
LOGISTICS

Exercise 6 released

One more exercise for file & storage system as bonus due
during exam ban (2pt)

Final exam review April 7 – last class

STORAGE AND FILE SYSTEMS

RONG ZHENG

OUTLINE

Overview of file system & storage system

I/O, storage system
File systems

FILE ABSTRACTION

Create, Open
Read, Write …
Ownership,
Access control

Read/write a
particular
location (sector)

Fi
le

S

ys
te

m

I/O

 S
ub

 s
ys

te
m

D
ev

ic
e

C
on

tro
lle

r

FILE SYSTEMS – BROADLY
DEFINED
File systems interface with storage devices (SSD, flash drive, magnetic disks, magnetic
tapes …)
I/O control consists of device drivers and interrupt handler

•  Device driver translates “retrieve block 123” into low-level hardware specific instructions
Basic file system: issue command to the device driver to read and write physical blocks on
the disk

•  Also manages memory buffers and caches
•  Buffers hold data in transit
•  Caches hold frequently used data (e.g. directory)

File organization module understands files, logical address, and how to map to physical
blocks

•  Translates logical block # to physical block #
•  Manages free space, disk allocation

File management module: operations on files!
•  Naming: interface to find files by name, not by blocks; directories"
•  Protection: access control"
•  Reliability/Durability: keeping of files durable despite crashes, media failures, attacks, etc

38
4

I/O SYSTEM

ROLE OF I/O?!

Without I/O, computers are useless (disembodied brains?)!
!
But… thousands of devices, each slightly different!

•  How can we standardize the interfaces to these devices?"
Devices unreliable: media failures and transmission errors!

•  How can we make them reliable???"
Devices unpredictable and/or slow!

•  How can we manage them if we don’t know what they will do
or how they will perform?"

Answer: abstraction, abstraction, abstraction!

OPERATIONAL PARAMETERS
FOR I/O!

Data granularity: Byte vs. Block!
•  Some devices provide single byte at a time (e.g., keyboard)"
•  Others provide whole blocks (e.g., disks, networks, etc.)"

Access pattern: Sequential vs. Random!
•  Some devices must be accessed sequentially (e.g., tape)"
•  Others can be accessed randomly (e.g., disk, cd, etc.)"

Transfer mechanism: Polling vs. Interrupts!
•  Some devices require continual monitoring"
•  Others generate interrupts when they need service"

THE GOAL OF THE I/O
SUBSYSTEM!

Provide uniform interfaces, despite wide range of different devices!
•  This code works on many different devices:"
 FILE fd = fopen(“/dev/something”,“rw”);

 for (int i = 0; i < 10; i++) {
 fprintf(fd, “Count %d\n”,i);
 }
 close(fd);

•  Why? Because code that controls devices (“device driver”)
implements standard interface"

!!
" ""

WANT STANDARD INTERFACES TO DEVICES!
Block Devices: e.g., disk drives, tape drives, DVD-ROM!

•  Access blocks of data"
•  Commands include open(), read(), write(), seek()
•  Raw I/O or file-system access"
•  Memory-mapped file access possible"

Character/Byte Devices: e.g., keyboards, mice, serial ports, some USB
devices!

•  Single characters at a time"
•  Commands include get(), put()
•  Libraries layered on top allow line editing"

Network Devices: e.g., Ethernet, Wireless, Bluetooth!
•  Different enough from block/character to have own interface"
•  Unix and Windows include socket interface"

•  Separates network protocol from network operation"
•  Includes select() functionality"

HOW DOES USER DEAL WITH TIMING?!
Blocking Interface: “Wait”!

•  When request data (e.g., read() system call), put process to sleep until
data is ready"

•  When write data (e.g., write() system call), put process to sleep until
device is ready for data"

Non-blocking Interface: “Don’t Wait”!
•  Returns quickly from read or write request with count of bytes

successfully transferred to kernel"
•  Read may return nothing, write may write nothing"

Asynchronous Interface: “Tell Me Later”!
•  When requesting data, take pointer to user’s buffer, return immediately;

later kernel fills buffer and notifies user"
•  When sending data, take pointer to user’s buffer, return immediately;

later kernel takes data and notifies user "

Be aware, in some context, non-blocking & asynchronous interface
are used interchangeably

Device"
Controller"

read"
write"
control"
status"

Addressable"
Memory"
and/or"
Queues"Registers!

