VIRTUAL MEMORY

READING: CHAPTER 9

MEMORY HIERARCHY

Processor
Core
—
Y] N N
()
S lgl |8
ol |S 3
wn D
c = Main
0 € — to Memory
= I N) (DRAM)
el |o — £
o | |2 Caching |
) - I
(7)) D

<3achinq

Secondary
Storage
(SSD)

Secondary
Storage
(Disk)

L1 cache exclusive to a single core
L2 slower access than L1

L3 shared among multiple cores

ON-DEMAND PAGING

Most processes terminate without having accessed their
whole address space

* Code handling rare error conditions, . . .

Other processes go to multiple phases during which they
access different parts of their address space

* Compilers

Wasteful to keep the entire address space of a process in
memory the whole time

« Use 2"d storage: disk swap space

ON-DEMAND PAGING

VM systems fetch individual

pages on demand when they get

accessed the first time
 Page miss or page fault

When memory is full, they expel
from memory pages that are not
currently in use

Advantages:

* Not limited by the physical
memory size

* More efficient use of physical
memory

program
A

program
B

main
memory

swap out

N
_

o[] 1[]2[1]3[]

>/

N\ Swapin

o1 50 o] 7L

8]9 o[N1]
12[13 14 15[]

16D17Q18Q19Q

20[J21[]22[]23[]

- 4

KEY QUESTIONS

Memory access: ~n sec, disk access: ~m sec
Whether a page is in memory? (address translation)

Which pages to be put in memory? Which pages to be
swapped out? (page replacement)

What happens during context switches? (write-out)

How to avoid thrashing:

* A computer's virtual memory subsystem is in a constant
state of paging, rapidly exchanging data in memory for
data on disk, to the exclusion of most application-level
processing

VALID BIT

Recall special bits in page
table entry

Valid bit indicates whether
a page is valid and/or in
memory

A page fault occurs if
invalid

I | OQ|m | m[{O|lO|T|>

logical
memory

valid—invalid
frame bit

4

v
i
6 |v
i
i
%
i

No ook~ WO = O

page table

A W

N o o
(@)

8

9 F

10

11

12

13

14

15

physical memory

N
N

HEERN
L] [l [&]
] [o] [E]
HEERN

-

STEPS IN HANDLING A PAGE
FAULT

page is on
backing store

A

Ne————

operating context switch
system @
reference
@ trap
load M |« X i
restart page table
instruction
_ free frame |« - N
context|switch @ @
reset page bring in
table missing page
physical

memory

WHAT HAPPENS DURING PAGE
FAULTS

hoON-=

© © N o

11.
12.

Trap to the operating system.
Save the user registers and process state.
Determine that the interrupt was a page fault.

(t;#egk tkhat the page reference was legal and determine the location of the page on
e disk.

Issue a read from the disk to a free frame:

Wait in a queue fo
Wait for the devi
Begin the transft
While waiting, &

optional).
Receive an inte
Save the registers and process state for the other process (if step 6 is executed).
Determine that the interrupt was from the disk.

Correct the page table and other tables to show that the desired page is now in
memory.

Wait for the CPU to be allocated to this process again.

Restore the user registers, process state, and new page table, and then resume
the interrupted instruction.

EFFECTIVE ACCESS TIME (EAT)

EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

Example:

« Memory access time = 200 nanoseconds

« Average page-fault service time = 8 milliseconds

» Suppose p = Probability of miss, 1-p = Probably of hit

* Then, we can compute EAT as follows:

EAT =(1-p)x200ns + p x 8 ms
=(1-p) x200ns + p x 8,000,000ns
= 200ns + p x 7,999,800ns
If one access out of 1,000 causes a page fault, then EAT = 8.2 ps:

 This is a slowdown by a factor of 40!
What if want slowdown by less than 10%?

« EAT <200nsx1.1=>» p<25x10-6
* This is about 1 page fault in 400,000 !

WHAT LEADS TO PAGE FAULT?

Capacity Misses:

* Not enough memory. Must somehow increase size.
« Can we do this?
* Increase amount of DRAM (not quick fix!)

» Reduce the needs for physical memory (copy-on-write)
* Increase percentage of memory allocated to each one

Compulsory Misses:

« Pages that have never been paged into memory before
« How might we remove these misses?
» Prefetching: loading them into memory before needed
* Need to predict future somehow!.

