
Project 3: Priority Scheduler
Readings: Chapter 4.2, Nachos Tutorial
Due date: midnight, March 8th, 2015
TA: Yuanhao Yu (yhyu.mail AT gmail)

February 23, 2015

1 Getting ready

In the project, you are asked to implement a priority scheduler with priority donation.
Recall that an issue with priority scheduling is priority inversion. If a high priority
thread needs to wait for a low priority thread (for instance, for a lock held by a low
priority thread), and another medium priority thread is on the ready list, then the high
priority thread will not get the CPU till the medium priority task finishes because the
low priority thread will not get any CPU time before so. A partial fix for this problem
is to have the waiting thread donate its priority to the low priority thread while it is
holding the lock. To implement priority donation, one needs to handle both multiple
donations, i.e., multiple threads waiting on the same resource; and nested donations,
where H is waiting on a lock that M holds and M is waiting on a lock that L holds, then
H should donate its priority to both M and L. Answer the following questions:

1) When does priority donation happen? (Select one from the following choices) a)
when a thread A needs to access the resource currently held by thread B, and
thread A has a higher priority than B; b) when a thread acquires a resource that
was previously held by another thread and there are other higher priority threads
waiting for the same resource; c) all above

2) When does a thread restore its original priority? a) never; b) not necessary; c)
when it releases the resource it previously held.

Justify your answer.

2 Task

Implement priority scheduling in Nachos by completing the PriorityScheduler class.
Priority scheduling is a key building block in real-time systems. Note that in or-
der to use your priority scheduler, you will need to change a line in nachos.conf

1



that specifies the scheduler class to use. The ThreadedKernel.scheduler key is ini-
tially equal to nachos.threads.RoundRobinScheduler. You need to change this to
nachos.threads.PriorityScheduler when you’re ready to run Nachos with priority
scheduling.

Note that while solving the priority donation problem, you will find a point where you
can easily calculate the effective priority for a thread, but this calculation takes a long
time. To receive full credit for the design aspect of this project, you need to speed this
up by caching the effective priority and only recalculating a thread’s effective priority
when it is possible for it to change.

It is important that you do not break the abstraction barriers while doing this part –
the Lock class does not need to be modified. Priority donation should be accomplished
by creating a subclass of ThreadQueue that will accomplish priority donation when
used with the existing Lock class, and still work correctly when used with the existing
Semaphore and Condition classes.

Hint: use the tester codes for unit testing. Implement the priority scheduler first with-
out priority donation, next deal with priority donation followed by priority restoration.

3 Testing

Test your codes with the tester classes in ag/ directory. You can modify the tester
codes to include more test cases. Your codes will be tested automatically with a more
comprehensive set of testers by the TAs. For testing, you can change the random seed
by including “-s seed” in the command line (where seed is an integer).

4 Submission

You should commit your codes through the SVN repository. Make sure the directory
structure is intact. Under the current nachos project directory, include a file called
“report.pdf” (e.g, nachos/proj2/report.pdf for this project). In the report, you should
include the following two parts:

1. Answers to the questions in the project description.

2. Key data structures used and a block diagram of your implementation (limited to
2 pages).

Grade of each project is divided as 20% for Q&A, 40% for key data structures/block
diagram on the implementation and 40% for the correctness of your implemention with
the respective percentage for each task.

2


