
VIRTUAL MEMORY

READING: CHAPTER 9

32
9

MEMORY HIERARCHY

L1 cache exclusive to a single core

L2 slower access than L1
L3 shared among multiple cores 33
0

Core!

Core!

!
!
!

Secondary 
 Storage  

(Disk)!

Processor!

Main!
Memory!
(DRAM)!
!

!
Secondary 
 Storage  

(SSD)!

Caching!

Caching!

ON-DEMAND PAGING

Most processes terminate without having accessed their
whole address space

•  Code handling rare error conditions, . . .
Other processes go to multiple phases during which they
access different parts of their address space

•  Compilers
Wasteful to keep the entire address space of a process in
memory the whole time

•  Use 2nd storage: disk swap space

33
1

VM systems fetch individual
pages on demand when they get
accessed the first time

•  Page miss or page fault

When memory is full, they expel
from memory pages that are not
currently in use

Advantages:

•  Not limited by the physical
memory size

•  More efficient use of physical
memory

33
2

ON-DEMAND PAGING

9.2 Demand Paging 401

9.2 Demand Paging

Consider how an executable program might be loaded from disk into memory.
One option is to load the entire program in physical memory at program
execution time. However, a problem with this approach is that we may not
initially need the entire program in memory. Suppose a program starts with
a list of available options from which the user is to select. Loading the entire
program into memory results in loading the executable code for all options,
regardless of whether or not an option is ultimately selected by the user. An
alternative strategy is to load pages only as they are needed. This technique is
known as demand paging and is commonly used in virtual memory systems.
With demand-paged virtual memory, pages are loaded only when they are
demanded during program execution. Pages that are never accessed are thus
never loaded into physical memory.

A demand-paging system is similar to a paging system with swapping
(Figure 9.4) where processes reside in secondary memory (usually a disk).
When we want to execute a process, we swap it into memory. Rather than
swapping the entire process into memory, though, we use a lazy swapper.
A lazy swapper never swaps a page into memory unless that page will be
needed. In the context of a demand-paging system, use of the term “swapper”
is technically incorrect. A swapper manipulates entire processes, whereas a
pager is concerned with the individual pages of a process. We thus use “pager,”
rather than “swapper,” in connection with demand paging.

program
A

swap out 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

swap in
program

B

main
memory

Figure 9.4 Transfer of a paged memory to contiguous disk space.

KEY QUESTIONS

Memory access: ~n sec, disk access: ~m sec

Whether a page is in memory? (address translation)
Which pages to be put in memory? Which pages to be
swapped out? (page replacement)

What happens during context switches? (write-out)

How to avoid thrashing:

•  A computer's virtual memory subsystem is in a constant
state of paging, rapidly exchanging data in memory for
data on disk, to the exclusion of most application-level
processing

33
3

VALID BIT

Recall special bits in page
table entry

Valid bit indicates whether
a page is valid and/or in
memory

A page fault occurs if
invalid

33
4

402 Chapter 9 Virtual Memory

9.2.1 Basic Concepts

When a process is to be swapped in, the pager guesses which pages will be
used before the process is swapped out again. Instead of swapping in a whole
process, the pager brings only those pages into memory. Thus, it avoids reading
into memory pages that will not be used anyway, decreasing the swap time
and the amount of physical memory needed.

With this scheme, we need some form of hardware support to distinguish
between the pages that are in memory and the pages that are on the disk.
The valid–invalid bit scheme described in Section 8.5.3 can be used for this
purpose. This time, however, when this bit is set to “valid,” the associated page
is both legal and in memory. If the bit is set to “invalid,” the page either is not
valid (that is, not in the logical address space of the process) or is valid but
is currently on the disk. The page-table entry for a page that is brought into
memory is set as usual, but the page-table entry for a page that is not currently
in memory is either simply marked invalid or contains the address of the page
on disk. This situation is depicted in Figure 9.5.

Notice that marking a page invalid will have no effect if the process never
attempts to access that page. Hence, if we guess right and page in all pages
that are actually needed and only those pages, the process will run exactly as
though we had brought in all pages. While the process executes and accesses
pages that are memory resident, execution proceeds normally.

B

D

D E
F

H

logical
memory

valid–invalid
bitframe

page table

1
0 4

62
3
4
5 9
6
7

1

0

2

3

4

5

6

7

i
v

v
i
i
v
i
i

physical memory

A

A BC

C

F G HF

1

0

2

3

4

5

6

7

9

8

10

11

12

13

14

15

A

C

E

G

Figure 9.5 Page table when some pages are not in main memory.

