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ISSUES IN COOPERING PROCESSES AND 
THREADS – DATA SHARING 

Shared Memory 
•  Two or more processes share a part of their address space 
•  Incorrect results whenever two processes (or two threads of a 

process) modify the same data at the same time 
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EXAMPLE 1: PRODUCER - 
CONSUMER 

count – # of items in the buffer, shared variable  

Producer 
 
while (count == BUFFER.SIZE) 
  ; // do nothing 
 
// add an item to the buffer 
buffer[in] = item; 
in = (in + 1) % BUFFER.SIZE; 
++count; 

Consumer 
 
while (count == 0) 
  ; // do nothing 
 
// remove an item from the buffer  
item = buffer[out]; 
out = (out + 1) % BUFFER.SIZE; 
--count; 
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RACE CONDITION 
count++ could be implemented as 
 
      register1 = count 
      register1 = register1 + 1 
      count = register1 

count-- could be implemented as 
 
      register2 = count 
    register2 = register2 - 1 
      count = register2 

Consider this execution interleaving with “count = 5” initially: 
T0: producer execute register1 = count   {register1 = 5} 
T1: producer execute register1 = register1 + 1   {register1 = 6}  
T2: consumer execute register2 = count   {register2 = 5}  
T3: consumer execute register2 = register2 - 1   {register2 = 4}  
T4: producer execute count = register1   {count = 6 }  
T5: consumer execute count = register2   {count = 4} 

count++ and count-- are not atomic operations! 
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EXAMPLE 2: BANKING PROBLEM 
Speed up server by using multiple threads (one per request)

•  Can use multi-processor, or overlap comp and I/O
Requests proceeds to completion, blocking as required:

  Deposit(acctId, amount) { 
   acct = GetAccount(actId);  /* May use disk I/O */ 
   acct->balance += amount; 
   StoreAccount(acct);   /* Involves disk I/O */ 

 } 

Unfortunately, shared state can get corrupted: 
Thread 1   Thread 2 

  load r1, acct->balance 
   load r1, acct->balance 
   add r1, amount2 
   store r1, acct->balance 
 add r1, amount1 
 store r1, acct->balance 
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EXAMPLE 2: DINNING 
PHILOSOPHER’S PROBLEM  

First suggested by Dijkstra in 1971 
•  Philosophers eat/think 
•  Eating needs 2 chopsticks 
•  Pick one chopstick at a time 

Deadlock may occur! 6 



EXAMPLE 3: SOJOURNER 
ROVER 
Mars Pathfinder, a NASA space probe landed a robot, the Sojourner rover, on 
Mars in 1997  
Shortly after the Sojourner began operating, it started to experience frequent 
computer resets.  
Priority: T3 > T2 > T1 
Problem: T3 may be blocked for a long period of time 
Solution: priority inheritance 
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DEFINITIONS 
Synchronization: using atomic operations to ensure 
cooperation between threads 

•  For now, only loads and stores are atomic 
 
Critical Section: piece of code that only one thread can 
execute at once 
 
Mutual Exclusion: ensuring that only one thread executes 
critical section 

•  One thread excludes the other while doing its task 
•  Critical section and mutual exclusion are two ways of 

describing the same thing 
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REQUIREMENTS 

Mutual exclusion: No two processes may be simultaneously 
into their critical sections for the same shared data 
 
Progress: No process should be prevented to enter its 
critical section when no other process is inside its own 
critical section for the same shared data 
 

No starvation: No process should have to wait forever to 
enter a critical section 

Starvation with progress? 
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MOTIVATION: “TOO MUCH MILK” 
Great thing about OS’s – analogy between problems in OS and 
problems in real life 

•  Help you understand real life problems better 
•  But, computers are much stupider than people 

Example: People need to coordinate: 

 

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime
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LOCK 
Prevents someone from doing something 

•  Lock before entering critical section and  
before accessing shared data 

•  Unlock when leaving, after accessing shared data 
•  Wait if locked 

•  Important idea: all synchronization involves waiting 
Example: fix the milk problem by putting a lock on refrigerator 

•  Lock it and take key if you are going to go buy milk 
•  Fixes too much (coarse granularity): roommate angry if only 

wants orange juice 

•  Of Course – We don’t know how to make a lock yet 

#$@%@#$@ 
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TOO MUCH MILK: CORRECTNESS 
PROPERTIES 
Need to be careful about correctness of concurrent programs, 
since non-deterministic 

•  Always write down desired behavior first 
•  Impulse is to start coding first, then when it doesn’t work, pull hair 

out 
•  Instead, think first, then code 

What are the correctness properties for the “Too much milk” 
problem? 

