this problem is to use a special, small, fast-
lookup hardware cache called a translation look-aside buffer (TLB). The TLB
is associative, high-speed memory. Each entry in the TLB consists of two parts:
a key (or tag) and a value. When the associative memory is presented with an
item, the item is compared with all keys simultaneously. If the item is found,
the corresponding value field is returned. The search is fast; a TLB lookup in
modern hardware is part of the instruction pipeline, essentially adding no
performance penalty. To be able to execute the search within a pipeline step,
however, the TLB must be kept small. It is typically between 32 and 1,024 entries
in size. Some CPUs implement separate instruction and data address TLBs. That
can double the number of TLB entries available, because those lookups occur
in different pipeline steps. We can see in this development an example of the
evolution of CPU technology: systems have evolved from having no TLBs to
having multiple levels of TLBs, just as they have multiple levels of caches.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by the
CPU, its page number is presented to the TLB. If the page number is found, its
frame number is immediately available and is used to access memory. As just
mentioned, these steps are executed as part of the instruction pipeline within
the CPU, adding no performance penalty compared with a system that does
not implement paging.

If the page number is not in the TLB (known as a TLB miss), a memory
reference to the page table must be made. Depending on the CPU, this may be
done automatically in hardware or via an interrupt to the operating system.
When the frame number is obtained, we can use it to access memory (Figure
8.14). In addition, we add the page number and frame number to the TLB, so

page table

f

CPU

logical
address

p d

f d

physical
address

physical
memory

p

TLB miss

page
number

frame
number

TLB hit

TLB

Figure 8.14 Paging hardware with TLB.



PERFORMANCE IMPLICATIONS 

Tm be the main memory access time, p be the probability of 
TLB hit 

•  Access time using TLB =  2(1-p)Tm + p*Tm 

•  e.g., p = 0.99 à 1.01Tm 

•  Compared to 2Tm using page table only  



COMBINING PAGING WITH 
SEGMENTATION 

Used with Intel 32-bit architecture!
Segment map on MMU, page table in memory!
!
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page #0"
page #1"

page #3"
page #4"
page #5"

V,R"
V,R"

page #2" V,R,W"
V,R,W"
N"
V,R,W"

Offset"

Physical Address!

Virtual !
Address:!

Offset"Virtual"
Page #"

Virtual"
Seg #"

Base0" Limit0" V"
Base1" Limit1" V"
Base2" Limit2" V"
Base3" Limit3" N"
Base4" Limit4" V"
Base5" Limit5" N"
Base6" Limit6" N"
Base7" Limit7" V"

Base2" Limit2" V"

Access!
Error!>"

page #2" V,R,W"

Physical"
Page #"

Check Perm"

Access!
Error!



EXAMPLE: SEGMENTED PAGE 

•  Given a memory size of 256 = 28 addressable bytes,  

•  a page table indexing 8=23 pages, 
•  a page size of 32 bytes = 25, and 

•   8 = 23 logical segments  

1.  How many bits is a physical address?  

2.  How many bits for the segment number, page table, and 
offset?  

3.  How many bits is a virtual address?  
4.  How many segment table entries do we need?  

8 bits 

3 3 5  

11 bits 

8  

Offset"Virtual"
Page #"

Virtual"
Seg #"



MULTI-LEVEL PAGING 
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Physical!
Address:!

Offset"Physical"
Page #"

4KB 

10 bits" 10 bits" 12 bits"
Virtual !
Address:!

Offset"Virtual"
P2 index"

Virtual"
P1 index"

4 bytes"

PageTablePtr"

Tree of Page Tables!
Tables fixed size (1024 entries, 4KB per 
table)!
Valid bits on Page Table Entries !

•  Don’t need every 2nd-level table"
•  Even when exist, 2nd-level tables can reside 

on disk if not in use" 4 bytes 



stack"

1111 1111!
stack"

heap"

code"

data"

Virtual memory view!

0000 0000!

0100 0000!

1000 0000!

1100 0000!

page1 #" offset!

Physical memory view!

data"

code"

heap"

stack"

0000 0000!
0001 0000!

0101 000!

0111 000!

1110 0000!

page2 #"

111       !
110   null!
101   null!
100   !
011   null!
010   !
001   null!
000   !

11   11101    !
10   11100!
01   10111!
00   10110!

11   01101    !
10   01100!
01   01011!
00   01010!

11   00101    !
10   00100!
01   00011!
00   00010!

11     null  !
10   10000!
01   01111!
00   01110!

Page Tables!
(level 2)!

Page Table!
(level 1)!