STEPS IN HANDLING A PAGE
FAULT

33
5

9.2 Demand Paging 403

load M

reference trap

i

page is on
backing store

operating
system

restart
instruction

reset page
table

page table

physical
memory

bring in
missing page

free frame

1

2

3

6

5 4

Figure 9.6 Steps in handling a page fault.

But what happens if the process tries to access a page that was not brought
into memory? Access to a page marked invalid causes a page fault. The paging
hardware, in translating the address through the page table, will notice that
the invalid bit is set, causing a trap to the operating system. This trap is the
result of the operating system’s failure to bring the desired page into memory.
The procedure for handling this page fault is straightforward (Figure 9.6):

1. We check an internal table (usually kept with the process control block)
for this process to determine whether the reference was a valid or an
invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid but
we have not yet brought in that page, we now page it in.

3. We find a free frame (by taking one from the free-frame list, for example).

4. We schedule a disk operation to read the desired page into the newly
allocated frame.

5. When the disk read is complete, we modify the internal table kept with
the process and the page table to indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the trap. The process
can now access the page as though it had always been in memory.

In the extreme case, we can start executing a process with no pages in
memory. When the operating system sets the instruction pointer to the first

context switch

context switch

WHAT HAPPENS DURING PAGE
FAULTS
1.  Trap to the operating system.
2.  Save the user registers and process state.
3.  Determine that the interrupt was a page fault.
4.  Check that the page reference was legal and determine the location of the page on

the disk.
5.  Issue a read from the disk to a free frame:

•  Wait in a queue for this device until the read request is serviced.
•  Wait for the device seek and/or latency time.
•  Begin the transfer of the page to a free frame.

6.  While waiting, allocate the CPU to some other process (CPU scheduling, optional).
7.  Receive an interrupt from the disk I/O subsystem (I/O completed).
8.  Save the registers and process state for the other process (if step 6 is executed).
9.  Determine that the interrupt was from the disk.
10.  Correct the page table and other tables to show that the desired page is now in

memory.
11.  Wait for the CPU to be allocated to this process again.
12.  Restore the user registers, process state, and new page table, and then resume

the interrupted instruction.

Page fault is expensive!

EFFECTIVE ACCESS TIME (EAT)
EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
Example:

•  Memory access time = 200 nanoseconds
•  Average page-fault service time = 8 milliseconds
•  Suppose p = Probability of miss, 1-p = Probably of hit
•  Then, we can compute EAT as follows:

 EAT = (1 – p) x 200ns + p x 8 ms
 = (1 – p) x 200ns + p x 8,000,000ns
 = 200ns + p x 7,999,800ns
If one access out of 1,000 causes a page fault, then EAT = 8.2 µs:

•  This is a slowdown by a factor of 40!
What if want slowdown by less than 10%?

•  EAT < 200ns x 1.1 è p < 2.5 x 10-6
•  This is about 1 page fault in 400,000 !

33
7

WHAT LEADS TO PAGE FAULT?
Capacity Misses:

•  Not enough memory. Must somehow increase size.
•  Can we do this?

•  Increase amount of DRAM (not quick fix!)
•  Reduce the needs for physical memory (copy-on-write)
•  Increase percentage of memory allocated to each one

Compulsory Misses:
•  Pages that have never been paged into memory before
•  How might we remove these misses?

•  Prefetching: loading them into memory before needed
•  Need to predict future somehow!.

Policy Misses:
•  Caused when pages were in memory, but kicked out prematurely

because of the replacement policy
•  How to fix? Better replacement policy

33
8

COPY-ON-WRITE

Recall fork() creates a copy of the parent’s address space for
the child process

•  Shared until either process modifies the pages

33
9

408 Chapter 9 Virtual Memory

9.3 Copy-on-Write

In Section 9.2, we illustrated how a process can start quickly by demand-paging
in the page containing the first instruction. However, process creation using the
fork() system call may initially bypass the need for demand paging by using
a technique similar to page sharing (covered in Section 8.5.4). This technique
provides rapid process creation and minimizes the number of new pages that
must be allocated to the newly created process.

Recall that the fork() system call creates a child process that is a duplicate
of its parent. Traditionally, fork() worked by creating a copy of the parent’s
address space for the child, duplicating the pages belonging to the parent.
However, considering that many child processes invoke the exec() system
call immediately after creation, the copying of the parent’s address space may
be unnecessary. Instead, we can use a technique known as copy-on-write,
which works by allowing the parent and child processes initially to share the
same pages. These shared pages are marked as copy-on-write pages, meaning
that if either process writes to a shared page, a copy of the shared page is
created. Copy-on-write is illustrated in Figures 9.7 and 9.8, which show the
contents of the physical memory before and after process 1 modifies page C.