•  Never more than one person buys 
•  Someone buys if needed 

Restrict ourselves to use only atomic load and store operations 
as building blocks 
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TOO MUCH MILK: SOLUTION #1 
Use a note to avoid buying too much milk: 

•  Leave a note before buying (kind of “lock”) 
•  Remove note after buying (kind of “unlock”) 
•  Don’t buy if note (wait) 

 
Suppose a computer tries this (remember, only memory read/write are 
atomic): 

  if (noMilk) { 
      if (noNote) { 
         leave Note; 
         buy milk; 
         remove note; 
      } 

  } 
 
Result?   
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TOO MUCH MILK: SOLUTION #1 
Still too much milk but only occasionally! 
  Thread A               Thread B   

  if (noMilk)           

    if (noNote) { 

                         if (noMilk)           

                           if (noNote) { 

      leave Note; 
 buy milk; 

      remove note; 

    } 

  } 

                             leave Note; 
                        buy milk; 

Thread can get context switched after checking milk and note but before leaving note! 

Solution makes problem worse since fails intermittently 

•  Makes it really hard to debug… 
•  Must work despite what the thread dispatcher does! 14

 Check and setting 
are not atomic 



TOO MUCH MILK: SOLUTION #1½  
Clearly the Note is not quite blocking enough 

•  Let’s try to fix this by placing note first 
Another try at previous solution: 

  leave Note; 
  if (noMilk) { 

      if (noNote) { 
         buy milk; 
      } 

  } 
  remove Note; 

 
What happens here? 

•  Well, with human, probably nothing bad 
•  With computer: no one ever buys milk 
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TOO MUCH MILK SOLUTION #2 
How about labeled notes?   

•  Now we can leave note before checking 
 
Algorithm looks like this: 

  
 Thread A   Thread B 

 leave note A;  leave note B; 
 if (noNote B) {  if (noNote A) { 
    if (noMilk) {     if (noMilk) { 
       buy Milk;        buy Milk; 
    }          } 
 }    } 
 remove note A;  remove note B; 

 
Does this work? 
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TOO MUCH MILK SOLUTION #2 
Possible for neither thread to buy milk! 

 Thread A   Thread B 

 leave note A;   

                                  leave note B; 
                           if (noNote A) { 
                              if (noMilk) { 
                                buy Milk; 
           } 
     } 

         if (noNote B) { 

            if (noMilk) { 

              buy Milk;              

              … 

                                  remove note B; 

Really insidious:  
•  Unlikely that this would happen, but will at worse possible time 
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TOO MUCH MILK SOLUTION #2: 
PROBLEM! 

I’m not getting milk, You’re not getting milk 
This kind of lockup is called “starvation!” 
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TOO MUCH MILK SOLUTION #3 
Here is a possible two-note solution: 

 Thread A   Thread B 

 leave note A;   leave note B; 
 while (note B) {\\X  if (noNote A) {\\Y 
    do nothing;         if (noMilk) { 
 }           buy milk; 
 if (noMilk) {         } 
    buy milk;           } 
 }    remove note B; 
 remove note A; 

Does this work? Yes. Both can guarantee that:  
•  It is safe to buy, or 
•  Other will buy, ok to quit 

At X:  
•  if no note B, safe for A to buy,  
•  otherwise wait to find out what will happen 

At Y:  
•  if no note A, safe for B to buy 
•  Otherwise, A is either buying or waiting for B to quit 
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SOLUTION #3 DISCUSSION 
Our solution protects a single “Critical-Section” piece of code for each 
thread: 

  if (noMilk) {   
        buy milk;   

  }    
Solution #3 works, but it’s really unsatisfactory 

•  Really complex – even for this simple an example 
•  Hard to convince yourself that this really works 

•  A’s code is different from B’s – what if lots of threads? 
•  Code would have to be slightly different for each thread 

•  While A is waiting, it is consuming CPU time 
•  This is called “busy-waiting” 

There’s a better way 
•  Have hardware provide better (higher-level) primitives than atomic load and 

store 
•  Build even higher-level programming abstractions on this new hardware 

support 
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HIGH-LEVEL PICTURE 
The abstraction of threads is good: 

•  Maintains sequential execution model  
•  Allows simple parallelism to overlap I/O and computation 

