
REVIEW OF
COMMONLY USED
DATA STRUCTURES
IN OS

NEEDS FOR EFFICIENT DATA
STRUCTURE

Storage complexity & Computation complexity matter
Consider the problem of scheduling tasks according to their
priority on CPU
•  New tasks upon arrival, need to be inserted to the queue

of pending tasks
•  Every 100ms, find the task of the highest priority

•  May need to update the priority of existing tasks at run
time

•  …

LINKED LISTS

Used in process management, CPU scheduling, file systems
A sequence of nodes consisting of <data, pointer(s)>

Singly linked list

struct list_el {
 int val;
 struct list_el * next;
};

Singly linked list in C

public class LinkedList<E>

Linked list in Java

LINKED LISTS (CONT’D)

Consider a linked list of size n
•  Storage space?
•  Cost of inserting a new element at a position x?

•  Cost of deleting an existing element?

•  Forward traversal?

•  Reverse traversal?

DOUBLY LINKED LIST

struct list_el {
 void *val;
 struct list_el * prev;
 struct list_el * next;
};

Singly linked list in C

public class LinkedList<E>

Linked list in Java

DOUBLY-LINKED LISTS (CONT’D)

Consider a doubly-linked list of size n
•  Storage space?
•  Cost of inserting a new element at a position x?

•  Cost of deleting an existing element?

•  Forward traversal?

•  Reverse traversal?

(MIN-)HEAP

Useful in CPU scheduling (e.g.,
priority queues)
The key of parents always no greater
than their children
•  Storage space?

•  Find-min

•  Insertion

•  Delete-min

Binary minimum heap

29 45 35 31 21

3

4 5

26 25 12 15

14

(MAX-)HEAP (CONT’D) – DELETE
MIN

29 45 35 31 21

3

4 5

26 25 12 15

14 29 45 35 31 21

14

4 5

26 25 12 15

29 45 35 31 21

4

14 5

26 25 12 15

29 45 35 31 21

4

12 5

26 25 14 15

Find smaller of
the two
children &
swap

B-TREE

Used mostly in storage & file systems
internal (non-leaf) nodes can be have a variable # of child
nodes in some pre-defined range

Binary tree
B-tree of order 5
•  Each node has at most 5 children
•  (k-1) keys for k children
•  All leaves at the same level

B-TREE (CONT’D)

B-tree of n nodes
•  Space complexity?
•  Search

•  Insert

•  Delete

Finding 14

Insert 21

HASH TABLE

Used in memory management
<key, value> pairs
Search & storage in O(1), except

when collision occurs

One solution to hash collision is to use
separate chaining

PROCESS MANAGEMENT

READINGS: CHAPTER 3 - 4

OVERVIEW

Processes
States of a process
Operations on processes

•  fork() , exec(), kill (), signal()
Cooperating Processes

•  pipes
Threads and lightweight processes

PROCESSES

A process is a program executing a given sequential
computation.

•  An active entity unlike a program
•  Think of the difference between a recipe in a cookbook and

the activity of a cook preparing a dish according to the recipe!

There are many quasi-synonyms for process:

•  Job (very old programmers still use it)
•  Task
•  Program (strongly deprecated)

PROCESSES AND PROGRAMS (I)

Can have one program and many processes
•  When several users execute the same program (text editor,

compiler, and so forth) at the same time, each execution of
the program constitutes a separate process

•  A program that forks another sequential computation gives
birth to a new process.

PROCESSES AND PROGRAMS (II)

Can have one process and two—or more—programs
•  A process that performs an exec() call replaces the program

it was executing

shell

 ls

IMPORTANCE OF PROCESSES

Processes are the basic entities managed by the operating
system

•  OS provides to each process the illusion it has the whole
machine for itself

•  Each process has a dedicated address space

THE PROCESS ADDRESS SPACE

Set of main memory locations
allocated to the process

•  Other processes cannot access
them

•  Process cannot access address
spaces of other processes

A process address space is the
playpen or the sandbox of its owner

•  Process address space is
contiguous

PROCESS STATES

Processes go repeatedly through several stages during their
execution

•  Waiting to get into main memory
•  Waiting for the CPU
•  Running
•  Waiting for the completion of a system call

STATE DIAGRAM

Running Terminated

New Ready Waiting

Admit process Completion

Interrupt
Get CPU

Exit

System request

PROCESS ARRIVAL

New process
•  Starts in NEW state
•  Gets allocated a Process Control Block (PCB) and main

memory
•  Is put in the READY state waiting for CPU time

THE READY STATE

AKA the ready queue
Contains all processes waiting for the CPU
Organized as a priority queue

Processes leave the priority queue when they get some CPU
time

•  Move then to the RUNNING state

THE RUNNING STATE (I)

A process in the running state has exclusive use of the CPU
until

•  It terminates and goes to the TERMINATED state
•  It does a system call and goes to the WAITING state
•  It is interrupted and returns to the READY state

THE RUNNING STATE (II)