Policy Misses:

« Caused when pages were in memory, but kicked out prematurely
because of the replacement policy

* How to fix? Better replacement policy

COPY-ON-WRITE

Recall fork() creates a copy of the parent’s address space for
the child process

« Shared until either process modifies the pages

physical
process; memory process,

_,—> page A
 —— pageB [— | shared

page C Tt

physical
process; memory process,

| page A

e page B 1

copy-on-write

page C —]

Copy of page C

LOCALITY IN MEMORY

REFERENCE

Processes access at any time a

small fraction of their
addressing space (spatial
locality) and they tend to

reference again the pages they

have recently referenced
(temporal locality)

* How much physical memory

needed (working set)

 Whatis likely to be
accessed next

memory address

34 kK Ilﬁ ‘ + Jﬁ - H»—-”y...&»-—
Rk T i i R
32 -

|
|
|I do |
h B e e e e el e

Al :l \\4 “Y Nid] :Y
(R AR ﬁ
RS 0 1
L

30 b gy g
l Ififf oo T ||'|.I e oo v) 4 |]f|
: i
g 1L
A |
[l
| L
26 l' ‘% : PO S
1 I
Al :
H g ./
W | | " T
24 T T |
1 Wl P
i
il II_‘ ‘)’ |
i TR g e
22] 1| ue

L TR T R A 1L

|

U|.-|.i“|m=i:|| T

T

o

: | i " |'I| I |! l “|
P ol B 3 T S el B
‘E e oI I A RN o e
S S A “
?é) | |“ T | | !l""" "!""!' "i:' I) | i ”
S OO L1 e o U i e T

execution time =

PAGE REPLACEMENT

Selecting which page to expel f I
from main memory (cache) when" " /""" ©
* Memory (cache) is full e page out
* Must bring in a new page 0L Lfemale yﬂ
Note that two page transfers @t et]
required if no free page in page table 12Dl 1@\
memory ey [
page
» Can be alleviated by the use of - »
“dirty bit” — not need to page out
VlCtlm |f dlrty blt - O physical

memory
* (in page replacement, replace
“clean” pages first)

PAGE REPLACEMENT POLICY

Objectives:

» Select the right page to expel (victim)
* Have a reasonable run-time overhead
* The more physical memory, the less the page fault

number of page faults

16
14

N A~ OO @

1 2 3 4 5 6

number of frames

PAGE REPLACEMENT POLICY

Four classes of page replacement policies

* Local policies vs globe policies:
» Local: expel own pages
 Global: maintain a global pool

* Fixed sized vs variable sized: each process a fixed vs
variable number of frames

FIFO (FIRST IN, FIRST OUT)

Replace page that has been in for the longest time.

Be “fair” to pages and give them equal time.

How to implement FIFO? It’s a queue (can use a linked list)

* Oldest page is at head
* When a page is brought in, add it to tail.
» Eject head if list longer than capacity

Head(Oldest) —{Page 6 |—> Page 7 |—"1 Page 1 |—"1 Page 2

Tail(Newest)

EXAMPLE

Reference string: the string of reference 7,0, 1, 2,0, 3, 0, 4, 2,
3,0,3,2,1,2,0,1,7,0, 1
3 pages

reference string
7 0 1. 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7

70 |7 |7] |2 2| (2] (4] |4| |4] |0 0 |0 7
0l |0] (O 3| [3| |3]| |2]| |2] |2 1] |1 1
1] (1 11 10| |0 |0 (3] |3 3| |2 2

page frames

How many page faults?

EXAMPLE 2

Reference strings: 1,2,3,4,1,2,5,1,2,3,4,5

9 page faults

10 page faults!

BELADY’S ANOMALY

FIFO suffers from the anomaly

Didn’t account of page usage: need to give more chances to
pages that were likely to be used soon

16|
14|
12
10|

number of page faults

N A~ OO 0
|

1 2 3 4 5 6 7
number of frames

OPTIMAL PAGE REPLACEMENT

Replace the page that will not be used for the longest period
of time

Example:
reference string
O 3 0 4 2 7 0 1

o

page frames

Unfortunately, we cannot look into the future

LEAST RECENTLY USED (LRU)

LRU (Least Recently Used):

* Replace page that hasn’t been used for the longest time

* Programs have locality, so if something not used for a while,
unlikely to be used in the near future.