Unfortunately, still too complicated to access state shared 
between threads  

•  Consider “too much milk” example 
•  Implementing a concurrent program with only loads and 

stores would be tricky and error-prone 
We’ll implement higher-level operations on top of atomic 
operations provided by hardware 

•  Develop a “synchronization toolbox” 
•  Explore some common programming paradigms 

21
 



TOO MUCH MILK: SOLUTION #4 
Suppose we have some sort of implementation of a lock (more in a 
moment) 

•  Lock.Acquire() – wait until lock is free, then grab 
•  Lock.Release() – unlock, waking up anyone waiting 
•  These must be atomic operations – if two threads are waiting for the 

lock, only one succeeds to grab the lock 

Then, our milk problem is easy: 
  milklock.Acquire(); 
  if (nomilk) 

     buy milk; 

  milklock.Release(); 

Once again, section of code between Acquire() and Release() called a 
“Critical Section” 
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HOW TO IMPLEMENT LOCK? 

Lock: prevents someone from accessing something 
•  Lock before entering critical section (e.g., before accessing 

shared data) 
•  Unlock when leaving, after accessing shared data 
•  Wait if locked 

•  Important idea: all synchronization involves waiting 
•  Should sleep if waiting for long time 
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ROADMAP 
How to implement Acquire() and Release()  

1.  By disabling/enabling interrupt 

•  A bad implementation 
•  A better implementation 

2.  Using atomic read/write  

•  A bad implementation that may busy wait a long time 
•  A better implementation 

3.  A more sophisticated lock – semaphore 

4.  A safer implementation – monitor and conditional variable 

24
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NAÏVE USE OF INTERRUPT 
ENABLE/DISABLE 

How can we build multi-instruction atomic operations? 
•  Recall: dispatcher gets control in two ways.  

•  Internal: Thread does something to relinquish the CPU 
•  External: Interrupts cause dispatcher to take CPU 

•  On a uniprocessor, can avoid context-switching by: 
•  Avoiding internal events  
•  Preventing external events by disabling interrupts 

 

Consequently, naïve Implementation of locks: 
  LockAcquire { disable Ints; } 

  LockRelease { enable Ints; } 
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NAÏVE USE OF INTERRUPT 
ENABLE/DISABLE: PROBLEMS 

Can’t let user do this! Consider following: 
LockAcquire(); 
While(TRUE) {;} 

Real-Time system—no guarantees on timing!  

•  Critical Sections might be arbitrarily long 
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BETTER IMPLEMENTATION OF LOCKS 
BY DISABLING INTERRUPTS 

Key idea: maintain a lock variable and impose mutual 
exclusion only during operations on that variable 

  int value = FREE; 
 
Acquire() { 
 disable interrupts; 
 if (value == BUSY) { 
  put thread on wait queue; 
  Go to sleep(); 
  // Enable interrupts? 
 } else { 
  value = BUSY; 
 } 
 enable interrupts; 

} 

 
 
Release() { 
 disable interrupts; 
 if (anyone on wait queue) { 
  take thread off wait queue 
  Put at front of ready queue 
 } else { 
  value = FREE; 
 } 
 enable interrupts; 

} 
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NEW LOCK IMPLEMENTATION: 
DISCUSSION 
Disable interrupts: avoid interrupting between checking and setting lock 
value 

•  Otherwise two threads could think that they both have lock 
 
 
 
 
 
 
 
 
Note: unlike previous solution, critical section very short 

•  User of lock can take as long as they like in their own critical section 
•  Critical interrupts taken in time 

Acquire() { 
 disable interrupts; 
 if (value == BUSY) { 
  put thread on wait queue; 
  Go to sleep(); 
  // Enable interrupts? 
 } else { 
  value = BUSY; 
 } 
 enable interrupts; 

} 

Critical 
Section 
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INTERRUPT RE-ENABLE IN 
GOING TO SLEEP 
What about re-enabling ints when going to sleep? 

 

 

 

 

 

 

 

Before putting thread on the wait queue? 

•  Release can check the queue and not wake up thread 
After putting the thread on the wait queue 

•  Release puts the thread on the ready queue, but the thread still thinks it 
needs to go to sleep 

Want to put it after sleep(). But, how? 

