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MULTIPROGRAMMING

Physical Reality: Processes/Threads share the
hardware

* Need to multiplex CPU (CPU Scheduling)
* Need to multiplex use of Memory (Today)

Why worry about memory multiplexing?

* The complete working state of a process and/or kernel is
defined by its data in memory (and registers)

» Consequently, cannot just let different processes use the
same memory

* Probably don’t want different processes to even have access
to each other’s memory (protection)



OBJECTIVES OF MEMORY
MANAGEMENT

Abstraction of exclusive and contiguous logical memory
space to processes

« Might be larger than the amt of physical memory

« Allow sharing of memory space across cooperating
processes

* Protection: ever wonder what is a segmentation fault?
« Efficiency

* a single memory access typically involves multiple instructions
even |/O operations

* physical memory should be well utilized



BINDING OF INSTRUCTIONS AND
DATA TO MEMORY

Process view of memory

é;;alz

start:

loop:

Qeckit:

dw 32 ‘\\

1w rl, 0 (datal)

jal checkit E
addi rl1, rl1, -1
bnz rl, loop

Assume 4byte words
0x300 = 4 * 0x0CO
Physi| 0x0C0 = 0000 1100 0000

7/ 0x300 = 0011 0000 00QO

0x03g§:3§§!<f40

0x0900 8C2000CO
0x0904 0CO0O
0x0908 2021FFFF

0x090C 14200242

/

o Y,




BINDING OF INSTRUCTIONS AND
DATA TO MEMORY

Process view of memory

é;;alz

start:

loop:

Qeckit:

~

dw 32

1w rl, 0 (datal)
jal checkit E
addi rl1, rl1, -1
bnz rl, loop

=

/

Physical addresses

4 o)

0x0300 00000020

0x0900 8C2000CO
0x0904 0CO0O

0x0908 2021FFFF
0x090C 14200242

=

Physical
Memory

0x0000

0x0300| 00000020

0x0900| 8c2000CO

0C000340
2021FFFF
14200242

o Y,

OXFFFF




BINDING OF INSTRUCTIONS AND
DATA TO MEMORY

Process view of memory

datal:
start:

loop:

dw

lw
jal

bnz

Qeckit:

rl,0 (datal) 0x900
checkit E 0x904
addi r1, r1, -1 0x908

Physical addresses

32 \ @300

r1, rO, lOOp 0x90C

4// \S%OAOO

N

00000020

8C2000CO
0C000280
2021FFFF
14200242

0x0000

0x0300

0x0900

I?

)

J

Need address translation!

OXFFFF

Physical
Memory

App X




BINDING OF INSTRUCTIONS AND Memory

DATA TO MEMORY 0x0000
0x0300
Process view of memory Processor view of memory
datal: dw 32 \ @1300 oooooozo\ oxog00(  APP X
start: 1w rl, 0 (datal) oxlgoo 8C2604C0
JEL EheElEE E 0x1904 0CO00 0x13001 00000020
loop: addi rl, rl, -1 0x1908 2021FFFF
bnz rl, r0, loop 0x190C 14200642
0x1900| 8c2004cC0
checkit: .. 0x 0C000680
N " / 2021FFFF
« One of many possible translations! 14200642

 Where does translation take place? O0xFFFF

Compile time, Link/Load time, or Execution time?



MULTI-STEP PROCESSING OF A

PROGRAM FOR EXECUTION

Preparation of a program for execution involves
components at:

« Compile time (i.e., “gcc”)

* Link/Load time (unix “Id” does link)

« Execution time (e.g. dynamic libs)
Addresses can be bound to final values
anywhere in this path

* Depends on hardware support

 Also depends on operating system
Dynamic Libraries

« Linking postponed until execution
- Small piece of code, stub, used to locate
appropriate memory-resident library routine

 Stub replaces itself with the address of the
routine, and executes routine

other
object
modules

source
program

compiler or
assembler

object
module

compile
time

system
library

dynamicall
loaded
system
library

dynamic
linking

linkage
editor

load
module

loader

Y

in-memory
binary
memory
image

load
time

executior
> time (run

time)




