
OPERATIONS ON PROCESSES 

Process creation 

•  fork() 
•  exec() 
•  The argument vector 

Process deletion 

•  kill() 
•  signal() 

 



PROCESS CREATION 

Two basic system calls  

•  fork() creates a carbon-copy of  calling process sharing its 
opened files 

•  exec () overwrites the contents of the process address space 
with the contents of an executable file 



FORK() 

The first process of a system is created when the system is 
booted 

•  e.g., init() 
All other processes are forked by another process (parent 
process)  

•  They are  said to be children of the process that created 
them. 

When a process forks, OS creates an identical copy of 
forking process with 

•  a new address space  
•  a new PCB 

The only resources shared by the parent and the child 
process are the opened files 



FORK() 

fork() call returns twice! 

•  Once in address space of child process 
•  Function return value is 0 in child 

•  Once in address space of parent process 
•  Function return value is process ID of child in parent 

 



FORK() ILLUSTRATED 

fork() 
fork() 

Parent: 
fork() 
returns  
PID of 
child 

Child: 
fork() 
returns  
0 

opened files 



 FIRST EXAMPLE 

The program  

#include <sys/types.h>  
#include <stdio.h>  
#include <unistd.h> 
 
int main() { 

 pid_t pid = fork(); 
 if (pid < 0) { /* error occurred */ 
  fprintf(stderr, "Fork Failed"); 
  return 1; 
 } 
 printf("pid = %d, Hello world!\n", pid); 
 return 0; 

} 



HOW IT WORKS 

… 
fork();  
printf();  
… 

… 
fork();  
printf();  
… 



 SECOND EXAMPLE 
#include <sys/types.h>  
#include <stdio.h>  
#include <unistd.h> 
 
int main() { 

 pid_t pid = fork(); 
  
 if (pid < 0) { /* error occurred */ 
  fprintf(stderr, "Fork Failed"); 
  return 1; 
 }   

 
 pid_t pid1 = fork(); 

 
 printf("Hello world!\n"); 
 return 0; 

} 
how many processes? 



HOW IT WORKS 

… 
F  
F 
P  
… 

… 
F; 
F  
P  
… 

… 
F; 
F  
P  
… 

… 
F; 
F  
P  
… 



DISTINGUISHING CHILD AND PARENT 
PROCESSES 
#include <sys/types.h>  
#include <stdio.h>  
#include <unistd.h> 
int main() { 

 pid_t pid; 
 /* fork a child process */ 
 pid = fork(); 
 if (pid < 0) { /* error occurred */ 
  fprintf(stderr, "Fork Failed"); 
  return 1; 
 } else if (pid == 0) { /* child process */ 
  printf(“I am a child\n”); 
 } else { /* parent process */ 
  /* parent will wait for the child to complete */ 
  wait(NULL); 
  printf("Child Complete\n"); 
 } 
 return 0; 

} 

fork() 
return 0 in child 
process; return PID 
of the child in the 
parent 

wait() 
Waits for the 
completion of any 
child 



WAIT() 

wait() used to wait for the state changes in a child of the 
calling process 

•  Blocked until a child changes its status 
UNIX keeps in its process table all processes that have 
terminated but their parents have not yet waited for their 
termination 

•  They are called zombie processes 



EXEC 

Whole set of exec() system calls 

Most interesting are  
•  execv(pathname, argv) 
•  execve(pathname, argv, envp) 
•  execvp(filename, argv) 

All exec() calls perform the same basic tasks 

•  Erase current address space of process 
•  Load specified executable 

•  execlp(const char *file, const char *arg0, ... /*, (char *)0 */); 



PUTTING EVERYTHING 
TOGETHER 

#include <sys/types.h>  
#include <stdio.h>  
#include <unistd.h> 
 
int main() { 

 pid_t pid; 
 /* fork a child process */ 
 pid = fork(); 
 if (pid < 0) { /* error occurred */ 
  fprintf(stderr, "Fork Failed"); 
  return 1; 
 } else if (pid == 0) { /* child process */ 
  execlp("/bin/ls", "ls", "-l", NULL); 
 } else { /* parent process */ 
  /* parent will wait for the child to complete */ 
  wait(NULL); 
  printf("Child Complete\n"); 
 } 
 return 0; 

} 



OBSERVATIONS  

Mechanism is quite costly  

•  fork() makes a complete copy of parent address space 
•  very costly in a virtual memory system 

•  exec() thrashes that address space 
Berkeley UNIX introduced cheaper vfork() 

•  Shares the parent address space until the child  does an 
exec() 



PROCESS TERMINATION 

When do processes terminate? 