Acquire() { 
 disable interrupts; 
 if (value == BUSY) { 
  put thread on wait queue; 
  go to sleep(); 
 } else { 
  value = BUSY; 
 } 
 enable interrupts; 

} 

Enable Position 
Enable Position 
Enable Position 
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HOW TO RE-ENABLE AFTER 
SLEEP()? 
Since ints are disabled when you call sleep: 

•  Responsibility of the next thread to re-enable ints 
•  When the sleeping thread wakes up, returns to acquire and re-enables 

interrupts 
  

context switch

context 
switch
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NACHOS.THREAD.LOCK 
public class Lock { 

 /** 
  * Allocate a new lock. The lock will initially be <i>free</i>. 
  */ 

 public Lock() {} 
 /** 
  * Atomically acquire this lock. The current thread must not already hold this lock 
  */ 
 public void acquire() { 

  Lib.assertTrue(!isHeldByCurrentThread()); 
  boolean intStatus = Machine.interrupt().disable(); 
  KThread thread = KThread.currentThread(); 
  if (lockHolder != null) { 
   waitQueue.waitForAccess(thread); 

   KThread.sleep(); 
  } else { 
   waitQueue.acquire(thread); 
   lockHolder = thread; 
  } 

  Lib.assertTrue(lockHolder == thread); 
  Machine.interrupt().restore(intStatus); 
 } 

 



NACHOS.THREAD.LOCK 
 /** 
  * Atomically release this lock, allowing other threads to acquire it. 
  */ 
 public void release() { 
  Lib.assertTrue(isHeldByCurrentThread()); 

 
  boolean intStatus = Machine.interrupt().disable(); 

 
  if ((lockHolder = waitQueue.nextThread()) != null) 
   lockHolder.ready(); 

 
  Machine.interrupt().restore(intStatus); 
 } 



ROADMAP 
How to implement Acquire() and Release()  

1.  By disabling/enabling interrupt 

•  A bad implementation 
•  A better implementation 

2.  Using atomic read/write  

•  A bad implementation that may busy wait a long time 
•  A better implementation 

3.  A more sophisticated lock – semaphore 

4.  A safer implementation – monitor and conditional variable 
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ATOMIC READ-MODIFY-WRITE 
INSTRUCTIONS 

Problems with interrupt-based lock solution: 
•  Can’t leave lock implementation to users 
•  Doesn’t work well on multiprocessor 

•  Disabling interrupts on all processors requires messages and 
would be very time consuming 

Alternative: atomic instruction sequences 
•  These instructions read a value from memory and write a new 

value atomically 
•  Hardware is responsible for implementing this correctly  
•  Unlike disabling interrupts, can be used on both 

uniprocessors and multiprocessors 
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EXAMPLES OF READ-MODIFY-
WRITE  
test&set (&address) {   /* most architectures */ 

 result = M[address]; 
 M[address] = 1; 
 return result; 

} 

 

swap (&address, register) { /* x86 */ 
  temp = M[address]; 

 M[address] = register; 
 register = temp; 

} 

 

compare&swap (&address, reg1, reg2) { /* 68000 */ 
 if (reg1 == M[address]) { 
  M[address] = reg2; 
  return success; 
 } else { 
  return failure; 
 } 

} 
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IMPLEMENTING LOCKS WITH 
TEST&SET 
Simple solution: 

 int value = 0; // Free 

 Acquire() { 
  while (test&set(value)); // while busy 
 } 

 Release() { 
  value = 0; 
 } 

Simple explanation: 
•  If lock is free, test&set reads 0 and sets value=1, so lock is now 

busy.  It returns 0 so while exits 
•  If lock is busy, test&set reads 1 and sets value=1 (no change). It 

returns 1, so while loop continues 
•  When we set value = 0, someone else can get lock 

 
 

test&set (&address) { 
  result = M[address]; 
  M[address] = 1; 
  return result; 
} 
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PROBLEM: BUSY-WAITING FOR 
LOCK 
Positives for this solution 

•  Machine can receive interrupts 
•  User code can use this lock 
•  Works on a multiprocessor 

Negatives 
•  Inefficient: busy-waiting thread will consume cycles waiting 
•  Waiting thread may take cycles away from thread holding lock!  
•  Priority Inversion: If busy-waiting thread has higher priority than 

thread holding lock  no progress! 
Priority Inversion problem with original Martian rover  
For semaphores and monitors, waiting thread may wait for an 
arbitrary length of time! 

•  Even if OK for locks, definitely not ok for other primitives 
•  Project/exam solutions should not have busy-waiting! 
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BETTER LOCKS USING 
TEST&SET 
Can we build test&set locks without busy-waiting? 