For example, assume that the child process attempts to modify a page
containing portions of the stack, with the pages set to be copy-on-write. The
operating system will create a copy of this page, mapping it to the address space
of the child process. The child process will then modify its copied page and not
the page belonging to the parent process. Obviously, when the copy-on-write
technique is used, only the pages that are modified by either process are copied;
all unmodified pages can be shared by the parent and child processes. Note, too,
that only pages that can be modified need be marked as copy-on-write. Pages
that cannot be modified (pages containing executable code) can be shared by
the parent and child. Copy-on-write is a common technique used by several
operating systems, including Windows XP, Linux, and Solaris.

When it is determined that a page is going to be duplicated using copy-
on-write, it is important to note the location from which the free page will
be allocated. Many operating systems provide a pool of free pages for such
requests. These free pages are typically allocated when the stack or heap for a
process must expand or when there are copy-on-write pages to be managed.

process1

physical
memory

page A

page B

page C

process2

Figure 9.7 Before process 1 modifies page C.

9.4 Page Replacement 409

process1

physical
memory

page A

page B

page C

Copy of page C

process2

Figure 9.8 After process 1 modifies page C.

Operating systems typically allocate these pages using a technique known as
zero-fill-on-demand. Zero-fill-on-demand pages have been zeroed-out before
being allocated, thus erasing the previous contents.

Several versions of UNIX (including Solaris and Linux) provide a variation
of the fork() system call—vfork() (for virtual memory fork)—that operates
differently from fork() with copy-on-write. With vfork(), the parent process
is suspended, and the child process uses the address space of the parent.
Because vfork() does not use copy-on-write, if the child process changes
any pages of the parent’s address space, the altered pages will be visible to the
parent once it resumes. Therefore,vfork()must be used with caution to ensure
that the child process does not modify the address space of the parent. vfork()
is intended to be used when the child process calls exec() immediately after
creation. Because no copying of pages takes place, vfork() is an extremely
efficient method of process creation and is sometimes used to implement UNIX
command-line shell interfaces.

9.4 Page Replacement

In our earlier discussion of the page-fault rate, we assumed that each page
faults at most once, when it is first referenced. This representation is not strictly
accurate, however. If a process of ten pages actually uses only half of them, then
demand paging saves the I/O necessary to load the five pages that are never
used. We could also increase our degree of multiprogramming by running
twice as many processes. Thus, if we had forty frames, we could run eight
processes, rather than the four that could run if each required ten frames (five
of which were never used).

If we increase our degree of multiprogramming, we are over-allocating
memory. If we run six processes, each of which is ten pages in size but actually
uses only five pages, we have higher CPU utilization and throughput, with
ten frames to spare. It is possible, however, that each of these processes, for a
particular data set, may suddenly try to use all ten of its pages, resulting in a
need for sixty frames when only forty are available.

Further, consider that system memory is not used only for holding program
pages. Buffers for I/O also consume a considerable amount of memory. This use

shared

copy-on-write

LOCALITY IN MEMORY
REFERENCE

Processes access at any time a
small fraction of their
addressing space (spatial
locality) and they tend to
reference again the pages they
have recently referenced
(temporal locality)

•  How much physical memory
needed (working set)

•  What is likely to be
accessed next

34
0

PAGE REPLACEMENT

Selecting which page to expel
from main memory (cache) when

•  Memory (cache) is full
•  Must bring in a new page

Note that two page transfers
required if no free page in
memory

•  Can be alleviated by the use of
“dirty bit” – not need to page out
victim if dirty bit = 0

•  (in page replacement, replace
“clean” pages first)

 34
1

9.4 Page Replacement 411

valid–invalid bitframe

f

page table

victim

change
to invalid

page out
victim
page

page in
desired

page

reset page
table for

new page

physical
memory

2

4

1

3

f
0 i

v

Figure 9.10 Page replacement.

1. Find the location of the desired page on the disk.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select
a victim frame.

c. Write the victim frame to the disk; change the page and frame tables
accordingly.

3. Read the desired page into the newly freed frame; change the page and
frame tables.

4. Continue the user process from where the page fault occurred.

Notice that, if no frames are free, two page transfers (one out and one in)
are required. This situation effectively doubles the page-fault service time and
increases the effective access time accordingly.