EXAMPLE OF GENERAL ADDRESS TRANSLATION

Prog 2
*  Virtual
*» Address
\ Space 2

Virtual
Address
Space 1

Translation Map 1

OS heap &
Stacks

Physical Address Space



EVOLUTION OF MEMORY

Memory management unit Translation
introduced lookaside buffer
(TLB)
NG memo Division between Paqin
Y > kernel and user > Segmentation aging,
management SRR SEEE Multi-level paging
Early systems Uniprogramming Multiprogramming

e.g., MS Dos

Virtual memory

Both hardware support and software
Implementation evolve over time



NO MEMORY MANAGEMENT

The very first computers had no operating system
whatsoever

Each programmer

« Had access to whole main memory of the computer

* Had to enter the bootstrapping routine loading his or her
program into main memory

Advantage:

* Programmer is in total control of the whole machine.
Disadvantage:

« Much time is lost entering manually the bootstrapping routine.



UNIPROGRAMMING

Every system includes a memory-
resident monitor

* Invoked every time a user program
would terminate

* Would immediately fetch the next
program in the queue (batch
processing)

Should prevent user program from
corrupting the address space of kernel
processes

Must add a Memory Management
Unit (MMU)

Operating
System

Application

0x00000000

Valid 32-bit
Addresses

OXFFFFFFFF



UNIPROGRAMMING

Assuming that the OS occupies
memory locations 0 to START -1

MMU will prevent the program from
accessing memory locations 0 to
START -1 NO

Advantage: trap

* No time is lost re-entering manually
the bootstrapping routine
Disadvantage: YES

« CPU remains idle every time the user
program does an |/O.

RAM Address




CONTIGUOUS ADDRESS SPACE
AND FIXED PARTITION

Multiprogramming with fixed partitions

» Requires I/O controllers and interrupts
OS dedicates multiple partitions for user
processes

 Partition boundaries are fixed
Each process must be confined between its first
and last address
Computer often had

A foreground partition (FG)

» Several background partitions
(BGO, .. .)

Monitor

FG

BGO

BG1




CONTIGUOUS ADDRESS SPACE
AND FIXED PARTITION

Advantage: RAM Address

* No CPU time is lost while system does
/O NO

Disadvantages:

trap
 Partitions are fixed while processes
have different memory requirements

* Many systems were requiring

processes to occupy a specific partition NO

trap

YES



CONTIGUOUS ADDRESS SPACE
AND VARIABLE PARTITION

Multiprogramming with variable partitions
OS allocates contiguous extents of memory to processes

« Initially each process gets all the memory space it needs and
nothing more

Processes that are swapped out can return to any main
memory location



EXTERNAL SEGMENTATION

Initially everything works fine

* Three processes occupy most
of memory Monitor
* Unused part of memory is
very small
PO
P1
P2




EXTERNAL FRAGMENTATION (CONT’D)

When PO terminates

* Replaced by P3
 P3 must be smaller than PO Monitor
Start wasting memory space

P3

]
P1

P2
E—




EXTERNAL FRAGMENTATION (CONT’D)

When P2 terminates

* Replaced by P4

« P4 must be smaller than PO Monitor
plus the free space

Start wasting more memory

space P3

]
P1

P4




EXTERNAL FRAGMENTATION

Happens in all systems using multiprogramming with
variable partitions

Occurs because new process must fit in the hole left by
terminating process

* Very low probability that both process will have exactly the
same size

 Typically the new process will be a bit smaller than the
terminating process



AN ANALOGY

Replacing an old book by a new book on a r—p— :
bookshelf

New book must fit in the hole left by old book |Jil Bl ¢ J =) e

- Very low probability that both books have  [{s/(RIREA R | | e
exactly the same width FeilE :

* We will end with empty shelf space between i
books

Solution: push books left and right

Other situations fragmentation occurs in computer systems?