•  Can’t entirely, but can minimize! 
•  Idea: only busy-wait to atomically check lock value 

 

 

 

 

 

 

 

 

 

Note: sleep has to be sure to reset the guard variable 

 
 
 
Release() { 
 // Short busy-wait time 
 while (test&set(guard)); 
 if anyone on wait queue { 
  take thread off wait queue 
  Place on ready queue; 
 } else { 
  value = FREE; 
 } 
 guard = 0; 

 

int guard = 0; 
int value = FREE; 
 
Acquire() { 
 // Short busy-wait time 
 while (test&set(guard)); 
 if (value == BUSY) { 
  put thread on wait queue; 
  go to sleep() & guard = 0; 
 } else { 
  value = BUSY; 
  guard = 0; 
 } 

} 
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LOCKS USING TEST&SET VS. 
INTERRUPTS 
Compare to “disable interrupt” solution 

 

 

 

 

 

 

 

 

 

Basically replace  

•  disable interrupts à while (test&set(guard)); 
•  enable interrupts à guard = 0; 

int value = FREE; 
 
Acquire() { 
 disable interrupts; 
 if (value == BUSY) { 
  put thread on wait queue; 
  Go to sleep(); 
  // Enable interrupts? 
 } else { 
  value = BUSY; 
 } 
 enable interrupts; 

} 

 
 
Release() { 
 disable interrupts; 
 if (anyone on wait queue) { 
  take thread off wait queue 
  Place on ready queue; 
 } else { 
  value = FREE; 
 } 
 enable interrupts; 

} 
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PRODUCER-CONSUMER WITH 
MUTEX LOCK 

40
 

void *Producer() 
{     
    int i, produced=0; 
    for(i=0;i<100000;i++) 
    { 
        pthread_mutex_lock(&mVar); 
        if(count < BUFFERSIZE) { 

  buffer[in] = '@'; 
         in = (in + 1)% BUFFERSIZE; 

  count++; 
  produced++; 
 } 

        pthread_mutex_unlock(&mVar); 
    }     

  
    printf("total produced = %d\n", produced); 
     
} 

Producer Consumer Buffer 



PRODUCER-CONSUMER WITH 
MUTEX LOCK 
void *Consumer() 
{ 
    int i, consumed = 0; 
    for(i=0;i<100000;i++){ 
        pthread_mutex_lock(&mVar); 
        if(count>0) 
        {             

  out = (out+1)%BUFFERSIZE; 
  --count;     
  printf("Consumer: count = %d\n", count);         

        }                 
        pthread_mutex_unlock(&mVar); 
    }     
} 
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ROADMAP 
How to implement Acquire() and Release()  

1.  By disabling/enabling interrupt 

•  A bad implementation 
•  A better implementation 

2.  Using atomic read/write  

•  A bad implementation that may busy wait a long time 
•  A better implementation 

3.  A more sophisticated lock – semaphore 

4.  A safer implementation – monitor and conditional variable 

42
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SEMAPHORES 
Semaphores are a kind of generalized locks 

•  First defined by Dijkstra in late 60s 
•  Main synchronization primitive used in original UNIX 

 
Definition: a Semaphore has a non-negative integer value and 
supports the following two operations: 

•  P(): an atomic operation that waits for semaphore to become 
positive, then decrements it by 1  

•  Think of this as the wait() operation 
•  V(): an atomic operation that increments the semaphore by 1, 

waking up a waiting P, if any 
•  This of this as the signal() operation 

•  Note that P() stands for “proberen” (to test) and V() stands for 
“verhogen” (to increment) in Dutch 
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SEMAPHORES LIKE INTEGERS 
EXCEPT 

Semaphores are like integers, except 
•  No negative values 
•  Only operations allowed are P and V – can’t read or write value, 

except to set it initially 
•  Operations must be atomic 

•  Two P’s together can’t decrement value below zero 
•  Similarly, thread going to sleep in P won’t miss wakeup from V – even 

if they both happen at same time 
Semaphore from railway analogy 

•  Here is a semaphore initialized to 2 for resource control: 
 

Value=2 Value=1 Value=0 Value=1 Value=0 Value=2 44
 



TWO USES OF SEMAPHORES 
Mutual Exclusion (initial value = 1) 

•  Also called “Binary Semaphore”. 
•  Can be used for mutual exclusion: 

 semaphore.P(); 
 // Critical section goes here 
 semaphore.V(); 

Scheduling Constraints (initial value = 0) 
•  Allow thread 1 to wait for a signal from thread 2, i.e., thread 2 schedules 

thread 1 when a given constrained is satisfied 
•  Example: suppose you had to implement ThreadJoin which must wait for 

thread to terminiate: 
 Initial value of semaphore = 0 
 ThreadJoin { 
    semaphore.P(); 
 } 
 ThreadFinish { 
    semaphore.V(); 
 } 
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NACHOS.THREAD.SEMAPHORE 
public class Semaphore { 

 /** 

  * Allocate a new semaphore. 