We can reduce this overhead by using a modify bit (or dirty bit). When
this scheme is used, each page or frame has a modify bit associated with it in
the hardware. The modify bit for a page is set by the hardware whenever any
byte in the page is written into, indicating that the page has been modified.
When we select a page for replacement, we examine its modify bit. If the bit
is set, we know that the page has been modified since it was read in from the
disk. In this case, we must write the page to the disk. If the modify bit is not set,
however, the page has not been modified since it was read into memory. In this
case, we need not write the memory page to the disk: it is already there. This
technique also applies to read-only pages (for example, pages of binary code).

PAGE REPLACEMENT POLICY

Objectives:

•  Select the right page to expel (victim)
•  Have a reasonable run-time overhead
•  The more physical memory, the less the page fault

34
2

9.4 Page Replacement 413

nu
m

be
r

of
 p

ag
e

fa
ul

ts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6

Figure 9.11 Graph of page faults versus number of frames.

To determine the number of page faults for a particular reference string and
page-replacement algorithm, we also need to know the number of page frames
available. Obviously, as the number of frames available increases, the number
of page faults decreases. For the reference string considered previously, for
example, if we had three or more frames, we would have only three faults—
one fault for the first reference to each page. In contrast, with only one frame
available, we would have a replacement with every reference, resulting in
eleven faults. In general, we expect a curve such as that in Figure 9.11. As the
number of frames increases, the number of page faults drops to some minimal
level. Of course, adding physical memory increases the number of frames.

We next illustrate several page-replacement algorithms. In doing so, we
use the reference string

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

for a memory with three frames.

9.4.2 FIFO Page Replacement

The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm.
A FIFO replacement algorithm associates with each page the time when that
page was brought into memory. When a page must be replaced, the oldest
page is chosen. Notice that it is not strictly necessary to record the time when
a page is brought in. We can create a FIFO queue to hold all pages in memory.
We replace the page at the head of the queue. When a page is brought into
memory, we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty. The
first three references (7, 0, 1) cause page faults and are brought into these empty
frames. The next reference (2) replaces page 7, because page 7 was brought in
first. Since 0 is the next reference and 0 is already in memory, we have no fault
for this reference. The first reference to 3 results in replacement of page 0, since
it is now first in line. Because of this replacement, the next reference, to 0, will

PAGE REPLACEMENT POLICY

Four classes of page replacement policies

•  Local policies vs globe policies:
•  Local: expel own pages
•  Global: maintain a global pool

•  Fixed sized vs variable sized: each process a fixed vs
variable number of frames

34
3

FIFO (FIRST IN, FIRST OUT)

Replace page that has been in for the longest time.

Be “fair” to pages and give them equal time.

How to implement FIFO? It’s a queue (can use a linked list)

•  Oldest page is at head
•  When a page is brought in, add it to tail.
•  Eject head if list longer than capacity

34
4

Page 6! Page 7! Page 1! Page 2!Head(Oldest)"

Tail(Newest) "

EXAMPLE

Reference string: the string of reference 7, 0, 1, 2, 0, 3, 0, 4, 2,
3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

3 pages

How many page faults?

34
5

414 Chapter 9 Virtual Memory

7 7

0

7

0

1

page frames

reference string

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

7

1

2

7

0

2

7

0

1

0

1

3

0

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

1

2

Figure 9.12 FIFO page-replacement algorithm.

fault. Page 1 is then replaced by page 0. This process continues as shown in
Figure 9.12. Every time a fault occurs, we show which pages are in our three
frames. There are fifteen faults altogether.

The FIFO page-replacement algorithm is easy to understand and program.
However, its performance is not always good. On the one hand, the page
replaced may be an initialization module that was used a long time ago and is
no longer needed. On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

Notice that, even if we select for replacement a page that is in active use,
everything still works correctly. After we replace an active page with a new
one, a fault occurs almost immediately to retrieve the active page. Some other
page must be replaced to bring the active page back into memory. Thus, a bad
replacement choice increases the page-fault rate and slows process execution.
It does not, however, cause incorrect execution.

To illustrate the problems that are possible with a FIFO page-replacement
algorithm, consider the following reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Figure 9.13 shows the curve of page faults for this reference string versus the
number of available frames. Notice that the number of faults for four frames
(ten) is greater than the number of faults for three frames (nine)! This most
unexpected result is known as Belady’s anomaly: for some page-replacement
algorithms, the page-fault rate may increase as the number of allocated frames
increases. We would expect that giving more memory to a process would
improve its performance. In some early research, investigators noticed that
this assumption was not always true. Belady’s anomaly was discovered as a
result.