•  exit(), “running off end”, invalid operations, other process kills 
it 

Resources must be de-allocated 

•  E.g., PCB, open files 
•  Memory (address space) that is in use (if no other threads) 

What happens when parent dies? 

•  Children can die (“cascading termination”) 
•  Children can remain executing 

What happens when a child terminates 

•  Parent may be notified 
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EXAMPLES OF PROCESS 
TERMINATION 

Unix-ish systems (e.g., Mac OS X, Linux) 

•  E.g., process calls _exit() or exit() itself, or another process 
calls kill(pid, SIGKILL) 

•  Parent: Child terminating sends SIGCHLD signal to parent 
(does not terminate parent) 

•  Children: of terminating process are inherited by process 1, 
“init” (BUT, children terminate on Unix!) 

Windows system 

•  e.g., ExitProcess called by the process or another process 
calls TerminateProcess with a handle to the process 

•  Children: child processes continue to run 
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PARENT DIES BEFORE CHILD 
#include <sys/types.h>  
#include <stdio.h>  
#include <unistd.h> 
 
int main() { 

 pid_t pid; 
 /* fork a child process */ 
 pid = fork(); 
 if (pid < 0) { /* error occurred */ 
  fprintf(stderr, "Fork Failed"); 
  return 1; 
 } else if (pid == 0) { /* child process */ 
  sleep(10); 
  printf("Child terminating\n"); 
 } else { /* parent process */ 
  printf("Press enter to continue in parent\n"); 
  getchar(); 
 } 
 return 0; 

} 



COOPERATING PROCESSES 

Any process that does not share data with any other process 
is independent” 

Processes that share data are cooperating 
Why cooperation? 

•  Software engineering issues 
•  Sometimes it is natural to divide a problem  into multiple 

processes 
•  Often, the parts of a program need to cooperate 
•  Modularity 

•  Run-time issues 
•  Computational speedups (e.g., multiple CPU’s) 
•  Convenience (e.g., printing in background) 

 



MECHANISMS 

Shared memory 

Message passing 
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Figure 3.12 Communications models. (a) Message passing. (b) Shared memory.

memory regions. Once shared memory is established, all accesses are treated
as routine memory accesses, and no assistance from the kernel is required.

Recent research on systems with several processing cores indicates that
message passing provides better performance than shared memory on such
systems. Shared memory suffers from cache coherency issues, which arise
because shared data migrate among the several caches. As the number of
processing cores on systems increases, it is possible that we will see message
passing as the preferred mechanism for IPC.

In the remainder of this section, we explore shared-memory and message-
passing systems in more detail.

3.4.1 Shared-Memory Systems

Interprocess communication using shared memory requires communicating
processes to establish a region of shared memory. Typically, a shared-memory
region resides in the address space of the process creating the shared-memory
segment. Other processes that wish to communicate using this shared-memory
segment must attach it to their address space. Recall that, normally, the
operating system tries to prevent one process from accessing another process’s
memory. Shared memory requires that two or more processes agree to remove
this restriction. They can then exchange information by reading and writing
data in the shared areas. The form of the data and the location are determined by
these processes and are not under the operating system’s control. The processes
are also responsible for ensuring that they are not writing to the same location
simultaneously.

