OPERATIONS ON PROCESSES

Process creation

» fork()

* exec()

* The argument vector
Process deletion

* kill()

* signal()

PROCESS CREATION

Two basic system calls
» fork() creates a carbon-copy of calling process sharing its
opened files

* exec () overwrites the contents of the process address space
with the contents of an executable file

FORK()

The first process of a system is created when the system is
booted

* e.g., init()
All other processes are forked by another process (parent
process)

* They are said to be children of the process that created
them.

When a process forks, OS creates an identical copy of
forking process with

* a new address space

 a new PCB

The only resources shared by the parent and the child
process are the opened files

FORK()

fork() call returns twice!

* Once in address space of child process
* Function return value is 0 in child
* Once in address space of parent process
* Function return value is process ID of child in parent

FORK() ILLUSTRATED

Parent:

fork() Child:

returns '
fork()

P".) of returns

child 0

opened files

FIRST EXAMPLE

The program

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main() {

pid_t pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}

printf("pid = %d, Hello world\n", pid);

return 0;

HOW IT WORKS

fork () ;
printf () ;

SECOND EXAMPLE

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main() {
pid_t pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}
pid_t pid1 = fork();

printf("Hello world\n");
return 0; how many processes?

HOW IT WORKS

DISTINGUISHING CHILD AND PARENT
PROCESSES

#include <sys/types.h>
#include <stdio.h>

#include <unistd.h> fork()

int main() { return O in child
pid_t pid; process; return PID
[* fork a child process */ of the child in the
pid = fork(); parent

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;
} else if (pid == 0) { /* child process */
printf(“l am a child\n”);
} else { /* parent process */
[* parent will wait for the child to complete */

wait(NULL); wait()
intf("Chil | "):
} printf("Child Complete\n"); o et
return 0: completion of any
’ child

WAIT()

wait() used to wait for the state changes in a child of the
calling process

* Blocked until a child changes its status

UNIX keeps in its process table all processes that have
terminated but their parents have not yet waited for their
termination

* They are called zombie processes

EXEC

Whole set of exec() system calls
Most interesting are

 execv(pathname, argv)
» execve(pathname, argv, envp)
 execvp(filename, argv)

All exec() calls perform the same basic tasks

* Erase current address space of process
 Load specified executable

- execlp(const char *file, const char *arg0, ... /*, (char *)0 */);

PUTTING EVERYTHING
TOGETHER

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main() {

pid_t pid;

/[* fork a child process */

pid = fork();

if (pid < 0) {/* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

} else if (pid == 0) { /* child process */
execlp("/bin/ls", "Is", "-I", NULL);

} else { I* parent process */
/* parent will wait for the child to complete */
wait(NULL);
printf("Child Complete\n");

}

return 0;

OBSERVATIONS

Mechanism is quite costly

» fork() makes a complete copy of parent address space
 very costly in a virtual memory system

» exec() thrashes that address space
Berkeley UNIX introduced cheaper vfork()

» Shares the parent address space until the child does an
exec()

PROCESS TERMINATION

When do processes terminate?

- exit(), “running off end”, invalid operations, other process kills
it
Resources must be de-allocated
* E.g., PCB, open files
* Memory (address space) that is in use (if no other threads)
What happens when parent dies?

« Children can die (“cascading termination™)
 Children can remain executing
What happens when a child terminates

« Parent may be notified

15

EXAMPLES OF PROCESS
TERMINATION

Unix-ish systems (e.g., Mac OS X, Linux)
* E.g., process calls _exit() or exit() itself, or another process
calls kill(pid, SIGKILL)

 Parent: Child terminating sends SIGCHLD signal to parent
(does not terminate parent)

 Children: of terminating process are inherited by process 1,
“init” (BUT, children terminate on Unix!)

Windows system

* e.g., ExitProcess called by the process or another process
calls TerminateProcess with a handle to the process

 Children: child processes continue to run

16

PARENT DIES BEFORE CHILD

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main() {

pid_t pid;

/[* fork a child process */

pid = fork();

if (pid < 0) {/* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

} else if (pid == 0) { /* child process */
sleep(10);
printf("Child terminating\n");

} else { /* parent process */
printf("Press enter to continue in parent\n");
getchar();

}

return 0;

COOPERATING PROCESSES

Any process that does not share data with any other process
is independent”

Processes that share data are cooperating
Why cooperation?

- Software engineering issues

- Sometimes it is natural to divide a problem into multiple
processes
« Often, the parts of a program need to cooperate

* Modularity

* Run-time issues
- Computational speedups (e.g., multiple CPU’ s)
« Convenience (e.g., printing in background)

MECHANISMS

Shared memory

Message passing

process A

process B

message queue

Y

Mo

mq (Mo Mg ...