  * @param initialValue the initial value of this semaphore. 

  */ 

 public Semaphore(int initialValue) { 

  value = initialValue; 

 } 

 /** 

  * Atomically wait for this semaphore to become non-zero and decrement it. 

  */ 

 public void P() { 

  boolean intStatus = Machine.interrupt().disable(); 

  if (value == 0) { 

   waitQueue.waitForAccess(KThread.currentThread()); 

   KThread.sleep(); 

  } else { 

   value--; 

  } 

  Machine.interrupt().restore(intStatus); 

 } 



NACHOS.THREAD.SEMAPHORE 
 public void V() { 
  boolean intStatus = Machine.interrupt().disable();  
  KThread thread = waitQueue.nextThread(); 
  if (thread != null) { 
   thread.ready(); 
  } else { 
   value++; 
  } 

 
  Machine.interrupt().restore(intStatus); 
 } 

 



PRODUCER-CONSUMER USING 
SEMAPHORE 

Problem Definition 
•  Producer puts things into a shared buffer 
•  Consumer takes them out 
•  Need synchronization to coordinate producer/consumer 

Correctness Constraints: 

•  Consumer must wait for producer to fill slots, if empty 
(scheduling constraint) 

•  Producer must wait for consumer to make room in buffer, if all 
full (scheduling constraint) 

•  Only one thread can manipulate buffer queue at a time 
(mutual exclusion) 
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CORRECTNESS CONSTRAINTS 
FOR SOLUTION 

 
General rule of thumb: Use a separate semaphore for each 
constraint 

•  Semaphore full; // producer’s constraint 
•  Semaphore empty;// consumer’s constraint 
•  Semaphore mutex;       // mutual exclusion 

49
 

Initial values? 



FULL SOLUTION TO BOUNDED 
BUFFER 
  Semaphore empty = 0;  // Initially, buffer empty 

  Semaphore full = bufSize; // Initially, buffszeempty slots 

  Semaphore mutex = 1;  // No one using machine 

 
Producer(item) { 

 full.P();  // Wait until space 
 mutex.P();  // Wait until machine free 
 Enqueue(item); 
 mutex.V(); 
 empty.V();  // Tell consumers there is 
    // more coke 

} 

Consumer() { 
 empty.P();  // Check if there’s a coke 
 mutex.P();  // Wait until machine free 
 item = Dequeue(); 
 mutex.V(); 
 full.V();  // tell producer need more 
 return item; 

} 
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DISCUSSION ABOUT SOLUTION 

Why asymmetry? 
•  Producer does: full.P(), empty.V() 
•  Consumer does: empty.P(), full.V() 

 

Decrease # of 
empty slots

Increase # of 
occupied slots

Increase # of 
empty slots

Decrease # of 
occupied slots
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DISCUSSION ABOUT SOLUTION 

Is order of P’s important? 
•  Yes!  Can cause deadlock 

Is order of V’s important? 

•  No, except that it might affect 
scheduling efficiency 

What if we have 2 producers or 2 
consumers? 

•  Do we need to change anything? 

 
Producer(item) { 

 mutex.P();  
 full.P(); 
 Enqueue(item); 
 mutex.V(); 
 empty.V(); 

 } 
 Consumer() { 

 empty.P(); 
 mutex.P();
 item = Dequeue(); 
 mutex.V(); 
 full.V(); 
 return item; 

} 
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ANOTHER EXAMPLE OF 
DEADLOCK USING SEMAPHORE 

Thread 1 

cond1.P() 

cond2.P() 

… 

cond2.V() 

cond1.V() 
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Thread 2 

cond2.P() 

cond1.P() 

… 

cond1.V() 

cond2.V() 

T1 T2 



MONITORS AND CONDITION 
VARIABLES 

Semaphores are a huge step up; just think of trying to do the 
bounded buffer with only loads and stores 

Problem is that semaphores are dual purposed: 