(port 0x20)!

Hardware"
Controller"

Memory Mapped!
Region: 0x8f008020!

Bus"
Interface"

HOW DOES THE PROCESSOR TALK TO DEVICES?!

CPU interacts with a Controller!
•  Contains a set of registers that  

can be read and written"
•  May contain memory for request  

queues or bit-mapped images "
Regardless of the complexity of the connections and buses, processor
accesses registers in two ways: !

•  Port-mapped I/O: in/out instructions (e.g., Intel’s 0x21,AL) "
•  Memory mapped I/O: load/store instructions"

•  Registers/memory appear in physical address space"
•  I/O accomplished with load and store instructions"

!

Address+!
Data!

Interrupt Request!

Processor Memory Bus"

CPU"

Regular"
Memory"

Other Devices!
or Buses!Interrupt"

Controller"

Bus"
Adaptor"

Bus"
Adaptor"

SECONDARY STORAGE
Magnetic disks provide bulk of secondary storage
of modern computers!

•  Drives rotate at 60 to 250 times per second"
•  Transfer rate is rate at which data flow between

drive and computer"
•  Positioning time (random-access time) is time

to move disk arm to desired cylinder (seek time)
and time for desired sector to rotate under the
disk head (rotational latency)"

•  Head crash results from disk head making
contact with the disk surface"

•  That’s bad"
Disks can be removable!
Drive attached to computer via I/O bus!

•  Busses vary, including EIDE, ATA, SATA, USB,
Fibre Channel, SCSI, SAS, Firewire!

•  Host controller in computer uses bus to talk to
disk controller built into drive or storage array"

39
2

track t

sector s

spindle

cylinder c

platter
arm

read-write
head

arm assembly

rotation

MAGNETIC DISK PERFORMANCE
Capacity: GB – a few TB per drive!
Transfer Rate – theoretical – 6 Gb/sec!
Effective Transfer Rate – real – 1Gb/sec!
Access Latency = Average access time = average seek time +
average (rotational) latency

•  For fastest disk 3ms + 2ms = 5ms
•  For slow disk 9ms + 5.56ms = 14.56ms

Average I/O time = average access time + (amount to transfer /
transfer rate) + controller overhead

For example to transfer a 4KB block on a 7200 RPM disk with a
5ms average seek time, 1Gb/sec transfer rate with a .1ms controller
overhead =

•  5ms + 4.16ms + 0.1ms + transfer time
•  Transfer time = 4KB / 1Gb/s * 8Gb / GB * 1GB / 10242KB = 32 /

(10242) = 0.031 ms
•  Average I/O time for 4KB block = 9.27ms + .031ms = 9.301ms

 Seek time is large!

SOLID-STATE DISKS

Nonvolatile memory used like a hard drive

•  Many technology variations
Can be more reliable (?) than HDDs

More expensive per MB

Maybe have shorter life span

Less capacity

But much faster
No moving parts, so no seek time or rotational latency

DISK ADDRESSING

Access disk as linear array of blocks. Two Options:

•  Identify blocks as vectors [cylinder, surface, sector]. Sort in
cylinder-major order. Not used much anymore.

•  Logical Block Addressing (LBA). Every block has integer
address from zero up to the max number.

•  A block of fixed size; typically consists of multiple sectors
•  Disk controller translates from address ⇒ physical position

•  First case: OS/BIOS must deal with bad blocks
•  Second case: hardware shields OS from structure of disk

Need way to track free disk blocks
•  Link free blocks together ⇒ too slow today
•  Use bitmap to represent free space on disk

39
5

DISK SCHEDULING

The operating system is responsible for using hardware
efficiently — for the disk drives, this means having a fast
access time and disk bandwidth

Minimize seek time
Seek time ≈ seek distance

Disk bandwidth is the total number of bytes transferred,
divided by the total time between the first request for service
and the completion of the last transfer

DISK SCHEDULING (CONT.)

