Project 2 Tutorial

‘hreads

All Nachos threads are instances of KThread

Every KThread has a status member:
e statusNew
e statusReady
* statusRunning
* statusBlocked
* statusFinished

Nachos implements threading using a java thread for each TCB object.
* Threads are synchronized. (one running at a time)

‘hread Execution Cycle

runNextThead()
restoreState()

Running

Finished Blocked

‘hread Execution Cycle

New: Newly created thread, yet to be forked.

Ready: Waiting for access to CPU
* Thread.ready()

Running: Thread currently using CPU
 Thread.restoreState()

Blocked: Sleeping thread waiting for resource

Finished: Thread scheduled for destruction.
 Thread.finish()

rom first thread

Kernel.initialize()

KThread()
> Main thread

Create readyQueue
set main to be currentThread
Fork a new idle thread

Idle thread

{Thread Methods

KThread.yield()

1. Current thread relinquishes CPU.
2. Add itself to ready queue.
3. Switch to next thread (or idle thread) in ready queue based on scheduler

KThread.sleep()
e Called when current thread has either finished or been blocked.
* If current thread is blocked, then some thread will wake it up.
* Once woken up, it goes back to ready queue for rescheduling.

roject 2 —Part 2 —Task 1

Implement nachos.threads.Condition2

The following methods need to be implemented:
* sleep()
e wake()
* wakeAll()

You may NOT use semaphores.

roject 2 —Part 2 —Task 1

Structure
* A queue to store all waiting threads.

wake()
* Disable interrupt status
 Remove first thread in waiting list
e Put thread in ready queue
* Restore interrupt status

roject 2 —Part 2 —Task 1

wakeAll()

* Disable interrupt status

* Repeat:
* Remove first thread in waiting list
* Add thread to ready queue

* Restore interrupt status

roject 2 —Part 2 —Task 1

sleep()
* Disable interrupt status
* Release condition lock
* Add thread to waiting list
* Thread goes to sleep
* Acquire condition lock
e Restore interrupt status

roject 2 — Part 2 — Task 2

Thread B

j Call join() to wait until B finishes the job

—>» Thread A

mplement KThread.join()

e Threads A,B

* B begins doing a job

* A waits for B to finish the job (by calling join())

roject 2 — Part 2 — Task 2

Only join once

What if the thread to be joined has terminated?
* Do nothing.

Otherwise wait until the thread finishes, then join it

roject 2 — Part 2 — Task 2

Structure
» A flag to ensure that join() is only used once
* Thread that calls join()

join()

Check if it can be joined.

Disable interrupts.

Terminate the thread.

Pick up the next thread.
Restore the interrupt status.

Can only join a child thread
e Should check if called by the parent.

’roject 2 — Part 2 —Task 3

To complete implementation of Alarm class
* Implement waitUntil(long x)
* Implement timerinterrupt()

Waiting list

roject 2 — Part 2 —Task 3

waitUntil(long x)
* Disable Interrupt status

* Add thread to the waiting list

e Use machine.timer.getTime() to get the current time
* Get_current_time + x

e Put the thread to sleep
e Restore interrupt status

roject 2 — Part 2 —Task 3

timerinterrupt()

e Check if wakeup time is up
Disable interrupt status
Remove the thread from waiting list
Add the thread to the ready list
Restore interrupt status

roject 2 — Part 2 —Task 4

Implement Communicator.java
* speak(int word)
* listen()
* Only one lock
* Do not use semaphores

Structure

* Lock: mutual exclusion
Condition variable: send message
Condition variable: receive message
Speaker list
Listener list

roject 2 — Part 2 —Task 4

speak(int word)
* Acquire lock

* If the listener list is NOT empty
 Wake the listener condition
 Send the word to the first listener and remove the listener.

* Else
* Add speaker to the speaker list
» Speaker condition goes to sleep

e Release listener

roject 2 — Part 2 —Task 4

listen()
* Acquire lock
* If the speaker list is NOT empty

* Wake the speaker condition
* Receive word and remove the speaker.

e Else
e Add listener to the listener list.
* Listener condition goes to sleep.

e Release lock

‘esting your implementations

Download test cases from course website.
Put .java files in directory ag

Modify Makefile

e ag = AutoGrader BoatGrader ThreadGrader3 ThreadGraderl ThreadGrader4
ThreadGrader2

_ompile & Run

Under projl
Compile using make

Run with
* java nachos.machine.Machine -- nachos.ag.ThreadGraderl
* java nachos.machine.Machine -- nachos.ag.ThreadGrader2
* java nachos.machine.Machine -- nachos.ag.ThreadGrader3
* java nachos.machine.Machine -- nachos.ag.ThreadGrader4

Modify tester codes to include more test cases.

Try changing the random seed by including—s seed inthe
command line arguments.

eport

Include “report.pdf” under nachos/projl/report.pdf

In the report, you should include:
* Answers to questions in project description

» Key data structures used/block diagrams of your implementation (2 page
limit)

VN setup (UNIX)

Only ONE group member needs to run these steps.

Checkout the empty repository inside your Nachos directory in the
terminal.

* Run svn checkout https://.cas.mcmaster.ca/cs3mh3-se3sh3/group#

* Accept any certificates permanently.

Now you should add & commit all your files inside your nachos directory t
the SVN.

* Svn add *

e Svn commit *

VN setup (UNIX)

Now the rest of the group can run commands using SVN in terminal

Svn update which files to update
* Update current local working copy of nachos to the

latest revision on the repository.

Svn commit which files to commit

e Commit your changes in your local working copy of
nachos to the repository to make a new revision.

REPOSITORY

VN Setup (Windows)

Download & install TortoiseSVN

Navigate to your Nachos directory and right click>SVN checkout
5 Checkout “

Enter Mac id/pass

Repository
URL of repository:

[G https: /jwebsvn.cas.mcmaster. ca/cs3mh3-se3sh3/aroup 1| V‘
Checkout directory:
C:\Users\Ala\Desktop\nachos'\group 1

Multiple, independent working copies

Checkout Depth

Fully recursive v

[] omit externals Choose items...

Revision
(®) HEAD revision

(") Revision Show log

VN Setup (Windows)

Now you must do an “initial commit”, similarly to UNIX.

Check all files inside “changes made” box, and add a commit
m e S S a g e C:\Users\Ala\Desktop\nachos - Commit - TortoiseS\t

https://websvn.cas.mcmaster.ca/cs3mh3-se35h3/group1
Now the rest of the group members can L i
update and commit by

ight click->SVN update or SVN commit

Changes made (double-dick on file for diff):

Check: All None Non-versioned Files
Path Extension Status Property stz
ag non-versioned
|| agfAutoGrader.jav Java non-versioned non-version
ag/BoatGrader.jav, Java non-versioned non-version
c aqg/package.html html non-versioned non-version:
bn non-versione d
V| hinknachae nan-vercinne A nan-vercinn

Show unversione: d files 133 fil
¥|Sho t Is from different rep.

Keep locks
Keep changelists Show log Can

srading

Each project grade is divided as follows:
* 20% Q&A.
* 40% data structures/diagrams.
* 40% implementation of tasks.

NO MSAF is accepted for the projects.

10% late penalty every business day after the due date [Note changes to
the percentage].

Start EARLY

