Project 5 (Bonus): Virtual Memory

Readings: Nachos Tutorial (Chapter 6)
TA: Qiang Xu (xuq22)
Due date: April 10th, 2015

March 3, 2015

In this project, you will further extend the memory management components in Na-
chos by implementing a software-based TLB and demand paging of virtual memory.

1 Task Requirements

I. (50%) Implement software-management of the TLB, with software translation via
an inverted page table.

Since VMProcess extends UserProcess, you should not have to duplicate much
code from UserProcess; that is, only override what’s necessary and call methods
in the superclass for everything else.

The way to handle TLB misses is to add code to VMProcess.handleException
which deals with the Processor.exceptionTLBMiss exception. The virtual address
causing the TLB miss is obtained by calling

Machine.processor () .readRegister (Processor.regBadVaddr).

Some methods you will need to use are: Machine.processor().getTLBSize ()
(obtains the size of the processor’s TLB), Machine.processor () .readTLBEntry ()
(reads a TLB entry), and Machine.processor () .writeTLBEntry () (writes a TLB
entry). Note that TLB entries are of type TranslationEntry, the same class used
for page table entries in Part I.

When you run Nachos from the proj3 directory, the processor no longer deals
with page tables (as it did in Part I); instead, the processor traps to the OS on a
TLB miss. This provides the flexibility to implement inverted page tables without
changing anything about the processor simulation.

You will need to do make sure that TLB state is set up properly on a context
switch. Most systems simply invalidate all the TLB entries on a context switch,
causing entries to be reloaded as the pages are referenced.



II.

Your TLB replacement policy can be random, if you wish. The only requirement
is that your policy makes use of all TLB entries (that is, don’t simply use a single
TLB entry or something weird like that).

You should use a single global inverted page table for all processes. (This is a
departure from the use of per-process page tables from Project 4) Because the
inverted page table is global, each key used to look up an entry in the table will need
to contain both the current process ID and the virtual page number. You may use
the standard Java java.util. Hashtable class to implement the inverted page table,
but do not depend upon the fact that this class is synchronized to avoid changes
being made to it by multiple threads.

Only invalidate TLB entries when it is necessary to do so (e.g. on context switches).

Don’t forget to set used and dirty bits where necessary in readVirtualMemory and
writeVirtualMemory.

(50%) Implement demand paging of virtual memory. For this, you will need routines
to move a page from disk to memory and from memory to disk. You should use
the Nachos stub file system as backing store

In order to find unreferenced pages to throw out on page faults, you will need to
keep track of all of the pages in the system which are currently in use. You should
consider using a core map, an array that maps physical page numbers to the virtual
pages that are stored there.

The inverted page table must only contain entries for pages that are actually in
physical memory. You will need to maintain a separate data structure for locating
pages in swap.

The Nachos TLB sets the dirty and used bits, which you can use to implement the
clock algorithm for page replacement. Alternately, you may choose to implement
the nth chance clock algorithm as described in the lecture notes (see the textbook
for more details on these algorithms).

Your page-replacement policy should not write any pages to the swap file which
have not been modified (i.e. for which the dirty bit is not set). Also, do not
unnecessarily increase the size of the swap file (by having unused space at the end
or in the middle of the file). Thus, you will be required to keep pages around in
swap even if they have been moved to physical memory.

Now that pages are being moved to and from memory and disk, you need to ensure
that one process won’t try to move a page while another process is performing
some other operation on it (e.g., a readVirtualMemory or writeVirtualMemory
operation, or loading the contents of the page from a disk file). You should not use
a separate Lock for every page — this is highly inefficient.

We recommend that you use a single global swap file shared by all processes. You
may use any format you wish for this file, but it should be rather simple as long
as you keep track of where different virtual pages are stored in the file. You may



assume that it’s safe to grow the swap file to an arbitrary size; that is, you don’t
need to be concerned about running out of disk space for this file. (If a read or
write operation on the swap file returns fewer bytes than requested, this is a fatal
error.) To conserve disk space, you should reuse unallocated swap file space; a
simple list of free swap file pages is sufficient for this.

The swap file should be closed and deleted when VMKernel.terminate () is called.

If a process experiences an I/O error when accessing the swap file, you should kill
the process.

You should test the performance of your page-replacement algorithm by comparing
it to a simpler algorithm, such as random replacement. A good way to test this is
to write a MIPS C program which does a lot of paging; test/matmult.c is a good
example. By counting the number of page faults, you can compare the performance
of your algorithm with random replacement. We will grade your algorithm in part
based on the page fault rate as compared to a simple replacement policy.

Note that it is possible to experience indefinite thrashing when the system has only
a single physical page of memory if a process attempts to perform a load/store
operation (convince yourself why!). Your implementation need not deal with this
case.

2 Submission

You should commit your codes through the SVN repository. To avoid unintended
changes to your working codes for Project 4, we suggest you to clone your Nachos
directory and commit a separate copy of the Nachos source tree (e.g., Nachos2). Please
inform the TA which folder to retrieve your code from the SVN repository before the
deadline.

Under the nachos project directory, include a file called “report.pdf’ details the data
structure and algorithms used in your implementation. Grade of the project is divided
as 40% for the key data structures/block diagram on the implementation and 60% for
the correctness of your implemention with the respective percentage for each task.