There are many sources of disk I/O request
•  OS, System processes, Users processes
•  I/O request includes input or output mode, disk address, memory

address, number of sectors to transfer
OS maintains queue of requests, per disk or device

Idle disk can immediately work on I/O request, busy disk means
work must queue

•  Optimization algorithms only make sense when a queue exists
Note that drive controllers have small buffers and can manage a
queue of I/O requests (of varying “depth”)

Several algorithms exist to schedule the servicing of disk I/O
requests

FCFS

First come first serve

Illustration shows total head movement of 640 cylinders"

SSTF

Shortest Seek Time First selects the request with the
minimum seek time from the current head position

SSTF scheduling is a form of SJF scheduling; may cause
starvation of some requests

Illustration shows total head movement of 236 cylinders

SSTF (CONT.)

SCAN

The disk arm starts at one end of the disk, and moves toward
the other end, servicing requests until it gets to the other end
of the disk, where the head movement is reversed and
servicing continues.

SCAN algorithm Sometimes called the elevator algorithm

Illustration shows total head movement of 208 cylinders

But note that if requests are uniformly dense, largest density
at other end of disk and those wait the longest

SCAN (CONT.)

C-SCAN

Provides a more uniform wait time than SCAN

The head moves from one end of the disk to the other,
servicing requests as it goes

•  When it reaches the other end, however, it immediately
returns to the beginning of the disk, without servicing any
requests on the return trip

Treats the cylinders as a circular list that wraps around from
the last cylinder to the first one

Total number of cylinders?

C-SCAN (CONT.)

C-LOOK

LOOK a version of SCAN, C-LOOK a version of C-SCAN

Arm only goes as far as the last request in each direction,
then reverses direction immediately, without first going all
the way to the end of the disk

Total number of cylinders?

C-LOOK (CONT.)

SELECTING A DISK-SCHEDULING
ALGORITHM
SSTF is common and has a natural appeal
SCAN and C-SCAN perform better for systems that place a heavy load
on the disk

•  Less starvation
Performance depends on the number and types of requests
The disk-scheduling algorithm should be written as a separate module
of the operating system, allowing it to be replaced with a different
algorithm if necessary
Either SSTF or LOOK is a reasonable choice for the default algorithm
What about rotational latency?

•  Difficult for OS to calculate

How does disk-based queueing effect OS queue ordering efforts?

DISK MANAGEMENT

Low-level formatting, or physical formatting — Dividing a
disk into sectors that the disk controller can read and write

•  Each sector can hold header information, plus data, plus error
correction code (ECC)

•  ECC allows error detection and error recovery for small
number of bit errors

•  Usually 512 bytes of data but can be selectable: 256, 512,
1024

DISK MANAGEMENT (CONT’D)

To use a disk to hold files, the operating system still needs to
record its own data structures on the disk

•  Partition the disk into one or more groups of cylinders, each
treated as a logical disk

•  Logical formatting or “making a file system”
•  e.g., store maps of free and allocated space and an initial

empty directory
Raw disk access for apps that want to do their own block
management, keep OS out of the way (e.g., databases)

40
9

BOOTING FROM A DISK IN
WINDOWS
Boot block initializes system

The bootstrap is stored in ROM
Bootstrap loader program stored in boot blocks (e.g., first
section) of the hard disk

Master boot record

SWAP-SPACE MANAGEMENT

Swap-space — Virtual memory uses disk space as an
extension of main memory

•  Less common now due to memory capacity increases
Swap-space can be carved out of the normal file system, or,
more commonly, it can be in a separate disk partition (as raw
disk)
Swap-space management

•  4.3BSD allocates swap space when process starts; holds text
segment (the program) and data segment

•  Kernel uses swap maps to track swap-space use
What if a system runs out of swap space?

•  Some systems allow multiple swap spaces

RAID STRUCTURE

RAID – redundant array of inexpensive (independent) disks
•  multiple disk drives provides reliability via redundancy

Terminology:
•  Mean time to failure (MTF): the average time to failure (w/o

repair)
•  Mean time to repair (MTR): the average time to repair a failed

component
•  Mean time to data loss (MTDL): if failures occur during the

repairing, data losses may occur
•  Data mirroring: duplicating the same data on multiple disks
•  Data striping: segmenting logically sequential data so that

consecutive segments are stored on different physical storage
devices: bit striping, block striping …

EXAMPLE

MTF of a single disk is 100,000 hrs

What about MTF for some disk among 100 disks?
•  1000 hrs ~ 41.66 days
•  Needs redundancy!