1111 0000!

EXAMPLE (3 BITS FOR LEVEL-1, 2 BITS FOR LEVEL-2 
 



USE OF MULTI-LEVEL PAGING 

32-bit machines 

 
 

 

 

64-bit machine 
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8.6 Structure of the Page Table 379

logical address

outer page
table

p1 p2

p1

page of
page table

p2

d

d

Figure 8.18 Address translation for a two-level 32-bit paging architecture.

into a 10-bit page number and a 10-bit page offset. Thus, a logical address is as
follows:

p1 p2 d

page number page offset

10 10 12

where p1 is an index into the outer page table and p2 is the displacement
within the page of the inner page table. The address-translation method for this
architecture is shown in Figure 8.18. Because address translation works from
the outer page table inward, this scheme is also known as a forward-mapped
page table.

Consider the memory management of one of the classic systems, the VAX
minicomputer from Digital Equipment Corporation (DEC). The VAX was the
most popular minicomputer of its time and was sold from 1977 through 2000.
The VAX architecture supported a variation of two-level paging. The VAX is a 32-
bit machine with a page size of 512 bytes. The logical address space of a process
is divided into four equal sections, each of which consists of 230 bytes. Each
section represents a different part of the logical address space of a process. The
first 2 high-order bits of the logical address designate the appropriate section.
The next 21 bits represent the logical page number of that section, and the final
9 bits represent an offset in the desired page. By partitioning the page table in
this manner, the operating system can leave partitions unused until a process
needs them. Entire sections of virtual address space are frequently unused, and
multilevel page tables have no entries for these spaces, greatly decreasing the
amount of memory needed to store virtual memory data structures.

An address on the VAX architecture is as follows:

s p d

section page offset

2 21 9

where s designates the section number, p is an index into the page table, and d
is the displacement within the page. Even when this scheme is used, the size
of a one-level page table for a VAX process using one section is 221 bits ∗ 4

Vax 

380 Chapter 8 Main Memory

bytes per entry = 8 MB. To further reduce main-memory use, the VAX pages the
user-process page tables.

For a system with a 64-bit logical address space, a two-level paging scheme
is no longer appropriate. To illustrate this point, let’s suppose that the page
size in such a system is 4 KB (212). In this case, the page table consists of up
to 252 entries. If we use a two-level paging scheme, then the inner page tables
can conveniently be one page long, or contain 210 4-byte entries. The addresses
look like this:

p1 p2 d

outer page inner page offset

42 10 12

The outer page table consists of 242 entries, or 244 bytes. The obvious way to
avoid such a large table is to divide the outer page table into smaller pieces.
(This approach is also used on some 32-bit processors for added flexibility and
efficiency.)

We can divide the outer page table in various ways. For example, we can
page the outer page table, giving us a three-level paging scheme. Suppose that
the outer page table is made up of standard-size pages (210 entries, or 212 bytes).
In this case, a 64-bit address space is still daunting:

p1 p2 p3

2nd outer page outer page inner page

32 10 10

d

offset

12

The outer page table is still 234 bytes (16 GB) in size.
The next step would be a four-level paging scheme, where the second-level

outer page table itself is also paged, and so forth. The 64-bit UltraSPARC would
require seven levels of paging—a prohibitive number of memory accesses—
to translate each logical address. You can see from this example why, for 64-bit
architectures, hierarchical page tables are generally considered inappropriate.

8.6.2 Hashed Page Tables

A common approach for handling address spaces larger than 32 bits is to use
a hashed page table, with the hash value being the virtual page number. Each
entry in the hash table contains a linked list of elements that hash to the same
location (to handle collisions). Each element consists of three fields: (1) the
virtual page number, (2) the value of the mapped page frame, and (3) a pointer
to the next element in the linked list.

The algorithm works as follows: The virtual page number in the virtual
address is hashed into the hash table. The virtual page number is compared
with field 1 in the first element in the linked list. If there is a match, the
corresponding page frame (field 2) is used to form the desired physical address.
If there is no match, subsequent entries in the linked list are searched for a
matching virtual page number. This scheme is shown in Figure 8.19.

A variation of this scheme that is useful for 64-bit address spaces has
been proposed. This variation uses clustered page tables, which are similar to
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bytes per entry = 8 MB. To further reduce main-memory use, the VAX pages the
user-process page tables.

