
OPERATING
SYSTEMS

RONG ZHENG

Disclaimer: Many materials used in the slides are adopted from those of other
colleagues

GOAL OF THIS COURSE

Learn how “systems” work

Main challenges in building systems

Principles of system design, i.e., how to address these
challenges

Learn how to apply these principles to building systems

WHAT DO TURING’S BOMBE
MACHINE AND TODAY’S
COMPUTER HAVE IN COMMON?

COMPUTING DEVICES
EVERYWHERE

PEOPLE-TO-CPU RATIO OVER TIME

Today: Multiple CPUs/person!
•  Approaching 100s?

TECHNOLOGY TRENDS: MOORE’S LAW

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of Intel)
predicted in 1965 that the transistor
density of semiconductor chips would
double roughly every 18 months.

MANYCORE CHIPS

“ManyCore” refers to many processors/chip
•  64? 128? Hard to say exact boundary

How to program these?
•  Use 2 CPUs for video/audio
•  Use 1 for word processor, 1 for browser
•  76 for virus checking???

Parallelism must be exploited at all levels

•  Intel 80-core multicore chip (Feb 2007)
–  80 simple cores
–  Two FP-engines / core
–  Mesh-like network
–  100 million transistors

•  Intel Single-Chip Cloud  
Computer (August 2010)
–  24 “tiles” with two cores/tile
–  24-router mesh network
–  4 DDR3 memory controllers
–  Hardware support for message-passing

STORAGE CAPACITY

Retail hard disk capacity in GB  
(source: http://www.digitaltonto.com/2011/our-emergent-digital-future/)

NETWORK CAPACITY

(source: http://www.ospmag.com/issue/article/Time-Is-Not-Always-On-Our-Side)

INTERNET SCALE: .96 BILLION
HOSTS

https://www.isc.org/solutions/survey

996,230,757 July 2013

INTERNET SCALE: ~2.5 BILLION USERS!

(source: http://www.internetworldstats.com/stats.htm)

NOT ONLY PCS CONNECTED TO THE INTERNET
Smartphone shipments now exceed PC shipments!

2011 shipments:
• 487M smartphones
• 414M PC clients

•  210M notebooks
•  112M desktops
•  63M tablets

• 25M smart TVs

4 billion phones in the world à smartphone over
next decade

QUESTION

How to program/manage such complexity?
•  Abstractions!

THE INSTRUCTOR

Rong Zheng
•  Office: ITB 121
•  Office hr: Tue. 4:30 – 6:30pm

•  Research areas:

•  Mobile & pervasive computing
•  Wireless networking

THE TAS

•  Ala Shaabana (shaabaa@mcmaster.ca)
•  January

•  Yuanhao Yu (yhyu.mail@gmail.com)

•  Feburary
•  Qiang Xu (xuq22@mcmaster.ca)

•  March

TAs will be present during all lab sessions (starting next
week)
Attendance of lab sessions NOT required

COURSE MATERIALS

Textbook: A. Silberschatz, P. Gavin and G. Gagne, Operating
Systems Concepts, 9th edition, Wiley & Sons

Nachos tutorial:

http://www.cas.mcmaster.ca/~rzheng/Nachos_Tutorial/

Course webpage
http://www.cas.mcmaster.ca/~rzheng/course/CAS3SH3w15/

•  All course materials (lecture notes, tutorials, projects)

•  Announcement

Avenue to Learn
•  Exercise

•  Group enrollment

•  Announcement

SCOPE OF THE COURSE

•  Process management
•  Synchronization
•  Memory management

•  File system & I/O

•  Advanced topics

COURSE ORGANIZATION

Lectures
Tutorials

•  Online materials
Lab sessions

•  Not mandatory
•  TAs will be around to answer questions

MARKINGS

•  4 programming assignments (10, 10, 10, 15%)
•  One bonus programming assignment 10%

•  Exercise (10%)

•  Avenue
•  Midterm (20%)

•  In class
•  Final (25%, not-comphrensive)

Curved. To get an A in the class (>=85%)

PROGRAMMING ASSIGNMENTS

Nachos (Not Another Complete Heuristic
Operating System) 5.0j
•  An instructional OS ported to Java
•  To understand abstract “concepts”

introduced in the lectures
•  To implement key building blocks of OS

Yes, you do need to know how to program in
Java!

PROGRAMMING ASSIGNMENTS
•  Project 1 individually
•  Project 2 – 4 in groups (maximum 4 students)

•  Group sign up via Avenue
•  Self-enrollment via avenue finalized by the end of the 2nd

week
•  Changes discouraged and should be approved by the

instructor
•  Use SVN set up by dept sysadmin
•  Two phrases: (design) questions and code submission
•  Autograder codes will be provided for testing
•  In some projects, you may need to develop your own test

cases/codes
•  More details will be provided by the TAs during lab sessions

WORK WITH YOUR TEAM MATES

•  Regular code review meetings
•  Pair programming
•  Alert the instructor problems

earlier on

THE HARE AND THE TURTLE

BEHAVING IN THE CLASSROOM

Non course-related activities such as answering their
phones, browsing the web or playing solitaire are
discouraged

X X X

QUESTIONS?