For a single disk, MTDL = MTF

Consider 2-mirroring, the MTF of a single disk fail is thus
50,000 hrs (why?)

Let the MTR be 10 hrs.
•  If 1 disk fails, while it is being repaired, another failure

occurs to the remaining disk à data loss
•  What is the MTDL for 2-mirroring?

41
3

MTDL FOR 2-MIRRORING

the probability that the second disk fails while the first disk is
being repaired is 10/100,000

⇒  The probability of failure of both disks 1/50000x10/100,000
⇒  The MTDL = 100,0002/2/10 = 5x108 hrs = 57,000 yrs!

(holds only for independent failures and MTR << MTF)

Generally, for two-mirroring

MTDL = MTF2/2/MTR

41
4

RAID LEVELS

RAID level 0: disk arrays with striping at the
level of blocks but without any redundancy
(such as mirroring or parity bits

•  Increase the performance of disk I/O
RAID level 1: disk mirroring

RAID level 2: striping at bit level; using
hamming code for error correction

•  (7, 4) in the example

(1 0 1 1) ! (p1 p2 1 p3 0 1 1) ! (0 1 1 0 0 1 1)

What happens in case of one bit error?

RAID LEVELS (CONT’D)

RAID 4: block level striping with parity disk

RAID 5: block level striping with distributed
parity

RAID 6: extends RAID 5 by adding an additional
parity block; thus it uses block-level striping
with two parity blocks distributed across all
member disks.

41
6

NESTED RAID

RAID 0 + 1: striping then mirroring

RAID 1 + 0: mirroring then striping
Any difference?

•  Both can tolerate single disk
failures

•  Same capacity requirements
•  In practice, may have different

fault tolerance capabilities:
RAID10 preferable

RAID (CONT.)

Trade-off in reliability and redundancy (cost)

RAID within a storage array can still fail if the array fails, so
automatic replication of the data between arrays is common

Frequently, a small number of hot-spare disks are left
unallocated, automatically replacing a failed disk and having
data rebuilt onto them

FILE

Contiguous logical address space
Types:

•  Data
•  numeric
•  character
•  binary

•  Program
Contents defined by file’s creator
Analogous to processes

•  Contiguous logical space
•  PCB
•  Page table

FILE ATTRIBUTES
Name – only information kept in human-readable form
Identifier – unique tag (number) identifies file within file system
Type – needed for systems that support different types
Location – pointer to file location on device
Size – current file size
Protection – controls who can do reading, writing, executing
Time, date, and user identification – data for protection, security,
and usage monitoring
Information about files are kept in the directory structure, which
is maintained on the disk
Many variations, including extended file attributes such as file
checksum

FILE OPERATIONS

File is an abstract data type
Create
Write – at write pointer location
Read – at read pointer location
Reposition within file - seek
Delete
Truncate
Open(Fi) – search the directory structure on disk for entry Fi,
and move the content of entry to memory
Close (Fi) – move the content of entry Fi in memory to
directory structure on disk

OPEN FILES

Several pieces of data are needed to manage open files:

•  Open-file table: tracks open files
•  File pointer: pointer to last read/write location, per process

that has the file open
•  File-open count: counter of number of times a file is open – to

allow removal of data from open-file table when last
processes closes it

•  Disk location of the file: cache of data access information
•  Access rights: per-process access mode information

FILE STRUCTURE
None - sequence of words, bytes
Simple record structure

•  Lines
•  Fixed length
•  Variable length

Complex Structures
•  Formatted document
•  Relocatable load file

Can simulate last two with first method by inserting appropriate
control characters
Who decides:

•  Operating system
•  Program

ACCESS METHODS
Sequential Access

 read next
 write next
 reset
 no read after last write (rewrite)

Direct Access – file is fixed length logical records
 read n
 write n
 position to n
 read next
 write next
 rewrite n
 n = relative block number

Relative block numbers allow OS to decide where file should be placed

FILE-CONTROL BLOCK

File control block stores file meta data

•  Stored on disks when a file is not open
•  Load into memory for open files

42
5

12.2 File-System Implementation 547

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Figure 12.2 A typical file-control block.