For a system with a 64-bit logical address space, a two-level paging scheme
is no longer appropriate. To illustrate this point, let’s suppose that the page
size in such a system is 4 KB (212). In this case, the page table consists of up
to 252 entries. If we use a two-level paging scheme, then the inner page tables
can conveniently be one page long, or contain 210 4-byte entries. The addresses
look like this:

p1 p2 d

outer page inner page offset

42 10 12

The outer page table consists of 242 entries, or 244 bytes. The obvious way to
avoid such a large table is to divide the outer page table into smaller pieces.
(This approach is also used on some 32-bit processors for added flexibility and
efficiency.)

We can divide the outer page table in various ways. For example, we can
page the outer page table, giving us a three-level paging scheme. Suppose that
the outer page table is made up of standard-size pages (210 entries, or 212 bytes).
In this case, a 64-bit address space is still daunting:
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offset
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The outer page table is still 234 bytes (16 GB) in size.
The next step would be a four-level paging scheme, where the second-level

outer page table itself is also paged, and so forth. The 64-bit UltraSPARC would
require seven levels of paging—a prohibitive number of memory accesses—
to translate each logical address. You can see from this example why, for 64-bit
architectures, hierarchical page tables are generally considered inappropriate.

8.6.2 Hashed Page Tables

A common approach for handling address spaces larger than 32 bits is to use
a hashed page table, with the hash value being the virtual page number. Each
entry in the hash table contains a linked list of elements that hash to the same
location (to handle collisions). Each element consists of three fields: (1) the
virtual page number, (2) the value of the mapped page frame, and (3) a pointer
to the next element in the linked list.

The algorithm works as follows: The virtual page number in the virtual
address is hashed into the hash table. The virtual page number is compared
with field 1 in the first element in the linked list. If there is a match, the
corresponding page frame (field 2) is used to form the desired physical address.
If there is no match, subsequent entries in the linked list are searched for a
matching virtual page number. This scheme is shown in Figure 8.19.

A variation of this scheme that is useful for 64-bit address spaces has
been proposed. This variation uses clustered page tables, which are similar to
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Figure 8.22 IA-32 segmentation.

The linear address on the IA-32 is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question is used to generate
a linear address. First, the limit is used to check for address validity. If the
address is not valid, a memory fault is generated, resulting in a trap to the
operating system. If it is valid, then the value of the offset is added to the value
of the base, resulting in a 32-bit linear address. This is shown in Figure 8.22. In
the following section, we discuss how the paging unit turns this linear address
into a physical address.

8.7.1.2 IA-32 Paging

The IA-32 architecture allows a page size of either 4 KB or 4 MB. For 4-KB pages,
IA-32 uses a two-level paging scheme in which the division of the 32-bit linear
address is as follows:

p1 p2 d

page number page offset

10 10 12

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 8.18. The IA-32 address translation is shown in more detail in
Figure 8.23. The 10 high-order bits reference an entry in the outermost page
table, which IA-32 terms the page directory. (The CR3 register points to the
page directory for the current process.) The page directory entry points to an
inner page table that is indexed by the contents of the innermost 10 bits in the
linear address. Finally, the low-order bits 0–11 refer to the offset in the 4-KB
page pointed to in the page table.

One entry in the page directory is the Page Size flag, which—if set—
indicates that the size of the page frame is 4 MB and not the standard 4 KB.
If this flag is set, the page directory points directly to the 4-MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4-MB page frame.

Intel 



MULTI-LEVEL TRANSLATION 
ANALYSIS 
Pros: 

•  Only need to allocate as many page table entries as we need for 
application – size is proportional to usage 

•  In other words, sparse address spaces are easy 
•  Easy memory allocation 
•  Easy Sharing 

•  Share at segment or page level (need additional reference 
counting) 

Cons: 
•  One pointer per page (typically 4K – 16K pages today) 
•  Page tables need to be contiguous 

•  However, previous example keeps tables to exactly one page in 
size 

•  Two (or more, if >2 levels) lookups per reference 
•  Seems very expensive! 
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One entry per page 

fast lookup but large table 
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Figure 8.19 Hashed page table.

hashed page tables except that each entry in the hash table refers to several
pages (such as 16) rather than a single page. Therefore, a single page-table
entry can store the mappings for multiple physical-page frames. Clustered
page tables are particularly useful for sparse address spaces, where memory
references are noncontiguous and scattered throughout the address space.

8.6.3 Inverted Page Tables

Usually, each process has an associated page table. The page table has one
entry for each page that the process is using (or one slot for each virtual
address, regardless of the latter’s validity). This table representation is a natural
one, since processes reference pages through the pages’ virtual addresses. The
operating system must then translate this reference into a physical memory
address. Since the table is sorted by virtual address, the operating system is
able to calculate where in the table the associated physical address entry is
located and to use that value directly. One of the drawbacks of this method
is that each page table may consist of millions of entries. These tables may
consume large amounts of physical memory just to keep track of how other
physical memory is being used.