•  They are used for both mutex and scheduling constraints 
•  Example: the fact that flipping of P’s in bounded buffer gives 

deadlock is not immediately obvious.  How do you prove 
correctness to someone? 
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MOTIVATION FOR MONITORS 
AND CONDITION VARIABLES 

Cleaner idea: Use locks for mutual exclusion and condition 
variables for scheduling constraints 
 
Monitor: a lock and zero or more condition variables for 
managing concurrent access to shared data 

•  Some languages like Java provide this natively 
•  Most others use actual locks and condition variables 
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 MONITOR WITH CONDITION 
VARIABLES 

Lock: the lock provides mutual exclusion to shared data 
•  Always acquire before accessing shared data structure 
•  Always release after finishing with shared data 
•  Lock initially free 

Condition Variable: a queue of threads waiting for something 
inside a critical section 

•  Key idea: make it possible to go to sleep inside critical section by 
atomically releasing lock at time we go to sleep 
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SIMPLE MONITOR EXAMPLE 
Here is an (infinite) synchronized queue 

 Lock lock; 
 Queue queue; 

 

 AddToQueue(item) { 
  lock.Acquire();  // Lock shared data 
  queue.enqueue(item);  // Add item 
  lock.Release();  // Release Lock 
 } 

 

 RemoveFromQueue() { 
  lock.Acquire();  // Lock shared data 
  item = queue.dequeue();// Get next item or null 
  lock.Release();  // Release Lock 
  return(item);  // Might return null 
 } 

Not very interesting use of “Monitor” 
•  It only uses a lock with no condition variables 
•  Cannot put consumer to sleep if no work! 
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CONDITION VARIABLES 
Condition Variable: a queue of threads waiting for something 
inside a critical section 

•  Key idea: allow sleeping inside critical section by atomically 
releasing lock at time we go to sleep 

•  Contrast to semaphores: Can’t wait inside critical section 
 
Operations: 

•  Wait(&lock): Atomically release lock and go to sleep. Re-acquire 
lock later, before returning.  

•  Signal(): Wake up one waiter, if any 
•  Broadcast(): Wake up all waiters 

 
Rule: Must hold lock when doing condition variable operations! 
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COMPLETE MONITOR EXAMPLE 
(WITH CONDITION VARIABLE) 
Here is an (infinite) synchronized queue 

 Lock lock; 
 Condition dataready; 
 Queue queue; 

 

 AddToQueue(item) { 
  lock.Acquire();  // Get Lock 
  queue.enqueue(item);  // Add item 
  dataready.signal();  // Signal any waiters 
  lock.Release();  // Release Lock 
 } 

 

 RemoveFromQueue() { 
  lock.Acquire();  // Get Lock 
  while (queue.isEmpty()) { 
   dataready.wait(&lock); // If nothing, sleep 
  } 
  item = queue.dequeue();  // Get next item 
  lock.Release();  // Release Lock 
  return(item); 
 } 
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MESA VS. HOARE MONITORS 
Need to be careful about precise definition of signal and wait.  
Consider a piece of our dequeue code: 

 while (queue.isEmpty()) { 
  dataready.wait(&lock); // If nothing, sleep 
 } 
 item = queue.dequeue();  // Get next item 

•  Why didn’t we do this? 
 if (queue.isEmpty()) { 
  dataready.wait(&lock); // If nothing, sleep 
 } 
 item = queue.dequeue();  // Get next item 

 
Answer: depends on the type of scheduling 

•  Hoare-style 
•  Mesa-style 
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HOARE MONITORS 

Signaler gives up lock, CPU to waiter; waiter runs 
immediately 
Waiter gives up lock, processor back to signaler when it exits 
critical section or if it waits again 
Most textbooks 

Lock.Acquire() 
… 
if (queue.isEmpty()) { 
  dataready.wait(&lock);  
} 
… 
lock.Release(); 

… 
lock.Acquire() 
…  
dataready.signal(); 
… 
lock.Release(); 

Lock, CPU 
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MESA MONITORS 

Signaler keeps lock and processor 
Waiter placed on a local “e” queue for the monitor 
Practically, need to check condition again after wait 

Most real operating systems (and Nachos!) 