Email rzheng@mcmaster.ca with subject title “3SH3”

THE REAL
INTRODUCTION TO
OS
•  WHAT IS OPERATING SYSTEM?

•  TYPES OF OS
•  HISTORY OF OS

COMPUTER SYSTEM
ORGANIZATION

One or more CPUs, device controllers connect through
common bus providing access to shared memory
Concurrent execution of CPUs and devices competing for
memory cycles

CHALLENGE: SCALE AND
DYNAMIC RANGE

Enormous scale, heterogeneity, and dynamic range:
•  CPU: sensor motes à GPUs

•  Cores: one à 100s [2-orders of magnitude variation]
•  Clusters: few machines à 10,000s machines [4 orders of mag.]

•  Network: Inter-core networks à Internet
•  Latency: nanosecs à secs (satellite) [9 orders of mag.]
•  Bandwidth: Kbps à Gbps [6 orders of mag.]
•  …

•  Storage: caches à disks
•  Size: MB à TB [6 orders of mag.]
•  Access time: few nanosecs à millisecs [6 orders of mag.]

HOW DO WE TAME
COMPLEXITY?
Every piece of computer hardware different

•  Different CPU
•  Pentium, ARM, PowerPC, ColdFire

•  Different amounts of memory, disk, …
•  Different types of devices

•  Mice, keyboards, sensors, cameras, fingerprint readers, touch screen
•  Different networking environment

•  Cable, DSL, Wireless, …

Questions:

•  Does the programmer need to write a single program that performs many
independent activities?

•  Does every program have to be altered for every piece of hardware?
•  Does a faulty program crash everything?

WHAT IS AN OPERATING
SYSTEM?

“What stands between the user and the bare machine”

WHAT IS AN OPERATING
SYSTEM?
The basic software required to operate a computer.

Silberschatz and Gavin: “An OS is Similar to a government”
•  Begs the question: does a government do anything useful by itself?

OS as a Traffic Cop:
•  Manages all resources
•  Settles conflicting requests for resources
•  Prevent errors and improper use of the computer

OS as a facilitator (“useful” abstractions):
•  Provides facilities/services that everyone needs
•  Standard libraries, windowing systems
•  Make application programming easier, faster, less error-prone

WHAT BELONGS TO OS

Loose definition: what shipped by the vendor
More strictly,
Kernel

•  Part that stays in main memory
•  Controls the execution of all other programs

Other programs interact with it through
system calls

WHAT DO NOT BELONG TO OS

All user programs
•  Compilers, spreadsheets, word processors, and so forth

Most utility programs

•  mkdir is a user program calling mkdir()
The command language interpreter

•  Anyone can write his/her UNIX shell

IS WEB BROWSER PART OF OS?
In 1998, the United States Federal Government charged
Microsoft with anti-trust violations. One of the the complaints
was that Microsoft had "bundled" its Internet Explorer (IE)
web browser with its Windows operating system (OS).

In its defense, Microsoft asserted that the web browser was,
in fact, part of the operating system. Therefore, it made no
sense to talk of bundling the browser; it was in the natural
order of things that an OS vendor would include a browser in
their product.

In the end, Microsoft was found to be a monopoly, but
received only minimal sanctions…

WAIT! WHAT ABOUT CHROME
OS?

WHAT BELONGS TO OS

Loose definition: what shipped by the vendor
More strictly,
Kernel

•  Part that stays in main memory
•  Controls the execution of all other programs

Other programs interact with it through
system calls

DIFFERENT TYPES OF KERNELS

Monolithic kernel
•  All kernel functions share the same address space
•  This includes devices drivers and other kernel extensions

Monolithic kernel

Terminal, device and memory controllers

MICRO-KERNEL (MACH)

A reaction against “bloated” monolithic kernels
•  Hard to manage, extend, debug and secure

Key idea is making kernel smaller by delegating non-
essential tasks to trusted user-level servers

•  Same idea as subcontracting
Microkernel keeps doing what cannot be delegated

 Trusted server User program

Small
microkernel

MODULAR KERNELS (LINUX,
WINDOWS)

Modules are object files whose contents can be linked to—
and unlinked from—the kernel at any time

•  Run inside the kernel address space
•  Used to add to the kernel device drivers for new devices

Extensibility:

•  Can add new features the kernel
•  In many cases, the process is completely transparent to the

user
Lack of performance penalty:

•  Modules run in the kernel address space
Low reliability

A COMPARISON

Unix

Mach Linux/Wi
ndows

safe fast

extensible

KEY FUNCTIONS OF OS

1.  To provide a better user interface
2.  To manage the system resources
3.  To protect users’ programs and data

Time

2

3 1
2 3 1 2

3
1

Phase 1 Phase 2 Phase 3

PHASE1 : HARDWARE
EXPENSIVE, HUMAN CHEAP

Hardware: main frames
Representative OS:

•  Eniac, … Multics
Focus: how to get the computation job done

•  Uniprogramming

"I think there is a world market for maybe
five computers." -- Thomas Watson,
chairman of IBM, 1943

PHASE1 : HARDWARE
EXPENSIVE, HUMAN CHEAP

Bach systems: Allow users to submit a batches of requests
to be processed in sequence
Include a command language specifying what to do with the
inputs

•  Compile
•  Execute and so forth

PHASE 2: HARDWARE CHEAPER,
HUMAN EXPENSIVE

Hardware: PCs, Workstations
Representative OS:

•  MSDOS, Windows, UNIX, Linux etc.
Focus: Increase the utilization of resources and user
friendliness

•  From interactive systems through consoles to graphical
user interfaces (GUI)

•  Multiprogramming, time sharing for managing resources
•  Dual (kernel/user) mode separation, memory management

unit

THE XEROX ALTO

COINCIDENTALLY, XEROX IS
ALSO INVENTOR OF

Laser printing
Ethernet
The GUI paradigm/mouse

Object-oriented programming (Smalltalk)

Ubiquitous computing

GAP BETWEEN ACCESS OF
MEMORY/STORAGE HIERARCHY

Level Device Access
Time

1 Fastest registers
(2 GHz CPU)

0.5 ns

2 Main memory 10-70 ns
3 SSD 0.1ms

4 Secondary storage (disk) 7 ms

5 Mass storage (CD-ROM) a few s

AN ANALOGY

Consider a busy restaurant with only one stove

dish 1 dish 2 dish 3

Ingredients

HOW TO MAXIMIZE THE PROFIT
Maximize the utilization of the stove

•  Take multiple orders at a time – multiple processes
•  Buy the ingredients in bulk from store (save time from

multiple trips to the store (remote storage)) – block read,
prefetching

•  Prepare the ingredients ahead of time – caching
•  Interleaving orders that take time to cook and that take

time to prepare – pipelining
•  Serve VIP’s order first – scheduling
•  Bring out multiple dishes together – delayed write

Buy more stoves – multiprocessor, multicore

MULTIPROGRAMMING IS AT THE
CORE OF MODERN OS DESIGN
Advantages

•  Many applications use the peripherals much more than the CPU
•  Multiprogramming was invented to keep the CPU busy
•  User may initiate multiple tasks and expect short response time

for GUI related processes

Multiprogramming allows:

•  Time sharing: CPU divides its time among multiple processes,
e.g., one tenth of a second on a program, then another tenth of
a second on another one and so forth (this does not work with
our kitchen analogy!)

•  When waiting for I/O operations, other programs can utilize the
CPU

Both are accomplished through interrupts

INTERRUPTS
Request to interrupt the flow of execution the CPU
Detected by the CPU hardware

•  After it has executed the current instruction
•  Before it starts the next instruction

Types of interrupts:
•  I/O completion interrupts: Notify the OS that an I/O operation has

completed,
•  Timer interrupts: Notify the OS that a task has exceeded its

quantum of CPU time
•  Traps: Notify the OS of a program error (division by zero, illegal

op code, illegal operand address, ...) or a hardware failure
•  System calls: Notify OS that the running task wants to submit a

request to the OS

DISABLING INTERRUPTS

We can disable interrupts
OS does it before performing short critical tasks that cannot
be interrupted

•  Works only for single-threaded kernels
User tasks should be prevented from doing it

•  Too dangerous

PROTECTION

In supporting multiprogramming, we need to prevent
programs from interfering one another and protect users’
data

•  Access control
•  Privileged instructions
•  Memory protection

Kernel

User Process

X

PHASE 3: HARDWARE REALLY
CHEAP, HUMAN VERY EXPENSE

Hardware: tablets, phones, smart sensors etc.
Representative OS: iOS, android, window phone, (VMs)
Focus: energy consumption, manageability, reliability, user
experiences, ubiquitous connectivity

Cloud

ROME WAS NOT BUILT IN ONE
DAY

OS ARCHAEOLOGY
Because of the cost of developing an OS from scratch, most modern
OSes have a long lineage:

Multics à AT&T Unix à BSD Unix à Ultrix, SunOS, NetBSD,…

Mach (micro-kernel) + BSD à NextStep à XNU à
Apple OSX, iphone iOS

Linux à Android OS

CP/M à QDOS à MS-DOS à Windows 3.1 à NT à 95 à 98 à 2000 à
XP à Vista à 7 à 8 à phone à …

Linux à RedHat, Ubuntu, Fedora, Debian, Suse,…

http://www.antipope.org/charlie/blog-static/2013/12/metaphor-
for-the-day.html