MEMORY COMPACTION

When external fragmentation
becomes a problem we push
processes around in order to
consolidate free spaces

Monitor

P3

]
P1




MEMORY COMPACTION

Works very well when memory
sizes were small

large overhead with more
processes and large memory
sizes

Problematic if address binding
is done at compilation or
loading stage

Monitor

P3

P1

P4




SEGMENTATION

Non-contiguous allocation
Partition physical memory into fixed-size entities

* Page frames
Allocate non-contiguous page frames to processes

Let the MMU take care of the address translation



SEGMENTATION (CONT’D)

subroutine

stack

Sqrt

symbol
table

main
program

logical address

Logical View: multiple separate segments

 Typical: Code, Data, Stack
» Others: memory sharing, etc

user view of
memory space

Each segment is given region of contiguous memory

 Has a base and limit

« Can reside anywhere in physical memory

physical
memory



COFF IN NACHOS

The Common Object File Format (COFF) -- a specification of
a format for executable, object code, and shared library
computer files used on Unix systems.

Table 9: COFF Header format

] Offset | Size | Field ‘ Description |
0 2 Machine Number identifying type of
target machine
2 2 NumberOfSections Number of sections; indi-

cates size of the Section Ta-
ble, which immediately fol-
lows the headers.

4 4 TimeDateStamp Time and date the file was
created.

8 4 PointerToSymbolTable | File offset of the COFF sym-
bol table or 0 if none is
present.

12 4 NumberOfSymbols Number of entries in the

symbol table. This data
can be used in locating the
string table, which immedi-
ately follows the symbol ta-
ble.




Table 10: Section table entries in COFF

COFF header

Offset | Size Field Description
0 8 Name An 8-byte, null-padded ASCII string. There is no ter-
minating null if the string is exactly eight characters
long. For longer names, this field contains a slash (/)
followed by ASCII representation of a decimal num-
COFF table entry teXt ber: this number is an offset into the string table.
Executable images do not use a string table and do
not support section names longer than eight charac-
COFF table entry . rOdata ters. Long names in object files will be truncated if
emitted to an executable file.

8 4 VirtualSize Total size of the section when loaded into memory.
COFF table entl’y data If this value is greater than Size of Raw Data, the
section is zero-padded. This field is valid only for
executable images and should be set to 0 for object
COFF table entry .bss files.

12 4 VirtualAddress For executable images this is the address of the first
byte of the section, when loaded into memory, rela-
tive to the image base. For object files, this field is
the address of the first byte before relocation is ap-
plied; for simplicity, compilers should set this to zero.
Otherwise, it is an arbitrary value that is subtracted
from offsets during relocation.

#define Dim 20 #define Dim 50

nachos -d ac -x matmult.coff nachos -d ac -x matmult.coff
initializing .text section (3 pages) initializing .text section (3 pages)

i.r.1.itializing .bss section (5 pages) initializing .bss section (30 pages)



SEGMENTATION (CONT’D)

Virtual [seq #]Offset | offset v’@_’Error
Address Base0| Limit0 | V
Basel1| Limit1 1\
Base2!! imit2 | V|
Base3| Limit3 | N hysical
Base4| Limit4 |V Address
Base5| Limit5 | N
Base6| Limit6 | N
Base7| Limit7 |V Check Valid
Segment map resides in Memory Management Unit v
« Segment number mapped into base/limit pair ‘éfr‘;?ss

- Base added to offset to generate physical address
 Error check catches offset out of range

As many chunks of continguous physical memory as entries
« Segment addressed by portion of virtual address

What is “V/N” (valid / not valid)?
- Can mark segments as invalid; requires check as well



EXAMPLE: FOUR SEGMENTS (16 BIT ADDRESSES)

| Seqg| Offset

15 14 13
Virtual Address Format

Base

Limit

SegiD =0
0x0000
0x4000 ml
0x8000
0xC000
Virtual
Address Space

Seg ID # segmen
0 (code) | 0x4000 |0x0800 | table
1 (data) 0x4800 |0x1400
2 (shared) | 0xF000 | 0x1000
3 (stack) 0x0000 | 0x3000
0x0000
0x4000 Miaht
> 33— Wig
> 0x4800 be shared
0x5C00
Space for
Other Apps
0xF000 Shared with
_ Other Apps
Physical

Address Space



PROBLEMS WITH
SEGMENTATION

How to partition

Size of segments vary Monitor

« Can still suffer from external
fragmentation

No easy for sharing

P3, seg 1

I
P1,seg 1

P3, seg 2



PAGING

The problem of external
fragmentation in segmentation is due
to the mismatch between physical
and virtual memory

* holes in physical memory that no
process/segment can fit

Basic idea: equal sized pages in
physical and virtual memory

*  How big the sizes?