Mp

\ 4

process A

kernel

Message passing

A

shared memory

process B

kernel

Shared memory

SHARED MEMORY

OS provides the abstraction of shared memory
Programmers need to handle the communication explicitly

Producer-consumer

« Requires synchronization

buffer

MESSAGE PASSING

Process 1 Process 2
int main() { int main() {
Message m; Message m;
Send(P2, m); m = Receive(P1, m);
} }

21

STYLES OF MESSAGE PASSING

Send/Receive calls
Blocking (synchronous)

+ “Rendezvous”
» Send blocks until receiver executes Receive
* Receive blocks until there is a message
 Fixed-length queue
» Sender blocks if queue is full
* Rendezvous uses a fixed-length queue, length =0
Non-blocking (asynchronous)

« Send buffers message, so Receiver will pick it up later
« Needs an ‘unbounded’ message queue

* Receiver gets a message or an indication of no message (e.g.,
NULL)

22

DIRECT MESSAGE PASSING:
USE IDENTIFIER OF PROCESS

Direct/symmetric

« Both sender and receiver name a process

. Send(P, message) // send to process P

. Receive(Q, message) // receive from process Q
Direct/asymmetric

. Send(P, message) // send to process P
. Receive(&id, message) // id gets set to sender

23

MAILBOXES: INDIRECT

MESSAGE PASSING
Process 2
Process 1
int main() { int main() {
Message m; Message m;
Send(“mbox”, m); m = Receive(“mbox”);
o }
}

mailbox “mbox”

24

MAILBOXES: INDIRECT
MESSAGE PASSING

Neither sender or receiver or receiver knows process ID of
the other; use a mailbox instead

* E.g., using sockets in UNIX or Windows, and ports in Mach
Mailboxes have names or identifiers

Also have Send/Receive system calls

* Processes Send messages to mailboxes

* Receiver checks mailbox for messages using Receive
Mailboxes have owners

* E.g., owner may be creating process, or O/S

 Pass privileges to other processes
* e.g., rights to ports in Mach can be sent to other processes

* Children may automatically share privileges

235

PIPES

UNIX pipes are a shell construct:

* |Is -alg | more
Standard output of program at left (producer) becomes the
standard input of program at right (consumer).

HYDRAULIC ANALOGY

alb]c

std input—}l
.—> std output

THE PIPE() SYSTEM CALL

To create a pipe between two processes
int pd[2];
pipe(pd);
System call creates two new file descriptors:
* pd[0] that can be used to read from pd
* pd[1] that can be used to write to the pd
Also returns an error code

parent child
fd(0) fd(1) fd(0) fd(1)

| |
| SO
> plpe <

REMOTE PROCEDURE CALL

Process 1 Process 2

int main() {
Il Invoke method
I/l on Process 2
Method1();

29

REMOTE PROCEDURE CALLS
(RPC)

Look like regular function calls to caller

» But, RPC invocation from a ‘client’ causes a method to be
invoked on a remote ‘server’

- Remote ‘server’ process provides implementation and
processing of method

- Client side interface has to pack (“marshal”) arguments and
requested operation type into a message & send to remote
server

Can have blocking or non-blocking semantics

30

CLIENT-SERVER SYSTEMS

Sockets
« Servers run on well-defined ports

« A socket uniquely identified by <src_ip, src_port, dst_ip,
dst_port>

host X
(146.86.5.20)

socket
(146.86.5.20:1625)

web server
(161.25.19.8)

socket
(161.25.19.8:80)

SERVERS

Single threaded server:

* Processes one request at a time
for (;5) {
receive(&client, request);
process_request(...);
send (client, reply);
} Il for

A TRICKY QUESTION

What does a server do when it does not process client
requests?

Possible answers:

* Nothing
* It busy waits for client requests
* |t sleeps
- WAITING state is sometimes called sleep state

THE PROBLEM

Most client requests involve disk accesses

* File servers
* Authentications servers
When this happens, the server remains in the WAITING state

« Cannot handle other customers’ requests

A FIRST SOLUTION

int pid;
for (;;) {
receive(&client, request);
if ((pid = fork())==0) {
process_request(...);
send (client, reply);
_exit(0); // done
} I if
} Il for

THE GOOD AND THE BAD NEWS

The good news:

« Server can now handle several user requests in parallel

The bad news:

- fork() is a very expensive system call

A BETTER SOLUTION

Provide a faster mechanism for creating cheaper processes:

* Threads
Threads share the address space of their parent

* No need to create a new address space
* Most expensive step of fork() system call

(2) create new
(1) request thread to service
the request

thread

Y
\ 4

client server

U

(3) resume listening
for additional
client requests

A COMPARISON BETWEEN FORK
& PTHREAD CREATE()

Intel 2.6 GHz Xeon E5-2670 (16 cores/node) 8.1 0.1 29 09 02 03
Intel 2.8 GHz Xeon 5660 (12 cores/node) 44 04 43 0.7 0.2 0.5
AMD 2.3 GHz Opteron (16 cores/node) 125 1.0 125 12 02 1.3
AMD 2.4 GHz Opteron (8 cores/node) 17.6 22 15.7 14 0.3 13
IBM 4.0 GHz POWERG (8 cpus/node) 935 0.6 8.8 1.6 0.1 04
IBM 1.9 GHz POWERS p5-575 (8 cpus/node) 642 30.7 276 1.7 0.6 1.1
IBM 1.5 GHz POWER4 (8 cpus/node) 104.5 48.6 472 2.1 10 1.5
INTEL 2.4 GHz Xeon (2 cpus/node) 549 1.5 208 1.6 07 09
INTEL 1.4 GHz Itanium2 (4 cpus/node) 54.5 1.1 222 20 12 0.6

~10 times faster

IS IT NOT DANGEROUS?

To some extent because

* No memory protection inside an address space
* Lightweight processes can now interfere with each other
But

« All lightweight process code is written by the same team
» Synchronization

GENERAL CONCEPT

A thread

* Does not have its own address space

« Shares it with its parent and other peer threads in the same address space
(task)

Each thread has a program counter, a set of registers and its own stack.

« Everything else is shared

code data files code data files
registers stack reqgisters ||| registers ||| registers
stack stack stack

thread —— ; <«— thread

single-threaded process multithreaded process

EXAMPLES OF MULTITHREADED
PROGRAMS

Embedded systems

- Elevators, Planes, Medical systems, Wristwatches
 Single Program, concurrent operations

Most modern OS kernels

* Internally concurrent because have to deal with concurrent
requests by multiple users

* But no protection needed within kernel

Database Servers

» Access to shared data by many concurrent users
 Also background utility processing must be done

EXAMPLES OF MULTITHREADED
PROGRAMS (CON'T)

Network Servers

» Concurrent requests from network
* Again, single program, multiple concurrent operations
* File server, Web server, and airline reservation systems

Parallel Programming (More than one physical CPU)

» Split program into multiple threads for parallelism
* This is called Multiprocessing

CLASSIFICATION

Real operating systems have either

* One or many processes
* One or many threads per process

R
* g
S One Man
threads a |
/process:
One MS/DOS, early Traditional UNIX

Macintosh

Embedded systems Mach, OS/2, HP-UX, Win
Many (Geoworks, VxWorks, NT to 8, Solaris, OS X,
etc) Android, iOS

PID 4 | Process Name

146
154
155
156
157
158
159
160
161
163
177
178
180
181
187
241
268
269
289
724
735
738
808
812
825
836
850
866
948

@

®

vo

UserEventAgent

AirPort Base Station Agent
UFR Il BackGrounder
Canon MF Scan Agent
Canon CMFP BackGrounder
TeamViewer_Desktop
TeamViewer

LMICUIAgent

LogMeln Menubar
LogMeln Hamachi Menubar
GrowlHelperApp

Skype

Dropbox

Google Drive

LogMeln Hamachi
dbfseventsd
VDCAssistant

Image Capture Extension
diskimages-helper
mdworker

Terminal

bash

Google Chrome

Coogle Chrome Helper
GCoogle Chrome Helper
Thunderbird

Microsoft PowerPoint
Microsoft AU Daemon
Google Chrome Helper

User

rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng
rzheng

% CPU
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.4
2.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.1
1.2
0.0
0.3

Threads

W w o wv s W N WN & W

20

w
-

22

oW W N s - W

w
(=B

33
11
2
8

Real Mem
6.6 MB
5.9 MB
2.5 MB

10.5 MB
2.3 MB
7.7 MB

15.1 MB
3.2 MB
4.6 MB
4.5 MB

13.3 MB

55.4 MB

67.4 MB

71.9 MB
6.7 MB
168 KB
4.1 MB
5.9 MB

10.5 MB

44 8 MB

14.6 MB
1.1 MB

99.8 MB

78.1 MB

22.9 MB

262.7 MB
164.5 MB
2.0 MB
68.1 MB

Kind
Intel (64 bit)
Intel (64 bit)
Intel
Intel (64 bit)
Intel
Intel
Intel
Intel
Intel
Intel
Intel (64 bit)
Intel
Intel
Intel
Intel
Intel
Intel (64 bit)
Intel (64 bit)
Intel (64 bit)
Intel (64 bit)
Intel (64 bit)
Intel (64 bit)
Intel
Intel
Intel
Intel (64 bit)
Intel
Intel
Intel