To illustrate the concept of cooperating processes, let’s consider the
producer–consumer problem, which is a common paradigm for cooperating
processes. A producer process produces information that is consumed by a
consumer process. For example, a compiler may produce assembly code that
is consumed by an assembler. The assembler, in turn, may produce object
modules that are consumed by the loader. The producer–consumer problem

Message passing Shared memory 



SHARED MEMORY 

OS provides the abstraction of shared memory 

Programmers need to handle the communication explicitly 
Producer-consumer 

•  Requires synchronization 



MESSAGE PASSING 

Process 1 

 
int main() { 

Message m; 
Send(P2, m); 

} 
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Process 2 
 
int main() { 

Message m; 
m = Receive(P1, m); 

} 



STYLES OF MESSAGE PASSING 
Send/Receive calls 
Blocking (synchronous) 

•  “Rendezvous” 
•  Send blocks until receiver executes Receive 
•  Receive blocks until there is a message 

•  Fixed-length queue 
•  Sender blocks if queue is full 
•  Rendezvous uses a fixed-length queue, length = 0 

Non-blocking (asynchronous) 
•  Send buffers message, so Receiver will pick it up later 

•  Needs an ‘unbounded’ message queue 
•  Receiver gets a message or an indication of no message (e.g., 

NULL) 
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DIRECT MESSAGE PASSING: 
USE IDENTIFIER OF PROCESS 

Direct/symmetric 

•  Both sender and receiver name a process 
•   Send(P, message) // send to process P 
•   Receive(Q, message) // receive from process Q 

Direct/asymmetric 

•   Send(P, message) // send to process P 
•   Receive(&id, message) // id gets set to sender 
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MAILBOXES: INDIRECT 
MESSAGE PASSING 

Process 1 

 
int main() { 

Message m; 
Send(“mbox”, m); 

} 
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Process 2 

int main() { 
Message m; 
m = Receive(“mbox”); 

} 

mailbox “mbox” 



MAILBOXES: INDIRECT 
MESSAGE PASSING 

Neither sender or receiver or receiver knows process ID of 
the other; use a mailbox instead 

•  E.g., using sockets in UNIX or Windows, and ports in Mach 
Mailboxes have names or identifiers 
Also have Send/Receive system calls 

•  Processes Send messages to mailboxes 
•  Receiver checks mailbox for messages using Receive 

Mailboxes have owners 
•  E.g., owner may be creating process, or O/S 
•  Pass privileges to other processes 

•  e.g., rights to ports in Mach can be sent to other processes 
•  Children may automatically share privileges  
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PIPES 

UNIX pipes are a shell construct: 

•  ls -alg | more 
Standard output of program at left (producer) becomes  the 
standard input of program at right (consumer). 



HYDRAULIC ANALOGY 

 a  
  b  

  c  
 

a | b | c 

std  input 

std output 



THE PIPE() SYSTEM CALL 

To create a  pipe between two processes 
int pd[2]; 
pipe(pd);  

System call creates two new file descriptors: 

•  pd[0]  that can be used to read from pd 
•  pd[1] that can be used to write to the pd 

Also returns an error code 3.6 Communication in Client–Server Systems 143

parent
fd(0) fd(1)

child
fd(0) fd(1)
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Figure 3.24 File descriptors for an ordinary pipe.

UNIX treats a pipe as a special type of file. Thus, pipes can be accessed using
ordinary read() and write() system calls.

An ordinary pipe cannot be accessed from outside the process that created
it. Typically, a parent process creates a pipe and uses it to communicate with
a child process that it creates via fork(). Recall from Section 3.3.1 that a child
process inherits open files from its parent. Since a pipe is a special type of file,
the child inherits the pipe from its parent process. Figure 3.24 illustrates the
relationship of the file descriptor fd to the parent and child processes.

In the UNIX program shown in Figure 3.25, the parent process creates a
pipe and then sends a fork() call creating the child process. What occurs after
the fork() call depends on how the data are to flow through the pipe. In
this instance, the parent writes to the pipe, and the child reads from it. It is
important to notice that both the parent process and the child process initially
close their unused ends of the pipe. Although the program shown in Figure
3.25 does not require this action, it is an important step to ensure that a process
reading from the pipe can detect end-of-file (read() returns 0) when the writer
has closed its end of the pipe.

Ordinary pipes on Windows systems are termed anonymous pipes, and
they behave similarly to their UNIX counterparts: they are unidirectional and

#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#define BUFFER SIZE 25
#define READ END 0
#define WRITE END 1

int main(void)
{
char write msg[BUFFER SIZE] = "Greetings";
char read msg[BUFFER SIZE];
int fd[2];
pid t pid;

/* Program continues in Figure 3.26 */

Figure 3.25 Ordinary pipe in UNIX.