• The per-process open-file table contains a pointer to the appropriate entry
in the system-wide open-file table, as well as other information.

• Buffers hold file-system blocks when they are being read from disk or
written to disk.

To create a new file, an application program calls the logical file system.
The logical file system knows the format of the directory structures. To create a
new file, it allocates a new FCB. (Alternatively, if the file-system implementation
creates all FCBs at file-system creation time, an FCB is allocated from the set
of free FCBs.) The system then reads the appropriate directory into memory,
updates it with the new file name and FCB, and writes it back to the disk. A
typical FCB is shown in Figure 12.2.

Some operating systems, including UNIX, treat a directory exactly the same
as a file—one with a “type” field indicating that it is a directory. Other operating
systems, including Windows, implement separate system calls for files and
directories and treat directories as entities separate from files. Whatever the
larger structural issues, the logical file system can call the file-organization
module to map the directory I/O into disk-block numbers, which are passed
on to the basic file system and I/O control system.

Now that a file has been created, it can be used for I/O. First, though, it
must be opened. The open() call passes a file name to the logical file system.
The open() system call first searches the system-wide open-file table to see
if the file is already in use by another process. If it is, a per-process open-file
table entry is created pointing to the existing system-wide open-file table. This
algorithm can save substantial overhead. If the file is not already open, the
directory structure is searched for the given file name. Parts of the directory
structure are usually cached in memory to speed directory operations. Once
the file is found, the FCB is copied into a system-wide open-file table in memory.
This table not only stores the FCB but also tracks the number of processes that
have the file open.

Next, an entry is made in the per-process open-file table, with a pointer
to the entry in the system-wide open-file table and some other fields. These
other fields may include a pointer to the current location in the file (for the next
read() or write() operation) and the access mode in which the file is open.
The open() call returns a pointer to the appropriate entry in the per-process

HOW ARE FILES STORED?

File is an abstract data type

•  FCB
•  data blocks

Allocation methods decide how disk blocks are allocated for
files

•  Analogous to memory address translation
•  Contiguous allocation – each file occupies set of contiguous

blocks
•  Linked allocation – each file a linked list of blocks (FAT)
•  Indexed allocation – each file has its own index block(s) of

pointers to its data blocks

42
6

CONTIGUOUS ALLOCATION

A file of size n is stored in block b, b+1,
b+2, …, b+n

Advantage:
•  reduce access time for sequential

accesses
•  Easy to support direct access

Disadvantage: external fragmentation

42
7

554 Chapter 12 File-System Implementation

directory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

count

f

tr

mail

list

start

0
14
19
28
6

length

2
3
6
4
2

file

count
tr
mail
list
f

Figure 12.5 Contiguous allocation of disk space.

file that starts at block b, we can immediately access block b + i. Thus, both
sequential and direct access can be supported by contiguous allocation.

Contiguous allocation has some problems, however. One difficulty is
finding space for a new file. The system chosen to manage free space determines
how this task is accomplished; these management systems are discussed in
Section 12.5. Any management system can be used, but some are slower than
others.

The contiguous-allocation problem can be seen as a particular application
of the general dynamic storage-allocation problem discussed in Section 8.3,
which involves how to satisfy a request of size n from a list of free holes. First
fit and best fit are the most common strategies used to select a free hole from
the set of available holes. Simulations have shown that both first fit and best fit
are more efficient than worst fit in terms of both time and storage utilization.
Neither first fit nor best fit is clearly best in terms of storage utilization, but
first fit is generally faster.

All these algorithms suffer from the problem of external fragmentation.
As files are allocated and deleted, the free disk space is broken into little pieces.
External fragmentation exists whenever free space is broken into chunks. It
becomes a problem when the largest contiguous chunk is insufficient for a
request; storage is fragmented into a number of holes, none of which is large
enough to store the data. Depending on the total amount of disk storage and the
average file size, external fragmentation may be a minor or a major problem.