« Seems like LRU should be a good approximation to OPT.

Example
reference string
7 01 2 0 3 0 4 2 3 0 38 2 1 2 0 1 7

7
o

I
[~]o]m]
IS
(@]o]»]
ISIEIES

ISIEEIEN
[P]w]o]
ISICEIEN
SIS

page frames

[~o[=]

IS LRU A GOOD APPROXIMATION?

Consider the following: ABCDABCDABCD
LRU Performs as follows (same as FIFO here):

 Every reference is a page fault!
OPT Does much better:

PROPERTIES OF LRU

LRU can be as bad as FIFO for some reference strings

However, LRU does not suffer from Belady’s anomaly

IMPLEMENTATION OF LRU

LRU page is at head

* When a page is used for the first time, add it to tail.

 Eject head if list longer than capacity

Head(LRU) —

Page 6|—>

Different if we access a page that is already loaded:

Page 7

ﬁ

Page 1

Page 2|

Tail (MRU)

* When a page is used again, remove from list, add it to tail.
* Eject head if list longer than capacity

Head(LRU) —

Page GL

Page 1

Tail (MRU)

Page 2|

IMPLEMENTATION OF LRU

Problems with this scheme for paging?

« Updates are happening on page use, not just swapping
» List structure requires extra pointers c.f. FIFO, more updates
In practice, approximate LRU with simpler implementation

« Use Reference bits

« Second chance
* Clock algorithm

IMPLEMENTING LRU & SECOND
CHANCE

Perfect:

« Timestamp page on each reference

« Keep list of pages ordered by time of reference

« Too expensive to implement in reality for many reasons
Second Chance Algorithm:

» Approximate LRU
* Replace an old page, not the oldest page
* FIFO with “use” bit

Details

« A“use” bit per physical page
- set when page accessed

* On page fault check page at head of queue

» |f use bit=1 - clear bit, and move page to tail (give the page second
chance!)

 If use bit=0 - replace page
* Moving pages to tail still complex

SECOND CHANCE
ILLUSTRATION

Max page table size 4

» Page B arrives
- Page A arrives
* Access page A
» Page D arrives
* Page C arrives

first loaded last loaded
page l page l

Bu:O<—Au:l<—D u:0<—{Cu:0

SECOND CHANCE
ILLUSTRATION

Max page table size 4

» Page B arrives
- Page A arrives
* Access page A
» Page D arrives
* Page C arrives
- Page F arrives

first loaded last loaded
page l page l

Bu:O<—Au:l<—D u:0<—{Cu:0

SECOND CHANCE
ILLUSTRATION

Max page table size 4

» Page B arrives
- Page A arrives
* Access page A
» Page D arrives
* Page C arrives
- Page F arrives

first loaded last loaded
page l page l

Au:l<—D u:0[<—Cu:0[<—{F u:0

SECOND CHANCE
ILLUSTRATION

Max page table size 4

» Page B arrives
- Page A arrives
* Access page A
» Page D arrives
* Page C arrives
- Page F arrives
* Access page D

first loaded last loaded
page l page l

Au:l<—D u:l1<—Cu:0[<—{F u:0

SECOND CHANCE
ILLUSTRATION

Max page table size 4

» Page B arrives
- Page A arrives
* Access page A
» Page D arrives
* Page C arrives
- Page F arrives
* Access page D

» Page E arrives
first loaded last loaded

page | page |

Au:l<—D u:l1<—Cu:0[<—{F u:0

SECOND CHANCE
ILLUSTRATION

Max page table size 4

» Page B arrives
- Page A arrives
* Access page A
» Page D arrives
* Page C arrives
- Page F arrives
* Access page D

» Page E arrives
first loaded last loaded

page | page |

Du:l<—Cu:0<—Fu:0<—>A u:0

SECOND CHANCE
ILLUSTRATION

Max page table size 4

» Page B arrives
- Page A arrives
* Access page A
» Page D arrives
* Page C arrives
- Page F arrives
* Access page D

» Page E arrives
first loaded last loaded

page | page |

Cu0<—Fu:0[<—Au:0<—Py:0

CLOCK ALGORITHM

Clock Algorithm: more efficient implementation of second
chance algorithm

* Arrange physical pages in circle with single clock hand
Details:

* On page fault:

« Check use bit: 1 - used recently; clear and leave it alone
0 - selected candidate for replacement

« Advance clock hand (not real time)
« Will always find a page or loop forever?