9.4.3 Optimal Page Replacement

One result of the discovery of Belady’s anomaly was the search for an optimal
page-replacement algorithm—the algorithm that has the lowest page-fault
rate of all algorithms and will never suffer from Belady’s anomaly. Such an
algorithm does exist and has been called OPT or MIN. It is simply this:

Replace the page that will not be used for the longest period of time.

Use of this page-replacement algorithm guarantees the lowest possible page-
fault rate for a fixed number of frames.

EXAMPLE 2

Reference strings: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 1
2

1
2
3

4

5
2
3

4

5
1
3

4

5
1
2

4

5
1
2

3

4
1
2

3

4
5
2

3

1 1
2

1
2
3

4
2
3

4
1
3

4
1
2

5
1
2

5
3
2

5
3
4

1
2
3

9 page faults

10 page faults!

BELADY’S ANOMALY

FIFO suffers from the anomaly

Didn’t account of page usage: need to give more chances to
pages that were likely to be used soon

34
7

9.4 Page Replacement 415

nu
m

be
r

of
 p

ag
e

fa
ul

ts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

Figure 9.13 Page-fault curve for FIFO replacement on a reference string.

For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults, as shown in Figure 9.14. The first three
references cause faults that fill the three empty frames. The reference to page
2 replaces page 7, because page 7 will not be used until reference 18, whereas
page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces
page 1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than
a FIFO algorithm, which results in fifteen faults. (If we ignore the first three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) In fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-scheduling algorithm in
Section 6.3.2.) As a result, the optimal algorithm is used mainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

7

0

1

2

0

1

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 9.14 Optimal page-replacement algorithm.

OPTIMAL PAGE REPLACEMENT

Replace the page that will not be used for the longest period
of time

Example:

Unfortunately, we cannot look into the future

34
8

9.4 Page Replacement 415

nu
m

be
r o

f p
ag

e
fa

ul
ts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

Figure 9.13 Page-fault curve for FIFO replacement on a reference string.

For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults, as shown in Figure 9.14. The first three
references cause faults that fill the three empty frames. The reference to page
2 replaces page 7, because page 7 will not be used until reference 18, whereas
page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces
page 1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than
a FIFO algorithm, which results in fifteen faults. (If we ignore the first three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) In fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string. (We
encountered a similar situation with the SJF CPU-scheduling algorithm in
Section 6.3.2.) As a result, the optimal algorithm is used mainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

7

0

1

2

0

1

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 9.14 Optimal page-replacement algorithm.

LEAST RECENTLY USED (LRU)

LRU (Least Recently Used):

•  Replace page that hasn’t been used for the longest time
•  Programs have locality, so if something not used for a while,

unlikely to be used in the near future.
•  Seems like LRU should be a good approximation to OPT.

Example

34
9

416 Chapter 9 Virtual Memory

9.4.4 LRU Page Replacement

If the optimal algorithm is not feasible, perhaps an approximation of the
optimal algorithm is possible. The key distinction between the FIFO and OPT
algorithms (other than looking backward versus forward in time) is that the
FIFO algorithm uses the time when a page was brought into memory, whereas
the OPT algorithm uses the time when a page is to be used. If we use the recent
past as an approximation of the near future, then we can replace the page that
has not been used for the longest period of time. This approach is the least
recently used (LRU) algorithm.

LRU replacement associates with each page the time of that page’s last use.
When a page must be replaced, LRU chooses the page that has not been used
for the longest period of time. We can think of this strategy as the optimal
page-replacement algorithm looking backward in time, rather than forward.
(Strangely, if we let SR be the reverse of a reference string S, then the page-fault
rate for the OPT algorithm on S is the same as the page-fault rate for the OPT
algorithm on SR. Similarly, the page-fault rate for the LRU algorithm on S is the
same as the page-fault rate for the LRU algorithm on SR.)

The result of applying LRU replacement to our example reference string is
shown in Figure 9.15. The LRU algorithm produces twelve faults. Notice that
the first five faults are the same as those for optimal replacement. When the
reference to page 4 occurs, however, LRU replacement sees that, of the three
frames in memory, page 2 was used least recently. Thus, the LRU algorithm
replaces page 2, not knowing that page 2 is about to be used. When it then faults
for page 2, the LRU algorithm replaces page 3, since it is now the least recently
used of the three pages in memory. Despite these problems, LRU replacement
with twelve faults is much better than FIFO replacement with fifteen.