REMOTE PROCEDURE CALL 

Process 1 

 
int main() { 

 // Invoke method 

 // on Process 2 

 Method1(); 

} 
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Process 2 

Method1() 

Method2() 
 
… 



REMOTE PROCEDURE CALLS 
(RPC) 

Look like regular function calls to caller 

•  But, RPC invocation from a ‘client’ causes a method to be 
invoked on a remote ‘server’ 

•  Remote ‘server’ process provides implementation and 
processing of method 

•  Client side interface has to pack (“marshal”) arguments and 
requested operation type into a message & send to remote 
server 

Can have blocking or non-blocking semantics 
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CLIENT-SERVER SYSTEMS 

Sockets 

•  Servers run on well-defined ports 
•  A socket uniquely identified by <src_ip, src_port, dst_ip, 

dst_port> 
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Figure 3.20 Communication using sockets.

Although most program examples in this text use C, we will illustrate
sockets using Java, as it provides a much easier interface to sockets and has a
rich library for networking utilities. Those interested in socket programming
in C or C++ should consult the bibliographical notes at the end of the chapter.

Java provides three different types of sockets. Connection-oriented (TCP)
sockets are implemented with the Socket class. Connectionless (UDP) sockets
use theDatagramSocket class. Finally, theMulticastSocket class is a subclass
of the DatagramSocket class. A multicast socket allows data to be sent to
multiple recipients.

Our example describes a date server that uses connection-oriented TCP
sockets. The operation allows clients to request the current date and time from
the server. The server listens to port 6013, although the port could have any
arbitrary number greater than 1024. When a connection is received, the server
returns the date and time to the client.

The date server is shown in Figure 3.21. The server creates a ServerSocket
that specifies that it will listen to port 6013. The server then begins listening
to the port with the accept() method. The server blocks on the accept()
method waiting for a client to request a connection. When a connection request
is received, accept() returns a socket that the server can use to communicate
with the client.

The details of how the server communicates with the socket are as follows.
The server first establishes aPrintWriterobject that it will use to communicate
with the client. A PrintWriter object allows the server to write to the socket
using the routine print() and println() methods for output. The server
process sends the date to the client, calling the method println(). Once it
has written the date to the socket, the server closes the socket to the client and
resumes listening for more requests.

A client communicates with the server by creating a socket and connecting
to the port on which the server is listening. We implement such a client in the
Java program shown in Figure 3.22. The client creates a Socket and requests
a connection with the server at IP address 127.0.0.1 on port 6013. Once the
connection is made, the client can read from the socket using normal stream
I/O statements. After it has received the date from the server, the client closes



SERVERS 

Single threaded server: 

•  Processes one request at a time 
for (;;) { 
   receive(&client, request); 
   process_request(...); 
   send (client, reply); 
} // for 



A TRICKY QUESTION 

What does a server  do when it does not process client 
requests? 

 
Possible answers: 

•  Nothing 
•  It busy waits for client requests 
•  It sleeps 

•  WAITING state is sometimes called sleep state 
 



THE PROBLEM 

Most client requests involve disk accesses 

•  File servers 
•  Authentications servers 

When this happens, the server remains in the WAITING state 

•  Cannot handle other customers’ requests 



A FIRST SOLUTION 

int pid;  
for (;;) { 
   receive(&client, request); 
   if ((pid = fork())== 0) { 
       process_request(...); 
       send (client, reply); 
       _exit(0); // done 
   } // if  
} // for 

 



THE GOOD AND THE BAD NEWS 

The good news: 

•  Server can now handle several user requests in parallel 

The bad news: 

•  fork() is a very expensive system call 



A BETTER SOLUTION 

Provide a faster mechanism for creating cheaper processes: 

•  Threads  
Threads share the address space of their parent 

•  No need to create a new address space 
•  Most expensive step of fork() system call 
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Figure 4.2 Multithreaded server architecture.

services the message using a separate thread. This allows the server to service
several concurrent requests.