Processes are forced to relinquish the CPU and return to the
READY state when

•  A higher-priority process arrives in the ready queue and
preempts the running process

•  Get out, I’m more urgent than you!
•  A timer interrupt indicates that the process has exceeded its

time slice of CPU time

THE WAITING STATE (I)

Contains all processes waiting for the completion of a
system request:

•  I/O operation
•  Any other system call

Process is said to be waiting, blocked or even sleeping (UNIX
slang)

THE WAITING STATE (II)

A system call that does not require callers to wait until its
completion is said to be non-blocking

•  Calling processes are immediately returned to the READY
state

The waiting state is organized as a
set of queues

•  One queue per device, OS resource

THE PROCESS CONTROL BLOCK
(I)

Contains all the information associated with a
specific process:

•  Process identification (pid), argument vector, ...
•  UNIX pids are unique integers

•  Process state (new, ready, running, …),
•  CPU scheduling information

•  Process priority, processors on which the
process can run, ...,

108 Chapter 3 Processes

new terminated

runningready

admitted interrupt

scheduler dispatch
I/O or event completion I/O or event wait

exit

waiting

Figure 3.2 Diagram of process state.

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

• CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

• CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 6 describes process scheduling.)

• Memory-management information. This information may include such
items as the value of the base and limit registers and the page tables, or the
segment tables, depending on the memory system used by the operating
system (Chapter 8).

process state

process number

program counter

memory limits

list of open files

registers

• • •

Figure 3.3 Process control block (PCB).

THE PROCESS CONTROL BLOCK
(II)

•  Program counter and other CPU registers
including the Program Status Word (PSW),

•  Memory management information
•  Very system specific,

•  Accounting information
•  CPU time used, system time used, ...

•  I/O status information (list of opened files,
allocated devices, ...)

108 Chapter 3 Processes

new terminated

runningready

admitted interrupt

scheduler dispatch
I/O or event completion I/O or event wait

exit

waiting

Figure 3.2 Diagram of process state.

• Process state. The state may be new, ready, running, waiting, halted, and
so on.

• Program counter. The counter indicates the address of the next instruction
to be executed for this process.

• CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

• CPU-scheduling information. This information includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 6 describes process scheduling.)

• Memory-management information. This information may include such
items as the value of the base and limit registers and the page tables, or the
segment tables, depending on the memory system used by the operating
system (Chapter 8).

process state

process number

program counter

memory limits

list of open files

registers

• • •

Figure 3.3 Process control block (PCB).

THE PROCESS TABLE

System-wide table containing
•  Process identification (pid), argument vector, ...
•  Process current state
•  Process parents
•  Process priority and other CPU scheduling information
•  A pointer to the executable machine code of a process

SWAPPING

Whenever the system is very loaded, we might want to expel
from main memory or swap out

•  Low priority processes
•  Processes that have been waiting for a long time for an

external event
These processes are said to be swapped out or suspended.

HOW IT WORKS

Running Terminated

New Ready Waiting
Admit process

Completion

Interrupt
Get CPU

Exit

System request

Suspended
Ready

Suspended
Waiting

Activate Deactivate Deactivate

Completion

SUSPENDED PROCESSES

Suspended processes
•  Do not reside in main memory
•  Continue to be included in the process table

Can distinguish between two types of suspended processes:

•  Waiting for the completion of some request
(waiting_suspended)

•  Ready to run (ready_suspended).

CONTEXT SWITCHING

When one process is running on a CPU and another needs to run on
the same CPU, we need to switch between the processes

This is called a context switch (or a “state” save and “state” restore)

3.1 Process Concept 109

process P0 process P1

save state into PCB0

save state into PCB1

reload state from PCB1

reload state from PCB0

operating system

idle

idle

executingidle

executing

executing

interrupt or system call

interrupt or system call

•
•
•

•
•
•

Figure 3.4 Diagram showing CPU switch from process to process.

• Accounting information. This information includes the amount of CPU
and real time used, time limits, account numbers, job or process numbers,
and so on.

• I/O status information. This information includes the list of I/O devices
allocated to the process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may
vary from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program that
performs a single thread of execution. For example, when a process is running
a word-processor program, a single thread of instructions is being executed.
This single thread of control allows the process to perform only one task at
a time. The user cannot simultaneously type in characters and run the spell
checker within the same process, for example. Most modern operating systems
have extended the process concept to allow a process to have multiple threads
of execution and thus to perform more than one task at a time. This feature
is especially beneficial on multicore systems, where multiple threads can run
in parallel. On a system that supports threads, the PCB is expanded to include
information for each thread. Other changes throughout the system are also
needed to support threads. Chapter 4 explores threads in detail.

CONTEXT SWITCHING

The last step of a context switch is typically to load the
program counter for the process that is about to run
Context switch has a time cost

•  Dependent on hardware (e.g., # of machine registers)
•  Not executing user processes during the time a context switch

is occurring

OPERATIONS ON PROCESSES

Process creation
•  fork()
•  exec()
•  The argument vector

Process deletion

•  kill()
•  signal()