The LRU policy is often used as a page-replacement algorithm and
is considered to be good. The major problem is how to implement LRU
replacement. An LRU page-replacement algorithm may require substantial
hardware assistance. The problem is to determine an order for the frames
defined by the time of last use. Two implementations are feasible:

• Counters. In the simplest case, we associate with each page-table entry a
time-of-use field and add to the CPU a logical clock or counter. The clock is
incremented for every memory reference. Whenever a reference to a page
is made, the contents of the clock register are copied to the time-of-use
field in the page-table entry for that page. In this way, we always have

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

1

0

7

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 9.15 LRU page-replacement algorithm.

Consider the following: A B C D A B C D A B C D"
LRU Performs as follows (same as FIFO here):"
"
"
"
"
"
"

•  Every reference is a page fault!!
OPT Does much better:"

IS LRU A GOOD APPROXIMATION?"

D!

C!

B!

A!

D!

C!

B!

A!

D!

C!

B!

A!

C!B!A!D!C!B!A!D!C!B!A! D!

3!

2!

1!

Ref:!
Page:!

B!

C!

D!C!

B!

A!

C!B!A!D!C!B!A!D!C!B!A! D!

3!

2!

1!

Ref:!
Page:!

PROPERTIES OF LRU

LRU can be as bad as FIFO for some reference strings

However, LRU does not suffer from Belady’s anomaly

35
1

IMPLEMENTATION OF LRU

LRU page is at head

•  When a page is used for the first time, add it to tail.
•  Eject head if list longer than capacity

Different if we access a page that is already loaded:"
•  When a page is used again, remove from list, add it to tail. !
•  Eject head if list longer than capacity!

"

35
2

Page 6! Page 1! Page 2!Head(LRU)"

Tail (MRU)"

Page 7!

Page 6! Page 1! Page 2!Head(LRU)"

Tail (MRU)"

IMPLEMENTATION OF LRU

Problems with this scheme for paging?

•  Updates are happening on page use, not just swapping
•  List structure requires extra pointers c.f. FIFO, more updates

In practice, approximate LRU with simpler implementation

•  Use Reference bits

•  Second chance
•  Clock algorithm

35
3

IMPLEMENTING LRU & SECOND
CHANCE
Perfect:

•  Timestamp page on each reference
•  Keep list of pages ordered by time of reference
•  Too expensive to implement in reality for many reasons

Second Chance Algorithm:
•  Approximate LRU

•  Replace an old page, not the oldest page
•  FIFO with “use” bit

Details
•  A “use” bit per physical page

•  set when page accessed
•  On page fault check page at head of queue

•  If use bit=1 à clear bit, and move page to tail (give the page second
chance!)

•  If use bit=0 à replace page
•  Moving pages to tail still complex

SECOND CHANCE
ILLUSTRATION

Max page table size 4

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives
•  Page C arrives

B	 u:0	

first	 loaded	
page	

A	 u:1	 D	 u:0	 C	 u:0	

last	 loaded	
page	

SECOND CHANCE
ILLUSTRATION

Max page table size 4

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives
•  Page C arrives
•  Page F arrives

 B	 u:0	

first	 loaded	
page	

A	 u:1	 D	 u:0	 C	 u:0	

last	 loaded	
page	

SECOND CHANCE
ILLUSTRATION

Max page table size 4

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives
•  Page C arrives
•  Page F arrives

 A	 u:1	

first	 loaded	
page	

D	 u:0	 C	 u:0	 F	 u:0	

last	 loaded	
page	

SECOND CHANCE
ILLUSTRATION

Max page table size 4

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives
•  Page C arrives
•  Page F arrives
•  Access page D

A	 u:1	

first	 loaded	
page	

D	 u:1	 C	 u:0	 F	 u:0	

last	 loaded	
page	

SECOND CHANCE
ILLUSTRATION

Max page table size 4

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives
•  Page C arrives
•  Page F arrives
•  Access page D
•  Page E arrives

A	 u:1	

first	 loaded	
page	

D	 u:1	 C	 u:0	 F	 u:0	

last	 loaded	
page	

SECOND CHANCE
ILLUSTRATION

Max page table size 4

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives
•  Page C arrives
•  Page F arrives
•  Access page D
•  Page E arrives

D	 u:1	

first	 loaded	
page	

C	 u:0	 F	 u:0	 A	 u:0	

last	 loaded	
page	

SECOND CHANCE
ILLUSTRATION

Max page table size 4

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives
•  Page C arrives
•  Page F arrives
•  Access page D
•  Page E arrives

C	 u:0	

first	 loaded	
page	

F	 u:0	 A	 u:0	 D	 u:0	

last	 loaded	
page	

E	 u:0	

CLOCK ALGORITHM

Clock Algorithm: more efficient implementation of second
chance algorithm

•  Arrange physical pages in circle with single clock hand
Details:

•  On page fault:
•  Check use bit: 1 à used recently; clear and leave it alone

 0 à selected candidate for replacement
•  Advance clock hand (not real time)

•  Will always find a page or loop forever?