One strategy for preventing loss of significant amounts of disk space to
external fragmentation is to copy an entire file system onto another disk. The
original disk is then freed completely, creating one large contiguous free space.
We then copy the files back onto the original disk by allocating contiguous
space from this one large hole. This scheme effectively compacts all free space
into one contiguous space, solving the fragmentation problem. The cost of this

LINKED ALLOCATION
Each file is a linked list of disk
blocks: blocks may be scattered
anywhere on the disk!
Directory contains the pointer to the
first and last blocks!
Each block contains a point to the
next block !
Advantage: no external
fragmentation!
Disadvantage: !

•  Not suitable for direct access"
•  Additional space required for

storing the pointers"

 42
8

556 Chapter 12 File-System Implementation

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

file
jeep

start
9

directory

end
25

1

1

-1

2

Figure 12.6 Linked allocation of disk space.

and last blocks of the file. For example, a file of five blocks might start at block
9 and continue at block 16, then block 1, then block 10, and finally block 25
(Figure 12.6). Each block contains a pointer to the next block. These pointers
are not made available to the user. Thus, if each block is 512 bytes in size, and
a disk address (the pointer) requires 4 bytes, then the user sees blocks of 508
bytes.

To create a new file, we simply create a new entry in the directory. With
linked allocation, each directory entry has a pointer to the first disk block of
the file. This pointer is initialized to null (the end-of-list pointer value) to
signify an empty file. The size field is also set to 0. A write to the file causes
the free-space management system to find a free block, and this new block
is written to and is linked to the end of the file. To read a file, we simply
read blocks by following the pointers from block to block. There is no external
fragmentation with linked allocation, and any free block on the free-space list
can be used to satisfy a request. The size of a file need not be declared when the
file is created. A file can continue to grow as long as free blocks are available.
Consequently, it is never necessary to compact disk space.

Linked allocation does have disadvantages, however. The major problem
is that it can be used effectively only for sequential-access files. To find the
ith block of a file, we must start at the beginning of that file and follow the
pointers until we get to the ith block. Each access to a pointer requires a disk
read, and some require a disk seek. Consequently, it is inefficient to support a
direct-access capability for linked-allocation files.

Another disadvantage is the space required for the pointers. If a pointer
requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being
used for pointers, rather than for information. Each file requires slightly more
space than it would otherwise.

The usual solution to this problem is to collect blocks into multiples, called
clusters, and to allocate clusters rather than blocks. For instance, the file system

FILE ALLOCATION TABLE (FAT)

Store the linked list in a table
A section of disk at the
beginning of each volume is
set aside to contain the table.
The table has one entry for
each disk block and is
indexed by block number.
The table entry indexed by
that block number contains
the block number of the next
block in the file
An unused block is indicated
by a table value of 0

42
9

558 Chapter 12 File-System Implementation

• • •

directory entry

test 217

start blockname
0

217 618

339

618 339

number of disk blocks –1

FAT

Figure 12.7 File-allocation table.

contains the address of the index block (Figure 12.8). To find and read the i th

block, we use the pointer in the i th index-block entry. This scheme is similar to
the paging scheme described in Section 8.5.

When the file is created, all pointers in the index block are set to null.
When the i th block is first written, a block is obtained from the free-space
manager, and its address is put in the ith index-block entry.

Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the disk can satisfy a request for more
space. Indexed allocation does suffer from wasted space, however. The pointer

directory

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

9
16

1
10
25
–1
–1
–1

file
jeep

index block
19

19

Figure 12.8 Indexed allocation of disk space.

INDEXED ALLOCATION

Each file has its own index
block(s) of pointers to its data
blocks

The index blocks are stored
on disk

What does this remind you
of?

•  Page table

File size limit?

43
0

558 Chapter 12 File-System Implementation

• • •

directory entry

test 217

start blockname
0

217 618

339

618 339

number of disk blocks –1

FAT

Figure 12.7 File-allocation table.

contains the address of the index block (Figure 12.8). To find and read the i th

block, we use the pointer in the i th index-block entry. This scheme is similar to
the paging scheme described in Section 8.5.

When the file is created, all pointers in the index block are set to null.
When the i th block is first written, a block is obtained from the free-space
manager, and its address is put in the ith index-block entry.

Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the disk can satisfy a request for more
space. Indexed allocation does suffer from wasted space, however. The pointer

directory

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

9
16

1
10
25
–1
–1
–1

file
jeep

index block
19

19

Figure 12.8 Indexed allocation of disk space.

VARIANTS OF INDEXED
ALLOCATION
Linked index blocks
Multilevel index
•  1-level index: 4KB/block, 4-byte pointers

! 4MB
•  2-level index: 4KB/block, 4 type points

! 1Kx1Kx4KB = 4GB file size
Combined scheme
•  used in Unix
•  In UFS: 12 direct pointers for blocks, 1

singly indirect, 1 double indirect and 1
triply indirect (15 altogether)

•  4KB blocks: 12*4KB + 1KB*4KB +
1KB*1KB*4KB + 1KB*1KB*1KB*4KB ~
4TB (assume 32-bit pointers)

•  Using 32-bit pointer ! maximally
addressable # of blocks = 232 " 16TB

43
1

560 Chapter 12 File-System Implementation

direct blocks

data

data

data

data

data

data

data

data

data

data

•
•
••

•
•

•
•
•

•
•
•

•
•
•

•
•
•

mode

owners (2)

timestamps (3)

size block count

single indirect

double indirect

triple indirect

Figure 12.9 The UNIX inode.

12.4.4 Performance

The allocation methods that we have discussed vary in their storage efficiency
and data-block access times. Both are important criteria in selecting the proper
method or methods for an operating system to implement.

Before selecting an allocation method, we need to determine how the
systems will be used. A system with mostly sequential access should not use
the same method as a system with mostly random access.

For any type of access, contiguous allocation requires only one access to get
a disk block. Since we can easily keep the initial address of the file in memory,
we can calculate immediately the disk address of the i th block (or the next
block) and read it directly.

For linked allocation, we can also keep the address of the next block in
memory and read it directly. This method is fine for sequential access; for
direct access, however, an access to the i th block might require i disk reads. This
problem indicates why linked allocation should not be used for an application
requiring direct access.

As a result, some systems support direct-access files by using contiguous
allocation and sequential-access files by using linked allocation. For these
systems, the type of access to be made must be declared when the file is created.
A file created for sequential access will be linked and cannot be used for direct
access. A file created for direct access will be contiguous and can support both
direct access and sequential access, but its maximum length must be declared
when it is created. In this case, the operating system must have appropriate
data structures and algorithms to support both allocation methods. Files can be
converted from one type to another by the creation of a new file of the desired
type, into which the contents of the old file are copied. The old file may then
be deleted and the new file renamed.

DIRECTORY
What is directory?!

•  Groups files into collections"
•  Can be implemented as a file (Unix)"
•  Store file related information (e.g., index block pointer)"

Operations performed on a directory!
•  Search for a file, create a file, delete a file, list a directory,

rename a file, traverse the file system"
Logical organization of directories!
•  Single level (flat fs)
•  Two level
•  Tree-Structured directories
•  Acyclic graph!

43
2

TREE-STRUCTURED DIRECTORY

43
3

ACYCLIC-GRAPH DIRECTORIES

Have shared subdirectories and files

FILE SYSTEM MOUNTING

A file system must be mounted before it can be accessed

A unmounted file system is mounted at a mount point

users

/

bill fred

help

sue jane

prog
doc

(a) (b)

MOUNT POINT

IMPLEMENTATION OF
DIRECTORY

Recently accessed directories can be cached in memory

1) Linear list of file names with pointers to the data blocks
•  File creation:

•  1) search no existing file with the same name [linear
search]

•  2) Add new entry at the end of the directory
•  File deletion:

•  1) Search for the respective entry
•  2) Release the space (mark as unused, attach a free list,

move the last entry over …)

43
7

HASH TABLE

Linear list with hash data structure!
•  Decreases directory search time"
•  Collisions – situations where two file names hash to the

same location"
•  Only good if entries are fixed size, or use chained-overflow

method"

43
8

DATA STRUCTURES OF FILE
SYSTEMS
Both on-disk and in memory!
On-disk structures!