- How to look up the rPhysicaI page
from a virtual page*

*  Where to store such information?

 Internal fragmentation and
validity of pages

Virtual .\'f:’moyy

PAGES

MMU

Physical Memory

FRAMES

68451 MMU used with
Motorola 68010




PAGE TABLE

A page table consists of a collection of pages

 Resides in memory
 One page table per process

A page table entry (PTE) contains

* A page frame number
» Several special bits
Assuming 32-bit addresses, all fit into four bytes

Page frame number Bits




THE SPECIAL BITS

Valid bit:

1 if page is in main memory,

* 0 otherwise
Dirty bit: 1 if page has been modified since it was brought
into main memory, 0 otherwise

* A dirty page must be saved in the process swap area on disk

before being expelled from main memory

* A clean page can be immediately expelled
Page-referenced bit:1 if page has been recently accessed,
0 otherwise

* Often simulated in software



page number page offset

p d
m-—-—n n
IMPLEMENTATION OF PAGING
Virtual Address: p'Ir ua,l# Offset i l
PageTablePtr |} - page #0 |V.R | ysical
— Offset
_ page #2_|V.RW ysica ress
IﬁgeTableSnze H@ page #3 | Vv.RWM Check Perm
Access page #1411 | ‘
- page #5 | V.R,W Access
rror Error

Virtual address mapping

- Offset from Virtual address copied to Physical Address
- Example: 10 bit offset 2> 1024-byte pages

* Virtual page # is all remaining bits = look up the page table entry
« Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
* Physical page # copied from table into physical address

» Check Page Table bounds and permissions



AN EXAMPLE

8 bit address, 4 byte pages

ox00 [E—}-2000 0000 -~
: 2 b o 0001 0000 0x04 |
: 4 > T
: oxos P4 00000100 o . F 00001100” |
. f , ° | 0000 0100| K
: = | 0000 1000 1 00000111 0x08
: h ‘
E o i Page l' 0x0C [e
, 0000 1011 Table —> f
—k g
|
rtual —> ox10
Virtual :
Memory
Kol
Physical
Memory



SHARED MEMORY

Virtual Address |V
(Process A):

| PageTablePtrA [— —

PageTablePtrB |~

This physical page
appears in address
space of both processes

Virtual Address
(Process B):




SELECTING THE RIGHT PAGE
SIZE

Increasing the page size

* Increases the length of the offset
» Decreases the length of the page number
» Reduces the size of page tables

* Less entries

* Increases internal fragmentation: unused space in an
allocated frame

3583B

4KB
4KB seems to be a good choice




SUMMARY OF PAGING

Pros

« Simple memory allocation
- Easy to share
Con i) Internal fragmentation: may not use up the last page

Con ii) Each logical memory access = two memory accesses

. (Solut)ion: use special hardware cache called translation look-aside buffer
TLB

Coniiii)
« For small page size, more page table entries needed (e.g, 1K pages, 32-bit,

4 million page table entries)
Page table entries needed whether in use or not

* Possible solutions:
« Combining segmentation with paging
« Multi-level page tables (tradeoff space complexity with time complexity)
* Inverted page table
* Include page table entries only when needed (which are in use?)
- Variable page size



TRANSLATION LOOK-ASIDE
BUFFER (TLB)

A high-speed cache is set up for
page table entries (key,value) logical

address
- Can concurrently check Y rLe L

page frame

W|th mUIt|p|e entrieS number number

Contains page table entries that |§ TLB hit e
have been most recently used E address

f|d

TLB miss requires more time T8

Replacement policy for TLB p{

* Flush TLB during context ——

physical
memory

switch

 TLB miss loads new entries page table
into the TLB




PERFORMANCE IMPLICATIONS

T, be the main memory access time, p be the probability of
TLB hit

* Access time using TLB = 2(1-p)T,, + p*T,,
 eg.,p=0.99->1.01T,
« Compared to 2T, using page table only