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

•  Page B arrives

B	 u:
0	

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

•  Page B arrives
•  Page A arrives
•  Access page A

B	 u:
0	

A	 u:
0	

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives

B	 u:
0	

A	 u:
1	

D	 u:
0	

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives
•  Page C arrives

B	 u:
0	

A	 u:
1	

D	 u:
0	

C	 u:
0	

B	 u:
0	

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives
•  Page C arrives
•  Page F arrives
•  Access page D

F	 u:0	

A	 u:
1	

D	 u:
0	

C	 u:
0	

C	 u:
0	
E	 u:
0	

CLOCK REPLACEMENT
ILLUSTRATION

Max page table size 4

Invariant: point at oldest page

•  Page B arrives
•  Page A arrives
•  Access page A
•  Page D arrives
•  Page C arrives
•  Page F arrives
•  Access page D
•  Page E arrives

A	 u:
1	
A	 u:
0	

D	 u:
1	
D	 u:
0	

F	 u:0	

CLOCK ALGORITHM:
DISCUSSION

What if hand moving slowly?

•  Good sign or bad sign?
•  Not many page faults and/or find page quickly

What if hand is moving quickly?

•  Lots of page faults and/or lots of reference bits set

NTH CHANCE VERSION OF
CLOCK ALGORITHM
Nth chance algorithm: Give page N chances

•  OS keeps counter per page: # sweeps
•  On page fault, OS checks use bit:

•  1 à clear use and also clear counter (used in last sweep)
•  0 à increment counter; if count=N, replace page

•  Means that clock hand has to sweep by N times without page being used before page is
replaced

How do we pick N?
•  Why pick large N? Better approx to LRU

•  If N ~ 1K, really good approximation
•  Why pick small N? More efficient

•  Otherwise might have to look a long way to find free page
What about dirty pages?

•  Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before
replacing?

•  Common approach:
•  Clean pages, use N=1
•  Dirty pages, use N=2 (and write back to disk when N=1)

THRASHING

If a process does not have “enough” pages, the page-fault rate is very high.
This leads to:

•  low CPU utilization
•  operating system spends most of its time swapping to disk

Thrashing: a process is busy swapping pages in and out
Questions:

•  How do we detect Thrashing?
•  What is best response to Thrashing?

426 Chapter 9 Virtual Memory

This high paging activity is called thrashing. A process is thrashing if it is
spending more time paging than executing.

9.6.1 Cause of Thrashing

Thrashing results in severe performance problems. Consider the following
scenario, which is based on the actual behavior of early paging systems.

The operating system monitors CPU utilization. If CPU utilization is too low,
we increase the degree of multiprogramming by introducing a new process
to the system. A global page-replacement algorithm is used; it replaces pages
without regard to the process to which they belong. Now suppose that a process
enters a new phase in its execution and needs more frames. It starts faulting and
taking frames away from other processes. These processes need those pages,
however, and so they also fault, taking frames from other processes. These
faulting processes must use the paging device to swap pages in and out. As
they queue up for the paging device, the ready queue empties. As processes
wait for the paging device, CPU utilization decreases.

The CPU scheduler sees the decreasing CPU utilization and increases the
degree of multiprogramming as a result. The new process tries to get started by
taking frames from running processes, causing more page faults and a longer
queue for the paging device. As a result, CPU utilization drops even further,
and the CPU scheduler tries to increase the degree of multiprogramming even
more. Thrashing has occurred, and system throughput plunges. The page-
fault rate increases tremendously. As a result, the effective memory-access
time increases. No work is getting done, because the processes are spending
all their time paging.

This phenomenon is illustrated in Figure 9.18, in which CPU utilization
is plotted against the degree of multiprogramming. As the degree of multi-
programming increases, CPU utilization also increases, although more slowly,
until a maximum is reached. If the degree of multiprogramming is increased
even further, thrashing sets in, and CPU utilization drops sharply. At this point,
to increase CPU utilization and stop thrashing, we must decrease the degree of
multiprogramming.

thrashing

degree of multiprogramming

C
P

U
 u

til
iz

at
io

n

Figure 9.18 Thrashing.