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

« Page B arrives

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

« Page B arrives
- Page A arrives
* Access page A

E

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

« Page B arrives
- Page A arrives
* Access page A
« Page D arrives

|E

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

« Page B arrives
- Page A arrives
* Access page A
« Page D arrives
» Page C arrives

E

|E

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

« Page B arrives
- Page A arrives
* Access page A
* Page D arrives
» Page C arrives
« Page F arrives
* Access page D

E

A u:

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

« Page B arrives
» Page A arrives
* Access page A
* Page D arrives
» Page C arrives
« Page F arrives
* Access page D
« Page E arrives

CLOCK ALGORITHM:
DISCUSSION

What if hand moving slowly?

» Good sign or bad sign?
« Not many page faults and/or find page quickly

What if hand is moving quickly?

* Lots of page faults and/or lots of reference bits set

N™ CHANCE VERSION OF
CLOCK ALGORITHM

Nth chance algorithm: Give page N chances

+ OS keeps counter per page: # sweeps

* On page fault, OS checks use bit:
* 1 - clear use and also clear counter (used in last sweep)
* 0 - increment counter; if count=N, replace page

* Means that clock hand has to sweep by N times without page being used before page is
replaced

How do we pick N?

« Why pick large N? Better approx to LRU
* If N ~ 1K, really good approximation
* Why pick small N? More efficient
« Otherwise might have to look a long way to find free page

What about dirty pages?

» Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before
replacing?
« Common approach:
* Clean pages, use N=1
+ Dirty pages, use N=2 (and write back to disk when N=1)

THRASHING

| >

| thrashing

CPU utilization

>
>

degree of multiprogramming

If a process does not have “enough” pages, the page-fault rate is very high.
This leads to:

* low CPU utilization
» operating system spends most of its time swapping to disk
Thrashing: a process is busy swapping pages in and out

Questions:

* How do we detect Thrashing?
« What is best response to Thrashing?

LOCALITY IN A MEMORY-

REFERENCE PATTERN

Program Memory Access
Patterns have temporal and
spatial locality

» Group of Pages accessed

along a given time slice
called the “Working Set”

* Working Set defines
minimum number of pages
needed for process to behave
well

Not enough memory for
Working Set = Thrashing

 Better to swap out process?

memory address

page numbers

34

32

30

28

26

24

22

20

18

execution time ——»

WORKING-SET MODEL

page reference table
...2615777751623412344434344413234443444...

a4 oo}
I |
t, t

WS(t,) = {1,2,5,6,7} WS(t,) = {3,4}

2

A = working-set window = fixed number of page references

- Example: 10,000 accesses
WS, (working set of Process P,) = total set of pages referenced in the
most recent A (varies in time)

« if A too small will not encompass entire locality

* if A too large will encompass several localities

* if A= o, will encompass entire program
D = Z|WS,| = total demand frames

if D > physical memory = Thrashing

* Policy: if D > physical memory, then suspend/swap out processes
« This can improve overall system behavior by a lot!

WHAT ABOUT COMPULSORY
MISSES?

Recall that compulsory misses are misses that occur the first
time that a page is seen
» Pages that are touched for the first time

« Pages that are touched after process is swapped out/swapped
back in

Clustering:

« On a page-fault, bring in multiple pages “around” the faulting
page

« Since efficiency of disk reads increases with sequential reads,
makes sense to read several sequential pages

» Tradeoff: Prefetching may evict other in-use pages for never-
used prefetched pages

Working Set Tracking:

« Use algorithm to try to track working set of application
* When swapping process back in, swap in working set

POP QUIZ 4: ADDRESS
TRANSLATION

Q1: True _ False _ Paging does not suffer from external
fragmentation

Q2: True _ False _ The segment offset can be larger than the
segment size

Q3: True _ False _ Paging: to compute the physical address,
add physical page # and offset

Q4: True _ False _ Uni-programming doesn’t provide
address protection

Q5: True _ False _ Virtual address space is always larger
than physical address space

Q6: True _ False _ Inverted page tables keeps fewer entries
than multi-level page tables