Virtual Mem
34.3 MB
31.1 MB
30.0 MB
33.9 MB
30.0 MB
32.7 MB
35.2 MB
31.5 MB
32.3 MB
30.8 MB
30.9 MB
85.6 MB

174.6 MB
155.6 MB
31.9 MB
28 KB
31.3 MB
29.3 MB
27.8 MB
68.6 MB
33.2 MB
17.5 MB
307.5 MB
111.4 MB
54.3 MB
283.5 MB
149.9 MB
30.0 MB
89.6 MB

MEMORY FOOTPRINT OF TWO-
THREAD EXAMPLE

If we stopped this program and examined it with
a debugger, we would see

» Two sets of CPU registers
» Two sets of Stacks

Stack 1

Stack 2

v

Global Data

Code

aoedg ssalppy

PER THREAD STATE

Each Thread has a Thread Control Block (TCB)
» Execution State: CPU registers, program counter (PC),
pointer to stack (SP)
« Scheduling info: state, priority, CPU time
 Various Pointers (for implementing scheduling queues)
 Pointer to enclosing process (PCB)
 Etc (add stuff as you find a need)

OS Keeps track of TCBs in protected memory

* In Array, or Linked List, or ...

MULTITHREADED PROCESSES

PCB points to multiple TCBs:

PCB PCB PCB

\\\’ TCB TCB
TCB

TCB TCB » TCB

Switching threads within a process is a simple thread switch

Switching threads across processes requires changes to
memory and I/O address tables.

THREAD LIFECYCLE

As a thread executes, it changes state:

. The thread is being created
: The thread is waiting to run

. . Instructions are being executed
. : Thread waiting for some event to occur
. . The thread has finished execution

“Active” threads are represented by their TCBs
» TCBs organized into queues based on their state

IMPLEMENTATION

Thread can either be

« Kernel supported:
* Mach, Linux, Windows NT and after

» User-level:
» Pthread library, Java thread

KERNEL-SUPPORTED THREADS

Managed by the kernel through system calls

One process table entry per thread

Kernel can allocate several processors to a single
multithreaded process

Supported by Mach, Linux, Windows NT and more recent
systems

Switching between two threads in the same processes
involves a system call

* Results in two context switches

USER-LEVEL THREADS

User-level threads are managed by procedures within the task
address space

* The thread library
One process table entry per process/address space

* Kernel is not even aware that process is multithreaded
No performance penalty: Switching between two threads of the
same task is done cheaply within the task
Programming issue:

« Each time a thread does a blocking system call, kernel will
move the whole process to the waiting state
It does not know better
* Programmer must use non-blocking system calls
« Can be nasty

USER-LEVEL THREADS

sleep(5) ;

MAPPING BETWEEN KERNEL AND USER
LEVEL THREADS

S8 S e
666 b

g g <«— user thread

<«—kernel thread @ <«— kernel thread

One-to-one Many-to-one Hybrid model

POSIX THREADS

POSIX threads, or pthreads, are standardized programming
interface

Ported to various Unix and Windows systems (Pthreads-
win32).

On Linux, pthread library implements the 1:1 model
Function names start with “pthread_”

Calls tend to have a complex syntax : over 100 methods and
data types

AN EXAMPLE

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{
long tid;
tid = (long)threadid;
printf("Hello World! It's me, thread #%Id"\n", tid);
pthread_exit(NULL);

}

int main(int argc, char *argv|])
{
pthread_t threads[NUM_THREADS];
int rc;
long t;
for(t=0;t<NUM_THREADS;t++){
printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc){
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
}
/* Last thing that main() should do */
pthread_exit(NULL);

SUMMARY

Goals:

* Multiprogramming: Run multiple applications concurrently
* Protection: Don’t want a bad application to crash system!

Solution: LL

Virtual Machine abstraction: give process illusion it owns

Process unit of execution and allocation
machine (i.e., CPU, Memory, and 10 device multiplexing)

Challenge: l/L

Need concurrency within same app (e.g., web server)

Solution: U

Thread: Decouple allocation and execution

[Process creation & switching expensive
[Run multiple threads within same process

J
]
|
|