COMBINING PAGING WITH

SEGMENTATION
Virtua' Irua irtual I Off |
\EQE# |P # set
Address: ade '
page #0 | V,R
BaseO| Limit0+ "V page #1 | V,R
Basel| Limit1 |V page #2 | V,RW
BaseZ| Limit> | V]| page #3 | V.R,W|
gaseis1 ll:lmlﬁ '% page #4 [N
ase Imi
i V.R,
Base5| Limits | N 2ECI2 5 W
Base6| Limit6 | N
Base7| Limit7 |V —JAccess
Error

Used with Intel 32-bit architecture

Segment map on MMU, page table in memory

l

‘ p! gy;sg%al |Oﬁset

Physical Address

Check Perm

v

Access
Error




[Srear [ paer Joffset

EXAMPLE: SEGMENTED PAGE

« Given a memory size of 256 = 28 addressable bytes,
« a page table indexing 8=23 pages,

« a page size of 32 bytes = 2°, and

« 8=23logical segments

1. How many bits is a physical address? g pits

2. How many bits for the segment number, page table, and
offset? 335

3. How many bits is a virtual address? 11 bits

How many segment table entries do we need? 8



MULTI-LEVEL PAGING .
: : _ Physical rp}mr‘_
10 bits 10 bits 12 bits Address: Page #
vinual [Tl TO, Joreet ] ’

Address:

| PageTablePtr |——"

—> 4 bytes &—
Tree of Page Tables ]

Tables fixed size (1024 entries, 4KB per
table)

Valid bits on Page Table Entries

« Don’t need every 2"d-level table
» Even when exist, 2n9-level tables can reside
on disk if not in use




EXAMPLE (3 BITS FOR LEVEL-1, 2 BITS FOR LEVEL-2

Virtual memory view Page Tables Physical memory view
1111 1111 (level 2) .
stack 11| 11101  Stack
1111 0000 l 10| 11100 ; oldalR 1110 0000
01| 10111 . .
p Tabl 00| 10110
1100 0000 age 1a
(level 1)
: 11| o 1| nun
E 110 null 10| 10000
101| null 01| 01111
100 00| 01110
1000 0000 neap 011] null
010
001 | ——0o__ | 0111 000
000| & 11| 01101 j
10| 01100 ;
01| 01011 ' 0101 000
| 00| 01010 =
0100 0000 |
11| 00101
10| 00100 _
page2 # o1 | ooors [ ——  COUE 0001 0000
coge 00| 00010 ,
0006-I(-)'000 | 0000 0000
i

pagel # offset



USE OF MULTI-LEVEL PAGING

32-bit machines

Vax

Intel

64-bit machine

section page offset
s p d
2 21 9
page number page offset
P1 P2 d
10 10 12
outer page inner page offset
P1 P2 d
42 10 12
2nd outer page . outer page | inner page , offset
P1 |, P3 d
32 10 10 12




MULTI-LEVEL TRANSLATION
ANALYSIS

Pros:

* Only need to allocate as many page table entries as we need for
application — size is proportional to usage
* In other words, sparse address spaces are easy
- Easy memory allocation
« Easy Sharing

« Share at segment or page level (need additional reference
counting)

Cons:
* One pointer per page (typically 4K — 16K pages today)
» Page tables need to be contiguous
* However, previous example keeps tables to exactly one page in
Slze
* Two (or more, if >2 levels) lookups per reference
* Seems very expensive!



HASHED PAGE TABLES

One entry per page
fast lookup but large table

physical

logical address address
ST ST —
A

Y
physical
@_ __’|q|3|’T|_T|p|r|ilT"' memory

hash table




HASHED PAGE TAKE

Virtual memory view

1111 1111

1110 0000

stack

1100 0000

H

1000 0000

0100 0000 |

0000 0000

code

— 'Y
page # offset

h

I

AN

Inverted Table
ash(virt. page #) =
phys. frame #

h(11111) =|11101
h(11110) ={11100
h(11101) =/10111
h(11100) ={10110
h(10010)=(10000
h(10001)=(01111
h(10000)=|01110
h(01011)= (01101
h(01010)=(01100
h(01001)=(01011
h(01000)=(01010
h(00011)= 00101
h(00010)=(00100

h(00000)=|00010

h(00001)=|00011 §

Physical memory view

e |

__________________________

_________________________
e
e

__________________________

_________________________

s |

code

1110 0000

1011 0000

| 0111 0000

| 0101 0000

0001 0000
| 0000 0000



INVERTED PAGE TABLES (IPT)