Finally, most operating-system kernels are now multithreaded. Several
threads operate in the kernel, and each thread performs a specific task, such
as managing devices, managing memory, or interrupt handling. For example,
Solaris has a set of threads in the kernel specifically for interrupt handling;
Linux uses a kernel thread for managing the amount of free memory in the
system.

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

1. Responsiveness. Multithreading an interactive application may allow
a program to continue running even if part of it is blocked or is
performing a lengthy operation, thereby increasing responsiveness to
the user. This quality is especially useful in designing user interfaces. For
instance, consider what happens when a user clicks a button that results
in the performance of a time-consuming operation. A single-threaded
application would be unresponsive to the user until the operation had
completed. In contrast, if the time-consuming operation is performed in
a separate thread, the application remains responsive to the user.

2. Resource sharing. Processes can only share resources through techniques
such as shared memory and message passing. Such techniques must
be explicitly arranged by the programmer. However, threads share the
memory and the resources of the process to which they belong by default.
The benefit of sharing code and data is that it allows an application to
have several different threads of activity within the same address space.

3. Economy. Allocating memory and resources for process creation is costly.
Because threads share the resources of the process to which they belong,
it is more economical to create and context-switch threads. Empirically
gauging the difference in overhead can be difficult, but in general it is
significantly more time consuming to create and manage processes than
threads. In Solaris, for example, creating a process is about thirty times



A COMPARISON BETWEEN FORK 
& PTHREAD_CREATE() 

~10 times faster 



IS IT NOT DANGEROUS? 

To some extent because 

•  No memory protection inside an address space 
•  Lightweight processes can now interfere with each other 

But 

•  All lightweight process code is written by the same team 
•  Synchronization 



GENERAL CONCEPT 
A thread 

•  Does not have its own address space  
•  Shares it with its parent and other peer threads in the same address space 

(task) 
Each thread has a program counter, a set of registers and its own stack. 

•  Everything else is shared 
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Figure 4.1 Single-threaded and multithreaded processes.

threads of control. A web browser might have one thread display images or
text while another thread retrieves data from the network, for example. A
word processor may have a thread for displaying graphics, another thread for
responding to keystrokes from the user, and a third thread for performing
spelling and grammar checking in the background. Applications can also
be designed to leverage processing capabilities on multicore systems. Such
applications can perform several CPU-intensive tasks in parallel across the
multiple computing cores.

In certain situations, a single application may be required to perform
several similar tasks. For example, a web server accepts client requests for
web pages, images, sound, and so forth. A busy web server may have several
(perhaps thousands of) clients concurrently accessing it. If the web server ran
as a traditional single-threaded process, it would be able to service only one
client at a time, and a client might have to wait a very long time for its request
to be serviced.

One solution is to have the server run as a single process that accepts
requests. When the server receives a request, it creates a separate process
to service that request. In fact, this process-creation method was in common
use before threads became popular. Process creation is time consuming and
resource intensive, however. If the new process will perform the same tasks as
the existing process, why incur all that overhead? It is generally more efficient
to use one process that contains multiple threads. If the web-server process is
multithreaded, the server will create a separate thread that listens for client
requests. When a request is made, rather than creating another process, the
server creates a new thread to service the request and resume listening for
additional requests. This is illustrated in Figure 4.2.

Threads also play a vital role in remote procedure call (RPC) systems. Recall
from Chapter 3 that RPCs allow interprocess communication by providing a
communication mechanism similar to ordinary function or procedure calls.
Typically, RPC servers are multithreaded. When a server receives a message, it



EXAMPLES OF MULTITHREADED 
PROGRAMS 
Embedded systems  

•  Elevators, Planes, Medical systems, Wristwatches 
•  Single Program, concurrent operations 

 
Most modern OS kernels 

•  Internally concurrent because have to deal with concurrent 
requests by multiple users 

•  But no protection needed within kernel 
 
Database Servers 

•  Access to shared data by many concurrent users 
•  Also background utility processing must be done 

 
 



EXAMPLES OF MULTITHREADED 
PROGRAMS (CON’T) 