To solve this problem, we can use an inverted page table. An inverted
page table has one entry for each real page (or frame) of memory. Each entry
consists of the virtual address of the page stored in that real memory location,
with information about the process that owns the page. Thus, only one page
table is in the system, and it has only one entry for each page of physical
memory. Figure 8.20 shows the operation of an inverted page table. Compare
it with Figure 8.10, which depicts a standard page table in operation. Inverted
page tables often require that an address-space identifier (Section 8.5.2) be
stored in each entry of the page table, since the table usually contains several
different address spaces mapping physical memory. Storing the address-space
identifier ensures that a logical page for a particular process is mapped to the
corresponding physical page frame. Examples of systems using inverted page
tables include the 64-bit UltraSPARC and PowerPC.
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INVERTED PAGE TABLES (IPT)  
Previously, with single-level paging, one page table per process 
•  64-bit logical address space, 4KB per page " 264 – 12 = 252 entries! 
•  If use multi-level page table, 1024 entries per page " 6 levels! (why) 
 
In inverted page table, one entry for each real page 
The entry contains <PID, page-number, flag> 
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Figure 8.20 Inverted page table.

To illustrate this method, we describe a simplified version of the inverted
page table used in the IBM RT. IBM was the first major company to use inverted
page tables, starting with the IBM System 38 and continuing through the
RS/6000 and the current IBM Power CPUs. For the IBM RT, each virtual address
in the system consists of a triple:

<process-id, page-number, offset>.

Each inverted page-table entry is a pair <process-id, page-number> where the
process-id assumes the role of the address-space identifier. When a memory
reference occurs, part of the virtual address, consisting of <process-id, page-
number>, is presented to the memory subsystem. The inverted page table
is then searched for a match. If a match is found—say, at entry i—then the
physical address <i, offset> is generated. If no match is found, then an illegal
address access has been attempted.

Although this scheme decreases the amount of memory needed to store
each page table, it increases the amount of time needed to search the table when
a page reference occurs. Because the inverted page table is sorted by physical
address, but lookups occur on virtual addresses, the whole table might need
to be searched before a match is found. This search would take far too long.
To alleviate this problem, we use a hash table, as described in Section 8.6.2,
to limit the search to one—or at most a few—page-table entries. Of course,
each access to the hash table adds a memory reference to the procedure, so one
virtual memory reference requires at least two real memory reads—one for the
hash-table entry and one for the page table. (Recall that the TLB is searched first,
before the hash table is consulted, offering some performance improvement.)

Systems that use inverted page tables have difficulty implementing shared
memory. Shared memory is usually implemented as multiple virtual addresses
(one for each process sharing the memory) that are mapped to one physical
address. This standard method cannot be used with inverted page tables;
because there is only one virtual page entry for every physical page, one

Can be combined with a hash map to avoid 
linear search 



IA64 (INTEL ITANIUM 
ARCHITECTURE): INVERSE PAGE 
TABLE (IPT) 

Idea: index the page table by physical pages instead of VM 
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IPT ADDRESS TRANSLATION 
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IPT ADDRESS TRANSLATION 

Note: can’t share memory: only one hashed entry will match.  
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IA64: INVERSE PAGE TABLE (IPT) 

Pros:  

•  Page table size naturally linked to physical memory size. 
•  Only two memory accesses (most of the time).  
•  Shouldn’t need to page out the page table. 
•  Hash function can be very fast if implemented in hardware. 

Cons: 

•  Can’t (easily) share pages. 
•  Have to manage collisions, e.g. by chaining, which adds 

memory accesses. 



Advantages! Disadvantages! Context switch!

Segmentation" Fast context switching: 
Segment mapping 
maintained by CPU "

External fragmentation" Load segment map (typically 
a collection of segment 
registers)"

Paging (single-
level page)"

No external 
fragmentation, fast 
easy allocation"

Large table size ~ virtual 
memory"

Flush TLB"
Set Page table base register 
(PTBR)"
Store in PCB  page table 
pointer and limit "

Paged 
segmentation"

Table size ~ # of pages 
in virtual memory, fast 
easy allocation "

Multiple memory references 
per page access "

(Segment registers)"
pointer to top level page 
table in PTBR"

Multi-level 
pages"

Inverted page 
table"

Table size ~ # of pages 
in physical memory"

Lookup time"
If combined with hash table, 
two memory lookups"

SUMMARY 