Previously, with single-level paging, one page table per process
« 64-bit logical address space, 4KB per page > 264-12 = 252 entries!
« If use multi-level page table, 1024 entries per page - 6 levels! (why)

In inverted page table, one entry for each real page
The entry contains <PID, page-number, flag>

logical physical

address | Dﬁm physical
cPU —{pid[ p [ d | | memor

A

>

search l }i

i3
o}
©

Can be combined with a hash map to avoid page table
linear search



IA64 (INTEL ITANIUM
ARCHITECTURE): INVERSE PAGE

TABLE (IPT)

Idea: index the page table by physical pages instead of VM

VMpageO |«
VMpage1

VMpage?2 [*

VMpage3 f\

Process id O
Virtual memory

AN

pid\O‘\Vi\/IpageO

pid 1

\

pidF\ ‘Mpage2

pid O

VMpage1

XX

free

pid2 | ..

pid 1

pid O

‘VMpageB

N~

0x0
Ox1
0x2
O0x3
Ox4
O0x5

Ox6
Ox7

Inverse Page Table

0x0000
VMpageO, procO

0x1000

0x2000

0x3000

VMpage?2, procO
0x4000 - >

VMpage1, procO
0x5000 - >

0x6000

0x7000

VMpage3, procO

Physical memory
in 4kB pages
Page numbers in red



IPT ADDRESS TRANSLATION

Need an associative map from VM page to IPT entry:

Use a hash map

Process 0 virtual address /

VMpage2 (52b)

Offset (12b)

Hash VM page #

pid O

VMpageO

pid 1

pid O

VMpage1

pid O

VMpage2

XX

free

pid 2

pid 1

pid O

VMpage3

Physical address \

0x3 Offset (12b)
A

0x0000
0x0 VMpageO, procO
Ox1 0x1000
0x2 / 0x2000
Ox3 0x3000

VMpage?2, procO

Ox4 0X4000 2o P
0x5 VMpage1, procO

0x5000 - D
0Ox6
Ox7 0x6000

0x7000

Inverse Page Table

VMpage3, procO




IPT ADDRESS TRANSLATION

Note: can’ t share memory: only one hashed entry will match.
Process 0 address

VMpage?2 (52b) | Offset (12b)

pid O | VMpageO | Ox0
pid 1 Ox1
pid O | VMpage1 | Ox2
pid 0 | VMpage2 | 0x3

XX free Ox4
pid 2 0x5
Process|1 address pid 1 0x6

VMpage4 (52b) | Offset (12b) pid 0 | VMpage3 | Ox7

Inverse Page Table



IA64: INVERSE PAGE TABLE (IPT)

Pros:

» Page table size naturally linked to physical memory size.

*  Only two memory accesses (most of the time).

- Shouldn’ t need to page out the page table.

« Hash function can be very fast if implemented in hardware.

Cons:
- Can’t (easily) share pages.

« Have to manage collisions, e.g. by chaining, which adds
memory accesses.



SUMMARY

Advantages

Disadvantages

Context switch

Segmentation

Fast context switching:
Segment mapping
maintained by CPU

External fragmentation

Load segment map (typically
a collection of segment

registers)

Paging (single-

No external

Large table size ~ virtual

Flush TLB

level page) fragmentation, fast memory Set Page table base register
easy allocation (PTBR)
Store in PCB page table
pointer and limit
Paged Table size ~ # of pages | Multiple memory references | (Segment registers)
segmentation in virtual memory, fast | per page access pointer to top level page
easy allocation table in PTBR
Multi-level
pages

Inverted page
table

Table size ~ # of pages
in physical memory

Lookup time
If combined with hash table,
two memory lookups