Network Servers 

•  Concurrent requests from network 
•  Again, single program, multiple concurrent operations 
•  File server, Web server, and airline reservation systems 

 

Parallel Programming (More than one physical CPU) 

•  Split program into multiple threads for parallelism 
•  This is called Multiprocessing 



CLASSIFICATION 

Real operating systems have either 

•  One or many processes 
•  One or many threads per process 

Mach, OS/2, HP-UX, Win 
NT to 8, Solaris, OS X, 

Android, iOS"

Embedded systems 
(Geoworks, VxWorks, 

etc)"

Traditional UNIX"MS/DOS, early 
Macintosh"

Many"

One"

# threads"
/process:"

Many"One"

# 
of
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s:
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MEMORY FOOTPRINT OF TWO-
THREAD EXAMPLE 

If we stopped this program and examined it with 
a debugger, we would see 

•  Two sets of CPU registers 
•  Two sets of Stacks 

 

 

Code"

Global Data"

Heap"

Stack 1"

Stack 2"

A
ddress Space!



PER THREAD STATE 

Each Thread has a Thread Control Block (TCB) 

•  Execution State: CPU registers, program counter (PC), 
pointer to stack (SP) 

•  Scheduling info: state, priority, CPU time 
•  Various Pointers (for implementing scheduling queues) 
•  Pointer to enclosing process (PCB) 
•  Etc (add stuff as you find a need) 

 
OS Keeps track of TCBs in protected memory 

•  In Array, or Linked List, or … 



MULTITHREADED PROCESSES 

PCB points to multiple TCBs: 

 
 

 

 

 

 
Switching threads within a process is a simple thread switch 

Switching threads across processes requires changes to 
memory and I/O address tables. 



THREAD LIFECYCLE 
As a thread executes, it changes state:!

•  new:  The thread is being created"
•  ready:  The thread is waiting to run"
•  running:  Instructions are being executed"
•  waiting:  Thread waiting for some event to occur"
•  terminated:  The thread has finished execution"

!
“Active” threads are represented by their TCBs!

•  TCBs organized into queues based on their state"
 



IMPLEMENTATION 

Thread can either be 

•  Kernel supported: 
•  Mach, Linux, Windows NT and after 

•  User-level: 
•  Pthread library, Java thread 



KERNEL-SUPPORTED THREADS 

Managed by the kernel through system calls 

One process table entry per thread 
Kernel can allocate several processors  to a single 
multithreaded process 

Supported by Mach, Linux, Windows NT and  more recent 
systems 

Switching between two threads in the same processes 
involves a system call  

•  Results in two context switches 



USER-LEVEL THREADS 
User-level threads are managed by procedures within the task 
address space   

•  The thread library 
One process table entry per process/address space 

•  Kernel is not even aware that process is multithreaded 
No performance penalty: Switching between two threads of the 
same task is done cheaply within the task 
Programming issue:   

•  Each time a  thread does a blocking system call,  kernel will 
move the whole process to the waiting state 

•  It does not know better 
•  Programmer must use non-blocking system calls 

•  Can be nasty   
 
 



USER-LEVEL THREADS 

sleep(5); 

Kernel 
Process wants to sleep for 5 seconds:  

Let us  move it to the waiting state 



MAPPING BETWEEN KERNEL AND USER 
LEVEL THREADS 

4.4 Thread Libraries 171
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Figure 4.8 Two-level model.

create). The many-to-many model suffers from neither of these shortcomings:
developers can create as many user threads as necessary, and the corresponding
kernel threads can run in parallel on a multiprocessor. Also, when a thread
performs a blocking system call, the kernel can schedule another thread for
execution.

One variation on the many-to-many model still multiplexes many user-
level threads to a smaller or equal number of kernel threads but also allows a
user-level thread to be bound to a kernel thread. This variation is sometimes
referred to as the two-level model (Figure 4.8). The Solaris operating system
supported the two-level model in versions older than Solaris 9. However,
beginning with Solaris 9, this system uses the one-to-one model.

4.4 Thread Libraries

A thread library provides the programmer with an API for creating and
managing threads. There are two primary ways of implementing a thread
library. The first approach is to provide a library entirely in user space with no
kernel support. All code and data structures for the library exist in user space.
This means that invoking a function in the library results in a local function
call in user space and not a system call.