Lock.Acquire() 
… 
while (queue.isEmpty()) { 
  dataready.wait(&lock);  
} 
… 
lock.Release(); 

… 
lock.Acquire() 
…  
dataready.signal(); 
… 
lock.Release(); 

Put waiting 
thread on 

ready queue

schedule waiting thread

62
 



NACHOS.THREADS.CONDITION 
public class Condition { 

 /** 
  * Allocate a new condition variable. 
  *  
  * @param conditionLock 
  *            the lock associated with this condition variable. The current 
  *            thread must hold this lock whenever it uses <tt>sleep()</tt>, 
  *            <tt>wake()</tt>, or <tt>wakeAll()</tt>. 
  */ 
 public Condition(Lock conditionLock) { 
  this.conditionLock = conditionLock; 

 
  waitQueue = new LinkedList<Semaphore>(); 
 } 



NACHOS.THREADS.CONDITION 
/* 
sleep(): atomically release the lock and relinkquish the CPU 
until woken; then reacquire the lock.*/ 
public void sleep() {     

 Lib.assertTrue(conditionLock.isHeldByCurrentThread()); 
 Semaphore waiter = new Semaphore(0); 
 waitQueue.add(waiter); 
 conditionLock.release(); 
 waiter.P(); 
 conditionLock.acquire(); 

} 
 



NACHOS.THREADS.CONDITION 
 /** 
  * Wake up at most one thread sleeping on this condition variable. The 
  * current thread must hold the associated lock. 
  */ 
 public void wake() { 
  Lib.assertTrue(conditionLock.isHeldByCurrentThread()); 

 
  if (!waitQueue.isEmpty()) 
   ((Semaphore) waitQueue.removeFirst()).V(); 
 } 
 public void wakeAll() { 
  Lib.assertTrue(conditionLock.isHeldByCurrentThread()); 

 
  while (!waitQueue.isEmpty()) 
   wake(); 
 } 

 



PRODUCER-CONSUMER USING 
CONDITION VARIABLE 
void *Producer() 

{     

    int i, produced=0; 

    for(i=0;i<100000;i++) { 

        pthread_mutex_lock(&mVar); 

        while (count==BUFFERSIZE) 

  pthread_cond_wait(&Buffer_Not_Full,&mVar); 

        buffer[count++]='@'; 

        pthread_cond_signal(&Buffer_Not_Empty);           

        pthread_mutex_unlock(&mVar); 

    }     

} 
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void *Consumer() 

{ 

    int i, consumed = 0; 

    for(i=0;i<100000;i++){ 

        pthread_mutex_lock(&mVar); 

        while(count==0) 

         pthread_cond_wait(&Buffer_Not_Empty,&mVar); 

        out = (out+1)%BUFFERSIZE; 

        count--; 

        pthread_cond_signal(&Buffer_Not_Full);                 

        pthread_mutex_unlock(&mVar);         

    }     

} 
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DINNING PHILOSOPHER  

Correctness condition: 
•  mutual exclusion: no more than one person can have access to one 

chopstick 
•  progress: no deadlock 
•  no starvation 
Note that philosophers alternate between eating & thinking 



semaphore chopstick[5];  
 
do { 

 wait(chopstick[i]); 
  wait(chopstick[(i+1) % 5]);  
... 
/* eat for awhile */  
...  

 signal(chopstick[i]);  
 signal(chopstick[(i+1) % 5]);  

... 
/* think for awhile */  
... 
} while (true);  
 

USING SEMAPHORE 



USING MONITOR 
One philosopher picks two chopsticks only when both of them are available 

monitor DiningPhilosophers { 

 enum {THINKING, HUNGRY, EATING} state[5]; 

 condition self[5]; 

 void pickup(int i) { 

  state[i] = HUNGRY; 

test(i);  
if (state[i] != EATING) 

self[i].wait(); 

} 

void putdown(int i) { 

state[i] = THINKING; 

test((i + 4) % 5); 

test((i + 1) % 5); 

} 

 



void test(int i) {  
  if ((state[(i + 4) % 5] != EATING) &&  (state[i] 
== HUNGRY) && (state[(i + 1) % 5] != EATING)) { 

state[i] = EATING; 

self[i].wake(); 

  }

}

initialization code() {  
  for (int i = 0; i < 5; i++) 

state[i] = THINKING; 

  } 

} 

 



CORRECT? 
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COMPARISON 

•  Lock, semaphore, monitor can all be used for achieving 
mutual exclusion of critical section 

•  Semaphore and condition variables useful for scheduling/
synchronization among multiple processes 
•  If implemented using Lock will have to use BUSY WAIT 
•  Semaphore is good for multiple resources  



SUMMARY 
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