LOCALITY IN A MEMORY-
REFERENCE PATTERN

Program Memory Access
Patterns have temporal and
spatial locality

•  Group of Pages accessed
along a given time slice
called the “Working Set”

•  Working Set defines
minimum number of pages
needed for process to behave
well

Not enough memory for
Working Set ! Thrashing

•  Better to swap out process?

WORKING-SET MODEL

Δ = working-set window = fixed number of page references
•  Example: 10,000 accesses

WSi (working set of Process Pi) = total set of pages referenced in the
most recent Δ (varies in time)

•  if Δ too small will not encompass entire locality
•  if Δ too large will encompass several localities
•  if Δ= ∞, will encompass entire program

D = Σ|WSi| = total demand frames
if D > physical memory !Thrashing

•  Policy: if D > physical memory, then suspend/swap out processes
•  This can improve overall system behavior by a lot!

9.6 Thrashing 429

page reference table
. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 . . .

∆

t1
WS(t1) = {1,2,5,6,7}

∆

t2
WS(t2) = {3,4}

Figure 9.20 Working-set model.

that working set enough frames to provide it with its working-set size. If there
are enough extra frames, another process can be initiated. If the sum of the
working-set sizes increases, exceeding the total number of available frames,
the operating system selects a process to suspend. The process’s pages are
written out (swapped), and its frames are reallocated to other processes. The
suspended process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree of
multiprogramming as high as possible. Thus, it optimizes CPU utilization. The
difficulty with the working-set model is keeping track of the working set. The
working-set window is a moving window. At each memory reference, a new
reference appears at one end, and the oldest reference drops off the other end.
A page is in the working set if it is referenced anywhere in the working-set
window.

We can approximate the working-set model with a fixed-interval timer
interrupt and a reference bit. For example, assume that ! equals 10,000
references and that we can cause a timer interrupt every 5,000 references.
When we get a timer interrupt, we copy and clear the reference-bit values for
each page. Thus, if a page fault occurs, we can examine the current reference
bit and two in-memory bits to determine whether a page was used within the
last 10,000 to 15,000 references. If it was used, at least one of these bits will be
on. If it has not been used, these bits will be off. Pages with at least one bit on
will be considered to be in the working set.

Note that this arrangement is not entirely accurate, because we cannot
tell where, within an interval of 5,000, a reference occurred. We can reduce the
uncertainty by increasing the number of history bits and the frequency of inter-
rupts (for example, 10 bits and interrupts every 1,000 references). However, the
cost to service these more frequent interrupts will be correspondingly higher.

9.6.3 Page-Fault Frequency

The working-set model is successful, and knowledge of the working set can
be useful for prepaging (Section 9.9.1), but it seems a clumsy way to control
thrashing. A strategy that uses the page-fault frequency (PFF) takes a more
direct approach.

The specific problem is how to prevent thrashing. Thrashing has a high
page-fault rate. Thus, we want to control the page-fault rate. When it is too
high, we know that the process needs more frames. Conversely, if the page-fault
rate is too low, then the process may have too many frames. We can establish
upper and lower bounds on the desired page-fault rate (Figure 9.21). If the
actual page-fault rate exceeds the upper limit, we allocate the process another

WHAT ABOUT COMPULSORY
MISSES?
Recall that compulsory misses are misses that occur the first
time that a page is seen

•  Pages that are touched for the first time
•  Pages that are touched after process is swapped out/swapped

back in
Clustering:

•  On a page-fault, bring in multiple pages “around” the faulting
page

•  Since efficiency of disk reads increases with sequential reads,
makes sense to read several sequential pages

•  Tradeoff: Prefetching may evict other in-use pages for never-
used prefetched pages

Working Set Tracking:
•  Use algorithm to try to track working set of application
•  When swapping process back in, swap in working set

POP QUIZ 4: ADDRESS
TRANSLATION

Q1: True _ False _ Paging does not suffer from external
fragmentation
Q2: True _ False _ The segment offset can be larger than the
segment size
Q3: True _ False _ Paging: to compute the physical address,
add physical page # and offset
Q4: True _ False _ Uni-programming doesn’t provide
address protection
Q5: True _ False _ Virtual address space is always larger
than physical address space
Q6: True _ False _ Inverted page tables keeps fewer entries
than multi-level page tables