•  Boot control block contains info needed by system to boot OS
from that volume"

•  Needed if volume contains OS, usually first block of volume"
•  Volume control block (superblock, master file table) contains

volume details"
•  Total # of blocks, # of free blocks, block size, free block pointers

or array"
•  Directory structure organizes the files"

•  Names and inode numbers, master file table"
•  Per-file File Control Block (FCB) contains many details about the

file"
•  inode number, permissions, size, dates"

43
9

IN-MEMORY FILE SYSTEM
STRUCTURES

Mount table storing file system mounts, mount points, file
system types!
An in-memory directory-structure cache holds the directory
information of recently accessed directories

The system-wide open-file table contains a copy of the FCB
of each open file, as well as other information

The per-process open file table contains a pointer to the
appropriate entry in the system-wide open-file table, as well
as other information

Buffers hold file-system blocks when they are being read
from disk or written to disk

!
!

44
0

IN MEMORY FILE-SYSTEM
STRUCTURES

44
1

548 Chapter 12 File-System Implementation

directory structure

directory structure
open (file name)

kernel memoryuser space

index

(a)

file-control block

secondary storage

data blocks

per-process
open-file table

system-wide
open-file table

read (index)

kernel memoryuser space
(b)

file-control block

secondary storage

Figure 12.3 In-memory file-system structures. (a) File open. (b) File read.

file-system table. All file operations are then performed via this pointer. The
file name may not be part of the open-file table, as the system has no use for
it once the appropriate FCB is located on disk. It could be cached, though, to
save time on subsequent opens of the same file. The name given to the entry
varies. UNIX systems refer to it as a file descriptor; Windows refers to it as a
file handle.

When a process closes the file, the per-process table entry is removed, and
the system-wide entry’s open count is decremented. When all users that have
opened the file close it, any updated metadata is copied back to the disk-based
directory structure, and the system-wide open-file table entry is removed.

Some systems complicate this scheme further by using the file system as an
interface to other system aspects, such as networking. For example, in UFS, the
system-wide open-file table holds the inodes and other information for files
and directories. It also holds similar information for network connections and
devices. In this way, one mechanism can be used for multiple purposes.

The caching aspects of file-system structures should not be overlooked.
Most systems keep all information about an open file, except for its actual data
blocks, in memory. The BSD UNIX system is typical in its use of caches wherever
disk I/O can be saved. Its average cache hit rate of 85 percent shows that these
techniques are well worth implementing. The BSD UNIX system is described
fully in Appendix A.

The operating structures of a file-system implementation are summarized
in Figure 12.3.

548 Chapter 12 File-System Implementation

directory structure

directory structure
open (file name)

kernel memoryuser space

index

(a)

file-control block

secondary storage

data blocks

per-process
open-file table

system-wide
open-file table

read (index)

kernel memoryuser space
(b)

file-control block

secondary storage

Figure 12.3 In-memory file-system structures. (a) File open. (b) File read.

file-system table. All file operations are then performed via this pointer. The
file name may not be part of the open-file table, as the system has no use for
it once the appropriate FCB is located on disk. It could be cached, though, to
save time on subsequent opens of the same file. The name given to the entry
varies. UNIX systems refer to it as a file descriptor; Windows refers to it as a
file handle.

When a process closes the file, the per-process table entry is removed, and
the system-wide entry’s open count is decremented. When all users that have
opened the file close it, any updated metadata is copied back to the disk-based
directory structure, and the system-wide open-file table entry is removed.

Some systems complicate this scheme further by using the file system as an
interface to other system aspects, such as networking. For example, in UFS, the
system-wide open-file table holds the inodes and other information for files
and directories. It also holds similar information for network connections and
devices. In this way, one mechanism can be used for multiple purposes.

The caching aspects of file-system structures should not be overlooked.
Most systems keep all information about an open file, except for its actual data
blocks, in memory. The BSD UNIX system is typical in its use of caches wherever
disk I/O can be saved. Its average cache hit rate of 85 percent shows that these
techniques are well worth implementing. The BSD UNIX system is described
fully in Appendix A.

The operating structures of a file-system implementation are summarized
in Figure 12.3.

File open

File read

SUMMARY