The second approach is to implement a kernel-level library supported
directly by the operating system. In this case, code and data structures for
the library exist in kernel space. Invoking a function in the API for the library
typically results in a system call to the kernel.

Three main thread libraries are in use today: POSIX Pthreads, Windows, and
Java. Pthreads, the threads extension of the POSIX standard, may be provided
as either a user-level or a kernel-level library. The Windows thread library
is a kernel-level library available on Windows systems. The Java thread API
allows threads to be created and managed directly in Java programs. However,
because in most instances the JVM is running on top of a host operating system,
the Java thread API is generally implemented using a thread library available
on the host system. This means that on Windows systems, Java threads are
typically implemented using the Windows API; UNIX and Linux systems often
use Pthreads.
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Figure 4.6 One-to-one model.

4.3.2 One-to-One Model

The one-to-one model (Figure 4.6) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call. It also allows
multiple threads to run in parallel on multiprocessors. The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Linux, along with the family of
Windows operating systems, implement the one-to-one model.

4.3.3 Many-to-Many Model

The many-to-many model (Figure 4.7) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an
application may be allocated more kernel threads on a multiprocessor than on
a single processor).

Let’s consider the effect of this design on concurrency. Whereas the many-
to-one model allows the developer to create as many user threads as she wishes,
it does not result in true concurrency, because the kernel can schedule only
one thread at a time. The one-to-one model allows greater concurrency, but the
developer has to be careful not to create too many threads within an application
(and in some instances may be limited in the number of threads she can
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170 Chapter 4 Threads

user thread

kernel threadkkkk

Figure 4.6 One-to-one model.

4.3.2 One-to-One Model

The one-to-one model (Figure 4.6) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call. It also allows
multiple threads to run in parallel on multiprocessors. The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Linux, along with the family of
Windows operating systems, implement the one-to-one model.

4.3.3 Many-to-Many Model

The many-to-many model (Figure 4.7) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an
application may be allocated more kernel threads on a multiprocessor than on
a single processor).

Let’s consider the effect of this design on concurrency. Whereas the many-
to-one model allows the developer to create as many user threads as she wishes,
it does not result in true concurrency, because the kernel can schedule only
one thread at a time. The one-to-one model allows greater concurrency, but the
developer has to be careful not to create too many threads within an application
(and in some instances may be limited in the number of threads she can
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Figure 4.7 Many-to-many model.
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POSIX THREADS 

POSIX threads, or pthreads, are standardized programming 
interface 

Ported to various Unix and Windows systems (Pthreads-
win32). 

On Linux, pthread library implements the 1:1 model 

Function names start with “pthread_” 

Calls tend to have a complex syntax : over 100 methods and 
data types  



AN EXAMPLE 
#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
#define NUM_THREADS  5 
 
void *PrintHello(void *threadid) 
{ 
   long tid; 
   tid = (long)threadid; 
   printf("Hello World! It's me, thread #%ld!\n", tid); 
   pthread_exit(NULL); 
} 
 
int main(int argc, char *argv[]) 
{ 
   pthread_t threads[NUM_THREADS]; 
   int rc; 
   long t; 
   for(t=0;t<NUM_THREADS;t++){ 
     printf("In main: creating thread %ld\n", t); 
     rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t); 
     if (rc){ 
       printf("ERROR; return code from pthread_create() is %d\n", rc); 
       exit(-1); 
       } 
     } 
   /* Last thing that main() should do */ 
   pthread_exit(NULL); 
} 



SUMMARY 

•  Multiprogramming: Run multiple applications concurrently"
•  Protection: Don’t want a bad application to crash system!"

Goals:!

Process: unit of execution and allocation"
•  Virtual Machine abstraction: give process illusion it owns 

machine (i.e., CPU, Memory, and IO device multiplexing)"

Solution:!

•  Process creation & switching expensive"
•  Need concurrency within same app (e.g., web server)  "

Challenge:!

Thread: Decouple allocation and execution"
•  Run multiple threads within same process"

Solution:!


